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Abstract

Rationale: Cell-free DNA (cfDNA) analysis holds promise for
early detection of lung cancer and benefits patients with higher
survival. However, the detection sensitivity of previous cfDNA-
based studies was still low to suffice for clinical use, especially for
early-stage tumors.

Objectives: Establish an accurate and affordable approach for
early-stage lung cancer detection by integrating cfDNA
fragmentomics and machine learning models.

Methods: This study included 350 participants without cancer
and 432 participants with cancer. The participants’ plasma
cfDNA samples were profiled by whole-genome sequencing.
Multiple cfDNA features and machine learning models were
compared in the training cohort to achieve an optimal model.
Model performance was evaluated in three validation cohorts.

Measurements and Main Results: A stacked ensemble model
integrating five cfDNA features and five machine learning

algorithms constructed in the training cohort (cancer: 113;
healthy: 113) outperformed all the models built on individual
feature–algorithm combinations. This integrated model yielded
superior sensitivities of 91.4% at 95.7% specificity for cohort
validation I (area under the curve [AUC], 0.984), 84.7% at 98.6%
specificity for validation II (AUC, 0.987), and 92.5% at 94.2%
specificity for additional validation (AUC, 0.974), respectively.
The model’s high performance remained consistent when
sequencing depth was down to 0.53 (AUC, 0.966–0.971).
Furthermore, our model is sensitive to identifying early
pathological features (83.2% sensitivity for stage I, 85.0%
sensitivity for ,1 cm tumor at the 0.66 cutoff).

Conclusions: We have established a stacked ensemble model
using cfDNA fragmentomics features and achieved superior
sensitivity for detecting early-stage lung cancer, which could
promote early diagnosis and benefit more patients.

Keywords: lung cancer; early detection; cell-free DNA;
whole-genome sequencing; machine learning

Lung cancer is the second most common
cancer and the leading cause of cancer-
related death in the world (1). The survival
rates of patients with lung cancer diagnosed

at the early localized and late distant stages
differ drastically (1), underscoring the
importance of early diagnosis for prognosis.
Unfortunately, only�16% of patients receive

a diagnosis at the localized stage (2).
Although radiological methods, such as
the low-dose computed tomography test,
can contribute to a 20% reduction in
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cancer-related deaths, their usage has been
limited because of high false-positive rate,
radiation-induced cancer risk, andmonetary

cost (3–6). A reliable noninvasive approach
to detect early-stage lung cancer in an
accurate and cost-efficient manner needs to
be developed.

The liquid biopsy–based cell-free DNA
(cfDNA) analysis has recently opened a new
avenue for disease detection. During
apoptosis and necrosis, DNA fragments
are released into the circulation to form
cfDNA (7). They bear the genetic and
epigenetic information from the cell and
tissue of origin (8). Specifically, a fraction of
cfDNA, namely circulating tumor DNA
(ctDNA), represents DNA shed from tumor
cells (9). Tumor somatic mutations can be
detected to distinguish ctDNA and
nontumorous cfDNA (10), but the
performance of ctDNAmutation calling-
based strategy suffers from sensitivity as low
as 40% for early-stage lung cancer (11).
Alternatively, epigenetic modifications such
as DNAmethylation and ctDNA
fragmentomic signatures, including
fragmentation size, have shown diagnostic
potential (12–15). However, the sensitivities
of the existing methylation or fragmentation
size feature-based approach for stage I lung
cancer cannot suffice for clinical use, ranging
from�25% to�60% (14, 15). The profile of
cfDNA cleavage site motifs represents another
class of biomarkers for liquid biopsy in
oncology. Recently, researchers have revealed
the tumor-associated cfDNA preferred end
coordinates in patients with hepatocellular
carcinoma, granting a sensitivity of.80% at
.90% specificity (16, 17). The utility of
cfDNA endmotifs, particularly for lung
cancer, still needs to be verified.

Recent studies have suggested that
incorporating a large number of features in
multiple dimensions could improve the
machine learning model’s discrimination
ability for early cancer detection (18). For
instance, a proof-of-concept study
combining cfDNAmethylation,
fragmentation, endmotif, and nucleosome
footprint patterns has reached�95%
sensitivity for hepatocellular carcinoma
prediction at 95–98% specificity,
outperforming models based on individual

features (19). Combining clinical risk factors,
protein biomarker concentrations, imaging
analysis, etc., with cfDNA fragment size
could further boost the prediction power
(15). However, it is conceivable that the assay
complexity could increase the monetary
cost. In addition, the model’s prediction
power for disease varies depending on the
choice of machine learning classification
algorithms (20). Leveraging the power of
machine learning, researchers have used
the stacked ensemble approach to integrate
cfDNA genomic features from whole-
genome sequencing (WGS) alone and
created a highly sensitive model for early-
stage colorectal adenocarcinoma detection
(21). The validity of this approach is to be
explored in the context of lung cancer.

