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Strains of Clostridium genus are used for production of various value-added products
including fuels and chemicals. Development of any commercially viable production
process requires a combination of both strain and fermentation process development
strategies. The strain development in Clostridium sp. could be achieved by random
mutagenesis, and targeted gene alteration methods. However, strain improvement
in Clostridium sp. by targeted gene alteration method was challenging due to the
lack of efficient tools for genome and transcriptome engineering in this organism.
Recently, various synthetic biology tools have been developed to facilitate the strain
engineering of solventogenic Clostridium. In this review, we consolidated the recent
advancements in toolbox development for genome and transcriptome engineering in
solventogenic Clostridium. Here we reviewed the genome-engineering tools employing
mobile group II intron, pyrE alleles exchange, and CRISPR/Cas9 with their application
for strain development of Clostridium sp. Next, transcriptome engineering tools
such as untranslated region (UTR) engineering and synthetic sRNA techniques were
also discussed in context of Clostridium strain engineering. Application of any of
these discussed techniques will facilitate the metabolic engineering of clostridia for
development of improved strains with respect to requisite functional attributes. This
might lead to the development of an economically viable butanol production process
with improved titer, yield and productivity.

Keywords: Clostridium, synthetic biology, mobile intron, CRISPR, Cas, synthetic sRNA, UTR

INTRODUCTION

Strain improvement for production of fuels or any biobased industrial product could be
achieved by employing any of the following two strategies: (i) heterologous expression
of metabolic pathway genes in a non-native producers, and (ii) improvement of native
producers (Arora et al., 2019; Banerjee et al., 2019; Choi et al., 2019). However,
achieving titer values in heterologous host matching to those being produced by native
organisms, it requires a significant effort with high chances of failure. Therefore,
the strategy of improving native strains with necessary genes of the desired pathway
and cofactor regeneration capability is preferred (Park et al., 2018; Rhie et al., 2019).
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However, this strategy of strain improvement in Clostridium
sp. has been limited by the availability of appropriate genome
engineering tools.

Clostridium genus comprises many industrially important
strains for biorefinery applications such as cellulosic and
hemicellulosic biomass degradation, carbon fixation, advanced
biofuel and platform chemical production and as anti-cancer
therapeutics (Jang et al., 2012; Malaviya et al., 2012; Liu J. et al.,
2015; Jones et al., 2016; Staedtke et al., 2016; Noh et al., 2018;
Woo et al., 2018; Xin et al., 2018; Strecker et al., 2019a). The full
potential of Clostridium genus for biorefinery applications could
only be realized by advancement in the synthetic biology toolkits
for strain improvement. During the last decade, tremendous
progresses have been made in the development of genome
engineering toolkit for strain engineering of Clostridium species.
Development of genetic tools in Clostridium have been well
reviewed by various research groups (Pyne et al., 2014; Liu Y. J.
et al., 2015; Minton et al., 2016; Moon et al., 2016; Joseph et al.,
2018; Kuehne et al., 2019; McAllister and Sorg, 2019; Wen et al.,
2019b,c). Most of these reports are focused on couple of tools with
an explanation in depth.

In this work, we have reviewed overall recent toolbox
for genome and transcriptome engineering in solventogenic
Clostridium, which could be used to develop improved clostridia
strains, for production of sustainable and commercially viable
industrial scale products. Brief features of the synthetic toolbox
are summarized in Table 1. Consolidated information in this
review dealing with strain improvement tools for Clostridium will
aid the scientific and industrial sector to select the appropriate
tools for strain improvement.

MOBILE GROUP II INTRON BASED
GENE-KNOCKOUT

Mobile group II intron technology is also known as “ClosTron”
when applied in context of Clostridium genus. In this method a
gene is disrupted by inserting the mobile intron into a target locus
in the chromosome by a process termed as retrohoming, making
this technology a convenient, efficient and specific method of
gene disruption (Heap et al., 2007, 2010; Shao et al., 2007;
Jang et al., 2012, 2014; Mohr et al., 2013; Liu Y. J. et al.,
2015). Among various mobile group II introns, Ll.LtrB and
TeI3c/4c have been extensively used for gene knockout in the
solventogenic Clostridium. Ll.LtrB intron includes intron RNA
domain and open reading frame (ORF) domain. Intron RNA
domain contains splicing sites consisting of exon binding sites
(EBS) 1, EBS 2, and δ (Figure 1A). The ORF domain contains
genes encoding reverse transcriptase (RTase), maturase, and
endonuclease (Figure 1A). TeI3c/4c intron has been employed to
develop genome engineering tool for thermophilic Clostridium
thermocellum, since the intron could be melted down at high
temperatures (Mohr et al., 2013).

Moreover, Ll.LtrB intron has further been modified to include
a retrotransposition-activated selection marker (RAM) (Zhong
et al., 2003). RAM consists of a selection marker and is
inserted into the intron. A group I intron is inserted into the

marker to inactivate the marker itself. Inserted group I intron
is self catalytically spliced out of mRNA in an orientation
dependent manner, so that a functional marker gene can only
be expressed after successful chromosomal insertion occurs
(Joseph et al., 2018).