Here, we established a multidimensional
stacked ensemble model for robust detection
of early-stage non–small cell lung cancer
(NSCLC). This model integrated five
cfDNA fragmentomic features and five
machine learning base models from our
comprehensive characterization and has
reached superior detection ability usingWGS
data. We demonstrated that the predictive
model is highly sensitive for detecting early
NSCLC pathological features. The
consistency of its performance at low
sequencing depth down to 0.53 is
particularly ideal for affordable lung cancer
early screening.

Methods

Participant Enrollment
For model construction and internal
validation, we enrolled 354 participants in
this study cohort of healthy volunteers
without cancer (n=160) and previously
untreated early-stage NSCLC (n=194),
including adenocarcinoma (ADC, n=162)
and squamous cell carcinoma (SCC, n=32)
from Jiangsu Cancer Hospital, China. After
model construction, we performed another
validation using plasma samples of 188
participants (healthy control subjects, n=70;
untreated NSCLC, n=118 [ADC, n=118])

At a Glance Commentary

Scientific Knowledge on the
Subject: Early detection can benefit
patients with lung cancer with higher
survival rates, but most patients do
not receive a diagnosis until metastasis
has already occurred. The recent
development of cell-free DNA
(cfDNA) analysis from liquid biopsy
has shown great potential to facilitate
the identification of lung cancer.
However, improving the detection
performance of cfDNA-based assays,
especially on early-stage lung cancer, is
vital for leveraging their applications.

What This Study Adds to the
Field: By integrating five different
cfDNA fragmentomic features, the
stacked ensemble machine learning
model reaches high sensitivity for
detecting early-stage lung cancer,
exceeding the performance of models
built on single features. Its superior
performance has also been validated in
an external validation dataset and an
independent additional dataset. This
study demonstrates that the stacked
ensemble model is robust in
distinguishing lung cancer from healthy
subjects using shallow whole-genome
sequencing data down to 0.53
coverage depth. Furthermore, its
detection ability is consistently high
across different disease subtypes, and it
can sensitively identify patients with
non–small cell lung cancer with very
early–stage characteristics. The model in
this study has important implications
for the current thinking on how to
develop accurate and affordable
strategies for lung cancer early detection
and management in clinical practice.
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from the plasma inventory (Jiangsu Cancer
Hospital, China). The clinical information of
individual patients with NSCLC and
volunteers without cancer is listed in Tables
E1–E3 in the online supplement. For further
independent validation, we incorporated
and tested additional samples, including
120 noncancer and 120 untreated samples
spanning stage I to stage IV, from our plasma
biobank (Jiangsu Cancer Hospital, China).
The clinical information of this additional
validation dataset is listed in Tables E4 and
E5. More enrollment information is provided
in the online supplement (see Participant
enrollment). Cancer and noncancer cohorts
are all sex and age matched. This study was
approved by the ethics committee at Jiangsu
Cancer Hospital (approval no. JSLMTCR-
2017-002) and complied with the Declaration
of Helsinki. All participants provided written
informed consent.

cfDNA Extraction and WGS
We performed plasma sample collection and
cfDNA extraction followed byWGS as
described in the online supplement (see
cfDNA extraction and sequencing). Briefly,
the venous blood samples were collected
during routine physical checks (healthy
volunteers) or preoperatively (patients with
cancer). All samples were collected, shipped,
and processed uniformly. A total of 5–10 ng
of plasma cfDNA per sample was subject to
PCR-freeWGS library construction with the
KAPAHyper Prep Kit (KAPA Biosystems).
The libraries underwent paired-end
sequencing on NovaSeq platforms
(Illumina). To minimize bias, the sample
operating team was blinded to the case or
control status of the samples during the
whole process.

Bioinformatic Analysis and Modeling
Raw sequencing data processing was
performed as described in online supplement
(see cfDNA fragmentomic features). The
libraries in this study have a mean
sequencing depth of 11.083 (range,
5.283–27.853 ). To eliminate the potential
impact of coverage difference on the
prediction power, we down-sampled the
libraries to a unified 53 for model
construction and evaluation, ensuring the
inclusion of all samples. The selected model
was further assessed using theWGS data of
raw sequencing depths or down-sampling to
43, 33, 23, 13, and 0.53.

We extracted five different
fragmentomic features from theWGS

data for feature selection and model
construction. Details on the fragmentomic
features are described in the online
supplement (see cfDNA fragmentomic
features). Briefly, we calculated the copy
number variation (CNV) according toWan
and colleagues (22). We also created four
new features (see cfDNA fragmentomic
features in the online supplement). The
fragmentation size coverage (FSC) and
fragmentation size distribution (FSD)
features were developed to depict cfDNA
fragment size patterns. Twomotif features,
6-bp endmotif (EDM) and 6-bp breakpoint
motif (BPM), can profile the sequences
around the end of cfDNA fragments. Of
note, the FSC and EDM features were
adopted and developed from the previously
published cfDNA fragmentation size
(DELFI) and 4-bp endmotif features (13,
17). We have demonstrated that FSC and
EDM outperformed their counterparts in
colorectal adenocarcinoma detection (21)
and thus set out our study using the
optimized features.

The model training was conducted
solely in the training dataset, and the
validation datasets remained untouched
before the model was finalized. The
validation I dataset was used for internal
validation and determining the cutoff score
of 95% specificity. External validation was
conducted in the validation II and the
independent additional validation datasets.

For model construction, we used each
cfDNA fragmentomic feature to build its
base model with five base algorithms:
generalized linear model (GLM), gradient
boosting machine (GBM), random forest,
deep learning, and XGBoost. For every
cancer and noncancer sample in this study,
the algorithms generated a cancer score
ranging from 0 to 1. A higher score output
by the models represented a higher
probability of cancer. The cancer probability
scores from all the algorithms were then
ensembled into a matrix and analyzed by a
GLM algorithm to create the base models for
improved robustness and accuracy, as shown
by the machine learning community (23). In
addition, we used fivefold cross-validation
based on the training dataset to optimize
model performance and avoid overfitting.
For the base models of individual
fragmentomic features and the ensemble
machine learning model, we assessed their
prediction performance based on the area
under the curve (AUC) values in the
validation cohorts. The details of

constructing base models and stacked
ensemble models are provided in the online
supplement (seeModel construction).

Model Analytical Validity Assessment
Three patients with cancer (stage I: one; stage
II: one; stage III: one) and three healthy
participants were chosen from the additional
validation dataset to check the model
performance within run and between run.
For within-run tests, one tube (�10 ml) of
venous blood sample was collected from
each participant for plasma preparation
(batch 1). The plasma of each participant was
evenly divided into three parts for three
technical replicates. One group of lab
technologists handled all the replicates for
cfDNA extraction, library preparation, and
sequencing. For between-run tests, another
round of blood sample collection was
performed 3 weeks later on the six
participants (batch 2). The plasma
preparation, splitting, cfDNA extraction,
library preparation, and sequencing steps
were processed following the same
procedures by a different group of lab
technologists. The within-run and between-
run tests yielded 36 samples in total. The
fragmentomic features were extracted from
the 36 samples and analyzed by the
predictive model for their cancer scores. The
three scores of each participant within the
same batch were used to assess the model’s
repeatability. Batch 1 and batch 2 results of
the same participant were compared to
evaluate the model’s reproducibility.

To assess the model’s sensitivity to low
ctDNA fraction samples, we retrieved plasma
samples from another study, in which
early-stage NSCLC tumor tissue and
corresponding plasma samples were
ultra–deep sequenced using Geneseeq Prime
425-gene panel (Geneseeq Technology Inc.).
Tumor-informed somatic mutations in the
425 predefined cancer-related genes targeted
by Geneseeq Prime panel were used to
identify the maximum variant allelic fraction
(max VAF) from the panel-based plasma
sequencing. This strategy allowed us to
determine max VAF as low as 0.05%, and the
max VAF was used to represent the ctDNA
fraction (24). In contrast, CNV-based
determination from plasmaWGS by
ichorCNA is inaccurate when the ctDNA
fraction is,1% (22). For the selected
patients with low ctDNA fraction, we
performed plasmaWGS and randomly
down-sampled theWGS data to the coverage
depths of 53, 43, 33, 23, 13, and 0.53 for
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20 times each. The resultingWGS fractions
were applied to the predictive model for their
cancer scores. Their cancer/noncancer status
was evaluated using the cutoff determined by
the validation I cohort. We defined the
percentage of the 20 replicates that detected
cancer at a certain sequencing depth as
detection sensitivity and used it to quantify
the model performance.

Statistical Analysis
For statistical analysis, the receiver operating
characteristic curves were generated using
the pROC package (v. 1.17.0.1). Based on
true positive (TP), true negative (TN), false
positive (FP), and false negative (FN) of
cancer prediction, we calculated the
sensitivity (TP/[TP1 FN]), specificity (TN/
[TN1 FP]), and accuracy ([TP1TN]/
[TP1 FP1TN1 FN]), as well as the
corresponding 95% confidence interval (CI),
using the epiR package (v. 2.0.19) in
R (v. 4.0.3). The Fisher’s exact test was
performed using GraphPad, and the
Wilcoxon rank sum and signed rank tests
were performed using R.

Results

Participant Disposition and
Characteristics
As shown in Figure 1A, the 354 participants
from the study cohort were randomly
assigned to the training (113 patients [ADC:
96; SCC: 17; stage I: 66; tumor size, 1 cm:
15]; 113 control subjects), and validation I
(81 patients [ADC: 66; SCC: 15; stage I: 46;
tumor size, 1 cm: 16]; 47 control subjects)
datasets. The training dataset was used to
train the model. We then used the validation
I dataset to evaluate its performance and
determine the cutoff for assessing the
validation II dataset. It is worth noting that
we built the model exclusively in the training
dataset. The samples from patients in an
independent study were assigned to the
validation II cohort (118 patients [ADC: 118;
stage I: 85; tumor size, 1 cm: 4]; 70 control
subjects) for external validation.

Participants’ demographics and
characteristics are summarized in Table E3
and are comparable across the three cohorts.
The mean ages and sex distribution of
subjects with and without cancer are similar
in the cohorts. The cancer groups are
highlighted by the majority of early-stage
diseases (training: stage I, 66/113 [58.4%];

validation I: stage I, 46/81 [56.8%]; validation
II: stage I, 85/118 [72.0%]).

Assessment of cfDNA Fragmentomic
Features and Machine Learning
Algorithms
We performed model selection by
evaluating the AUC values of the cfDNA
feature and machine learning algorithm
combinations in the validation cohorts. As
shown in Table E6, we tested the features
of FSC, FSD, EDM, BPM, and CNV in all
base models (GLM, GBM, deep learning,
random forest, and XGBoost) for their
AUC. The comparisons of different base
models revealed the superior performance
of the algorithm-stacked model, as the
EDM, BPM, FSC, FSD, and CNV features
all yielded higher AUC values in the
stacked model than in the single algorithm
models. Therefore, we built a stacked
ensemble model integrating the five
features of the plasma cfDNA
fragmentomic features (EDM, BPM, FSC,
FSD, and CNV) and five machine learning
algorithms (GLM, GBM, random forest,
deep learning, and XGBoost) (Figure 1B).
The cancer scores from all the individual
and stacked models for every participant
are listed in Table E7. The resultant stacked
ensemble model boosted the prediction
power to an AUC of 0.985 (95% CI,
0.983–0.998), outperforming the stacked
models using single fragmentomic features
(Figure 2A). In addition, the stacked
ensemble model’s AUC is higher than that
of a GLMmodel built on the fragmentomic
features (Table E6). Therefore, we chose
the stacked ensemble model as the
predictive model for our following
evaluation.

We scrutinized the performance of the
stacked ensemble model in the two
validation datasets separately. The model
AUC values are consistently high, at 0.984
(95% CI, 0.966–1.000) and 0.987 (95% CI,
0.970–1.000) in the validation I and II
cohorts, respectively (Figure 2B). We chose
the cancer score of 0.66 as the cutoff based
on the 95.7% specificity in the validation I
cohort. This cutoff score also yielded a
specificity of 98.6% when applied to the
validation II cohort. The resultant
sensitivities are 91.4% (95% CI, 83.0–96.5%)
in validation I and 84.7% (95% CI,
77.0–90.7%) in validation II. When the two
validation cohorts were combined, the model
reached 87.4% (95% CI, 82.0–91.7%)
sensitivity at 97.4% (95% CI, 92.7–99.5%)

specificity (Table 1). We observed that the
predicted cancer scores of patients with
cancer are significantly higher than those of
healthy participants in both validation
datasets (Figure 2C). Notably, we plotted the
cancer score of all the patients in the
validation cohorts based on their stages
and observed an upward trend of score
distribution from stage I to stage IV
(Figure 2D).

To further assess the generalizability of
the stacked ensemble model, we tested it in
an independent additional validation cohort
consisting of 120 patients with NSCLC and
120 participants without cancer, all collected
from other retrospective studies (Table E4).
The sample demographics of the additional
validation cohort, including age and sex, are
comparable between subjects with and
without cancer and similar to that of the
validation datasets (Table E5). The predictive
model reached the AUC of 0.974 (95% CI,
0.956–0.991) in the additional validation
dataset (Figure 3A). Applying the 0.66 cutoff
score, the model reliably distinguished cancer
and noncancer samples (Figure 3B and
Table E5) and detected subjects with cancer
with a 92.5% (95% CI, 86.2–96.5%)
sensitivity at 94.2% (95% CI, 88.4–97.6%)
specificity (Table 1). Consistently, the cancer
score of all the patients in the additional
validation dataset also exhibited an upward
trend from stage I to stage IV (Figure 3C). In
addition, 32 subjects without cancer were
detected with benign lung nodules according
to computed tomography scans (Table E4).
We scrutinized the benign lung nodule
status of the subjects without cancer and
found the high specificity of our predictive
model is independent of the presence
of benign nodules (Fisher’s exact test).

Analytical Validity Assessments of the
Predictive Model
Next, we sought to evaluate the model’s
stability and robustness at differentWGS
coverage depths by applyingWGS data with
varied coverage depths. Using the raw
coverageWGS data of the participants (range,
5.283–27.853), the stacked ensemble model
built on 53 coverageWGS reached the AUC
of 0.988 (95% CI, 0.974–1.000) and 0.989
(95% CI, 0.978–0.998) in the two validation
cohorts (Figure E1).We also tested the raw
coverageWGS data for model construction,
and the resultant model yielded the AUC of
0.978 (95% CI, 0.955–1.000) and 0.990 (95%
CI, 0.978–0.998) in the two validation cohorts
(Figure E1). Hence, the model can perform
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Figure 1. The model illustration and diagnostic performance evaluation in the validation cohorts. (A) A total of 542 participants (cancer 312,
healthy 230) were included for model construction and validation. Whole-genome sequencing (WGS) of plasma cell-free DNA (cfDNA) was
performed, and the five cfDNA features of each subject were profiled. A total of 226 participants (cancer 113, healthy 113) were allocated to
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were allocated to the validation I cohort for assessing the model performance and determining the cutoff score. One hundred and eighty-eight
participants (cancer 118, healthy 70) were allocated to an independent validation II cohort for evaluating model performance. An additional
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consistently using either raw or
53 sequencing depthWGS data. In the
meantime, we assessed its robustness at lower
coverage depth by gradually down-
sampling. Upon reducing WGS coverages

to 43, 33, 23, 13, and 0.53, we found
their AUC values remained high in both
validations I (>0.966) and II (>0.971)
datasets (Table E8). Although a slight
decrease in AUC was observed when the

coverage depth was down, the 13WGS
data can still yield clinically usable results
(validation I: 91.4% sensitivity at 93.6%
specificity; validation II: 83.9% sensitivity
at 97.1% specificity) (Figure E2).
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evaluating the performance of different stacking models in distinguishing patients with early lung cancer from healthy subjects in the combined
validation cohorts. (B) ROC curve evaluating the performance of the stacked ensemble model in the combined validation cohort and its
validation I and II cohorts separately. (C) The boxplots showing the distribution of cancer scores in the patient and control groups of the
validation cohorts. The 95% specificity cutoff score for the internal validation I set is 0.66, and a t test was performed for the comparison
between cancer and control subsets (***P,0.001). (D) Distribution of cancer scores from patients grouped by cancer stage in the validation
cohorts. The bar plot shows the mean value and SD of each stage group. The case numbers in the groups are indicated. AUC=area under the
curve; BPM=breakpoint motif; CI = confidence interval; CNV=copy number variation; EDM=end motif; FSC= fragmentation size coverage;
FSD= fragmentation size distribution.

Figure 1. (Continued ). 240 participants (cancer 120, healthy 120) were from independent studies and included for further external validation.
(B) Schematic diagram of the stacked ensemble model construction and cancer probability score determination. Plasma cfDNA was extracted
from the participant and subject to WGS. The sequencing reads were mapped to a human reference genome to determine the FSC, FSD, EDM,
BPM, and CNV features. The genome-wide feature profiles were then applied to the five machine learning algorithms, with the resultant matrix
processed by a second-layer GLM algorithm to form the stacked ensemble model and calculate the participant’s cancer probability score.
BPM=breakpoint motif; CNV=copy number variation; EDM=end motif; FSC= fragmentation size coverage; FSD= fragmentation size
distribution; GBM=gradient boosting machine; GLM=generalized linear model; NSCLC=non–small cell lung cancer.
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Using within-run and between-run
replicates from three patients with cancer of
the additional validation cohort (stage I: one;
stage II: one; stage III: one) and three healthy
control subjects, we evaluated the model’s
repeatability and reproducibility (Table E9).
As shown in Figure 4A, the predicted cancer
scores of three replicates for each condition
showed 100% accuracy in determining cancer
and noncancer samples. Furthermore, we
observed high consistency for both within-
run tests (the three replicates of each testing
condition) and between-run tests (batch 1
and batch 2 of the same participants).

We then set out to test the robustness of
the predictive model in cancer samples with

low ctDNA fractions using the 0.66 cutoff
score. The lowest ctDNA fraction of the
analyte and sequencing depth for consistent
detection were assessed. ThemaxVAFs of the
three selected patients are 1.66%, 0.13%, and
0.05% (Table E10). The plasma cfDNA
samples of these three patients were sequenced
byWGS and randomly down-sampled for
prediction. For patient 1 (VAF 1.66%), the
model remained at 100% sensitivity when
down-sampled to 0.53 coverage. For patient 2
(VAF, 0.13%) and patient 3 (VAF, 0.05%), the
model sensitivity is 100% at 33 coverage or
higher. Notably, at the 23 coverage, ourmodel
consistently maintained a sensitivity of
>95.0%, which is the well-accepted probability

by the field for determining the detection limit,
on all three patients. Even with the lowest
VAF (0.05%) and sequencing coverage (0.53),
ourmodel showed a 75.0% (15/20) sensitivity
in identifying cancer (Figure 4B).

Performance of the Predictive
Model in Different Cancer
Sample Subgroups
We further examined the model
performance in different lung cancer
subgroups using the validation datasets,
whereas the subgroups had no statistically
significant difference between different
categories (Fisher’s exact test, P values are
all.0.05). As shown in Table 2 (95.7%
specificity using the 0.66 cutoff score),
assay detection sensitivity is consistently
high across different subgroups of patients
with cancer. Specifically, our assay reliably
identified both SCC and ADC (sensitivity,
93.3%; 95% CI, 68.1–99.8% and sensitivity,
87.0%; 95% CI, 81.2–91.5%, respectively).
The model is suitable for detecting early
pathological features (stage I: 83.2%; 95%
CI, 75.7–89.2% and,1 cm tumor: 85.0%;
95% CI, 62.1–96.8%). Furthermore, the
model showed comparably high
sensitivities for identifying subjects with
lung cancer regardless of gender, age,
tumor location, lymph node metastasis,
focal number by computed tomography
scan, and risky behavior such as cigarette
smoking (Table 2).

Discussion

In this study, we aimed to improve the early
detection of lung cancer and established a
stacked ensemble machine learning model
integrating multiple cfDNA fragmentomic
features to achieve high sensitivity in
differentiating subjects with early-stage
NSCLC and subjects without cancer.

Our multidimensional assay
incorporates the advantages of cfDNA
fragmentomic features into the stacked
ensemble machine learningmodel. The
cleavage and fragmentation process of cfDNA
is nonrandom. Certain genomic regions have
shown preferred cleavage patterns, termed
preferred end sites, which are associated with
conditions such as tissue sources and disease
status due to chromatin accessibility, nuclease
activities, etc. (12, 16, 17, 25). As the tumor-
associated preferred end sites are more
pervasive and readily detectable than
mutations, the fragmentomic features have

Table 1. Diagnostic Performance of the Predictive Model in the Validation Cohorts
and Additional Cohort

Validation I Cohort

Actual

Cancer Healthy

Predicted
Cancer 74 2
Healthy 7 45

Sensitivity (95% CI) 91.4% (83.0–96.5%)
Specificity (95% CI) 95.7% (85.5–99.5%)
Accuracy (95% CI) 93.0% (87.1–96.7%)

Validation II Cohort

Actual

Cancer Healthy

Predicted
Cancer 100 1
Healthy 18 69

Sensitivity (95% CI) 84.7% (77.0–90.7%)
Specificity (95% CI) 98.6% (92.3–100.0%)
Accuracy (95% CI) 89.9% (84.7–93.8%)

Combined Validation
Cohorts

Actual

Cancer Healthy

Predicted
Cancer 174 3
Healthy 25 114

Sensitivity (95% CI) 87.4% (82.0–91.7%)
Specificity (95% CI) 97.4% (92.7–99.5%)
Accuracy (95% CI) 91.1% (87.4–94.0%)

Additional Validation
Cohorts

Actual

Cancer Healthy

Predicted
Cancer 113 9
Healthy 7 111

Sensitivity (95% CI) 92.5% (86.2–96.5%)
Specificity (95% CI) 94.2% (88.4–97.6%)
Accuracy (95% CI) 93.3% (89.4–96.1%)

Definition of abbreviation: CI = confidence interval.
The sensitivity and accuracy were calculated with the 95% CI at the 95.7% specificity of validation I.
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become an emerging class of ctDNA
signatures (12). The superior performance of
our model also underscored the promising
role of cfDNA fragmentomics in cancer
detection. As mentioned earlier, cfDNA
methylation and fragmentation patterns have
also been used for identifying patients with
lung cancer, but their sensitivities for stage I
lung cancer ranging from�25% to�60% are
unsatisfying for clinical use (12–15). By
combining pathological features, computed
tomography imaging, and serum protein
biomarker, the newDELFI model has

improved its detection performance (15).
However, it still experienced a detection bias
against the patients with early-stage disease
(sensitivity, 91% of stage I/II vs. 96% of stage
III/IV, at 80% specificity), likely due to the
high proportion of later-stage samples used
for its model construction.We have
comprehensively evaluated the existing
cfDNA features and integrated the better ones
into our predictive model. The ensemble
machine learningmodels have shown
advantages in model accuracy,
reproducibility, and interpretability for

bioinformatics applications, and the stacking
strategy can optimally integrate the
predictions made by single base models (26).
This study confirmed the superior prediction
power of the stacked models to the single base
models. Compared with the existing DELFI
model, our model achieved higher
sensitivities of 83.2% for patients with stage I
disease, respectively, at the specificity of
95.7%. More importantly, our strategy
ensured that all the next-generation
sequencing features are accessible from one
WGS testing and eased patients’ burden of
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Figure 3. Evaluation of the stacked ensemble predictive model in the independent additional validation cohort. (A) Receiver operating
characteristic curve evaluating the performance of the predictive model in distinguishing patients with early lung cancer from healthy subjects in
the additional validation cohort. (B) The boxplots showing the distribution of cancer scores in the patient and control groups of the additional
validation cohort. The 95% specificity cutoff score based on the validation I set is 0.66, and a t test was performed for the comparison between
cancer and control subsets (*0.01,P,0.05, **0.001,P, 0.01, and ***P, 0.001). (C) Distribution of cancer scores from patients grouped by
cancer stage in the additional validation cohort. The bar plot shows the mean value and standard deviation of each stage group. The case
numbers in the groups are indicated. AUC=area under the curve; CI= confidence interval.
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takingmultiple tests. In the future, we plan to
include additional clinical information to
improve the model performance (27).

Our model can facilitate the
development of lung cancer early detection
in clinical practice. First, its performance is
robust using shallowWGS data. Even when
the coverage depth was down to 0.53, the
model retained 91.4% sensitivity at 93.6%
specificity in the validation I cohort and
78.0% sensitivity at 94.3% specificity in the
validation II cohort. The assay robustness
with low coverage depth can help reduce the
sequencing cost. Consistent with the better
detection performance in the later stages of
the existing fragmentomic assays (15, 28), the
predicted scores of patients with cancer

exhibited an upward trend from stage I to IV
in our model (Figures 2D and 3C). More
importantly, the stacked ensemble model has
outperformed the previous models in
distinguishing subjects with and without
cancer and thus achieved a stably high
detection ability across different disease
stages (Table 2). Indeed, the sensitivity of our
model for very early–stage (stage I) and
small-size (,1 cm) tumors reached 83.2%
and 85.0%, respectively, indicating its
superior detection ability for early-stage
characteristics. Although early diagnosis is a
key to less morbid treatment and favorable
prognosis, most patients with lung cancer are
still receiving diagnoses at the metastatic
stage (29, 30). Therefore, our strategy could

be particularly useful in promoting lung
cancer early detection.

This study has several limitations. This
model was built on patients with early-stage
NSCLC in the Chinese population. NSCLC
accounts for about 85% of all lung cancer
(31), and this study did not include small-cell
lung carcinoma samples. In this study, we
have demonstrated the application of cfDNA
fragmentomics for high-sensitivity lung
cancer detection, but the underlying
mechanism is still undefined in the field. We
are currently pursuing a comprehensive
investigation to select variables and explore
new features to leverage our model. Also, the
study size is relatively small, so the sensitivity
of several small subgroups, such as patients
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Figure 4. Analytical validity assessments of the stacked ensemble predictive model. (A) Boxplots showing within-run and between-run tests to
evaluate the repeatability and reproducibility of the predictive model. Three healthy control subjects and three patients with cancer (stage I, II,
and III, respectively) were processed with three replicates for each condition and had blood draws twice, with a 3-week interval between batch
1 and batch 2. The 95% specificity cutoff score based on the validation I set is 0.66. (B) Three cancer samples with low variant allele frequency
(VAF) were subject to down-sampling in silico. The patients’ identification and their VAF values are indicated. Each sample was down-sampled
from 53 to 0.53with 20 repeats. The 95% specificity cutoff score based on the validation I set is 0.66. ctDNA=circulating tumor DNA.
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with SCC, and low- and high-differentiation
tumors, may be underestimated or
overestimated.We are expanding the size
and diversity of our study to achieve more
consolidated conclusions. In addition, we
sought to identify the limit of our model for
cancer detection by directly using real patient
blood samples with low ctDNA fractions.
Such analysis confirmed the detection of
samples with VAF 0.05%, representing the
lowest limit of reliable ctDNA fraction
detection by our current technology. We
acknowledge that using standard analytical
validity would help accurately determine the
assay limit of detection. However, the
existing commercial cfDNA reference
standards are artificially prepared, genomic

variant–based references. There are also
references derived frommixed human cell
lines, which are artificially fragmented to
resemble human plasma cfDNA but result in
fragment size and end motifs different from
the real human plasma cfDNA. Thus, these
standards are unsuitable for representing the
bona fide human blood cfDNA and
evaluating the stacked ensemble
multidimensional fragmentomic model.

Taken together, we have established a
stacked ensemble model integrating five
fragmentomic features from plasma cfDNA
WGS data. Our model exhibited high
sensitivity in distinguishing patients with
early-stage NSCLC from control subjects
without cancer. Furthermore, we

demonstrated the consistency and
robustness of the assay by testing its
performance across different WGS
coverage depths. Together with its superior
detection power for very early–stage, small-
size tumors in patients with NSCLC, our
multidimensional model has provided an
accurate and affordable approach to
promoting early detection of NSCLC and
improving the outcomes of patients.�

Author disclosures are available with the
text of this article at www.atsjournals.org.
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Table 2. Diagnostic Sensitivities of the Predictive Model in Different Lung Cancer Patient Subgroups of the Validation I and II
Cohorts and Their Combination

Cohort

Validation I Validation II Combined Validation

Sensitivity (95% CI) TP/Total Sensitivity (95% CI) TP/Total Sensitivity (95% CI) TP/Total

Histology
ADC 90.9% (81.3–96.6%) 60/66 84.7% (77.0–90.7%) 100/118 87.0% (81.2–91.5%) 160/184
SCC 93.3% (68.1–99.8%) 14/15 N/A N/A 93.3% (68.1–99.8%) 14/15

Stage
I 91.3% (79.2–97.6%) 42/46 78.8% (68.6–86.9%) 67/85 83.2% (75.7–89.2%) 109/131
II/III 90.6% (75.0–98.0%) 29/32 100.0% (89.4–100.0%) 33/33 95.4% (87.1–99.0%) 62/65
IV 100.0% (29.2–100.0%) 3/3 N/A N/A 100.0% (29.2–100.0%) 3/3

Tumor size
<1 cm 81.2% (54.4–96.0%) 13/16 100.0% (39.8–100.0%) 4/4 85.0% (62.1–96.8%) 17/20
>1 cm 93.9% (85.0–98.3%) 61/65 84.2% (76.2–90.4%) 96/114 87.7% (82.0–92.1%) 157/179

Differentiation level
Low 83.3% (35.9–99.6%) 5/6 77.8% (40.0–97.2%) 7/9 80.0% (51.9–95.7%) 12/15
Low–medium 95.7% (78.1–99.9%) 22/23 86.0% (73.3–94.2%) 43/50 89.0% (79.5–95.1%) 65/73
Medium 91.3% (72.0–98.9%) 21/23 96.4% (81.7–99.9%) 27/28 94.1% (83.8–98.8%) 48/51
Medium–high 87.5% (67.6–97.3%) 21/24 64.7% (38.3–85.8%) 11/17 78.0% (62.4–89.4%) 32/41
High 100.0% (29.2–100.0%) 3/3 50.0% (1.3–98.7%) 1/2 80.0% (28.4–99.5%) 4/5

Focality
Unifocal 92.4% (83.2–97.5%) 61/66 85.7% (77.8–91.6%) 96/112 88.2% (82.5–92.5%) 157/178
Multifocal 86.7% (59.5–98.3%) 13/15 66.7% (22.3–95.7%) 4/6 81.0% (58.1–94.6%) 17/21

Sex
Female 94.4% (81.3–99.3%) 34/36 76.7% (64.0–86.6%) 46/60 83.3% (74.4–90.2%) 80/96
Male 88.9% (75.9–96.3%) 40/45 93.1% (83.3–98.1%) 54/58 91.3% (84.1–95.9%) 94/103

Age
<65 92.5% (81.8–97.9%) 49/53 94.0% (85.4–98.3%) 58/67 86.6% (76.0–93.7%) 107/120
>65 89.3% (71.8–97.7%) 25/28 96.1% (86.5–99.5%) 42/51 82.4% (69.1–91.6%) 67/79

Location
Left 84.6% (65.1–95.6%) 22/26 80.4% (66.9–90.2%) 41/51 81.8% (71.4–89.7%) 63/77
Right 94.5% (84.9–98.9%) 52/55 88.1% (77.8–94.7%) 59/67 91.0% (84.4–95.4%) 111/122

Lymph node metastasis
Yes 90.5% (69.6–98.8%) 19/21 100.0% (82.4–100.0%) 19/19 95.0% (83.1–99.4%) 38/40
No 91.7% (81.6–97.2%) 55/60 81.8% (72.8–88.9%) 81/99 85.5% (79.1–90.6%) 136/159

Smoking
Yes 91.7% (61.5–99.8%) 11/12 91.7% (73.0–99.0%) 22/24 91.7% (77.5–98.3%) 33/36
No 91.3% (82.0–96.7%) 63/69 83.0% (73.8–89.9%) 78/94 86.5% (80.3–91.3%) 141/163

Definition of abbreviations: ADC=adenocarcinoma; CI =confidence interval; SCC=squamous cell carcinoma; TP= true positive.
The sensitivities (%) were calculated with the 95% confidence interval at the 95.7% specificity of validation I. The numbers of TP predictions and
total cases are indicated for each subgroup in the particular cohorts.
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