At the first stage of the clostridia gene knockout using Ll.LtrB
intron, single gene knockouts mutant, such as spo0A, pta, ack,
ptb, buk, hbd, hydA and argA variants have been constructed
across the Clostridium genus, including C. acetobutylicum,
C. beijerinckii, C. botulinum, and C. difficile (Heap et al., 2010;
Dingle et al., 2011; Jang et al., 2012; Baban et al., 2013; Honicke
et al., 2014; Lawson and Rainey, 2016; Liu et al., 2016). In 2012,
a new method for second gene deletion was reported which
could overcome the necessity of removing the plasmid used
for the first gene deletion and resulted in the construction of
various C. acetobutylicum strains, including pta/buk, pta/ctfB,
ptb/buk, and triple mutant pta/buk/ctfB strains (Jang et al.,
2012). In this technique, two genes encoding the erythromycin
and chloramphenicol resistance enzymes were used as mutant
selection marker and the concept of plasmid incompatibility was
employed (Jang et al., 2012). In 2014, the same group reported
the fourth and fifth gene deletion process for the construction
of mutants pta/buk/ctfB/adhE1 and pta/buk/ctfB/adhE1/hydA of
C. acetobutylicum (Jang et al., 2014).

Curing and off-target manipulation remained one of the
major limitations of mobile group II intron technology (Wen
et al., 2019c). Curing efficiency of the plasmid containing mobile
intron was enhanced by cloning pyrF (orotidine 5-phosphate
decarboxylase) to ClosTron plasmid. The pyrF encodes essential
enzyme of pyrimidine biosynthesis which can use 5-fluoroorotic
acid (FOA) as a substrate and converts it to toxic compound
and is widely used as counter selection marker (Sato et al., 2005;
Tripathi et al., 2010; Heap et al., 2012). Once FOA gets converted
to toxic compound by pyrF in the ClosTron plasmid, only cured
strain could survive in the FOA added media. The cured strain
can be rapidly selected by pyrF-based screening system, even on
one plate (Cui et al., 2014).

Another problem with ClosTron is that it accidently affects
and manipulates the off-target genome and cause unexpected
genotypes and phenotypes (Heap et al., 2012). To overcome
this, a highly regulated ClosTron system has been developed
by inducing L-arabinose inducer (ARAi) to reduce off-target
possibility (Zhang J. et al., 2015). To verify the impact of
inducible ClosTron using ARAi system, pSY6-mspI (Cui et al.,
2012) and pGZ-pyrF-cipC (Cui et al., 2014) were modified
by introducing ARAi system in C. cellulolyticum H10 1pyrF
strain. Surprisingly, it was found that the off-target manipulation
frequency was decreased to 0 by inducible ClosTron ARAi system
(Zhang J. et al., 2015).

GENOME EDITING USING PYRE
ALLELES

Recently, allele coupled exchange (ACE) method has been
developed which facilitates the insertion of complex heterologous
DNA of varying size into the host genome (Ng et al., 2013;
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TABLE 1 | Summary of synthetic biology tools and strategies applied for genome and transcriptome engineering of solventogenic Clostridium.

Categories Tools and strategy Brief description Selection
guide

References

Genome
engineering

Mobile group II Intron • Site-directed disruptions based on retrohoming
of mobile group II introns
• Insertion of intron into target site
• Plasmid based
• Ribonucleoprotein complex formation
• Retrotransposition-activated selection marker

(RAM) to help in selection

• Knockout
• Knockdown

Chen et al., 2005, 2007; Shao
et al., 2007; Heap et al., 2007;
Baban et al., 2013; Jang et al.,
2012, 2014; Pyne et al., 2014;
Liu Y. J. et al., 2015; Liu et al.,
2016; Xu et al., 2015; Meaney
et al., 2015, 2016; Lawson
et al., 2016

pyrE allele exchange • Works on the principle of deactivating an easily
screenable gene (pyrE)
• Complementing the mutant strain with a

heterologous version of pyrE gene as a counter
selective marker

• Knockout
• Insertion
• Exchange

Tripathi et al., 2010; Heap et al.,
2012; Ng et al., 2013; Bankar
et al., 2015; Zhang N. et al.,
2015; Croux et al., 2016;
Ehsaan et al., 2016a;

CRISPR/Cas • RNA-guided target specific DNA cleavage
system
• Originated from bacterial adaptive immune

system
• Needs single guide RNA (sgRNA), Cas

endonuclease, and homologous arms for
recombination

• Knockout
• Knockdown

Xu et al., 2015, 2017; Nagaraju
et al., 2016; Bruder et al.,
2016; Li et al., 2016; Pyne
et al., 2016; Wang Y. et al.,
2017, Wang et al., 2018

Phage serine
integrase-mediated
genome engineering

• Use two heterologous phage
attachment/integration systems
• Dual Integrase Cassette

Exchange (DICE) strategy
• Needs CRISPR/Cas9 assistance

• Knockout
• Insertion

Huang et al., 2019

Transcriptome
engineering

Synthetic regulatory
RNA (sRNA)

• Knockdown tool based on
synthetically designed sRNA
• Complementarily binds to target

mRNAs and block translation

• Knockdown
• Overexpression

(by repressor
knockdown)

Cho and Lee, 2017

Untranslated regions
(UTR) engineering

• UTR modulation
• Better mRNA stability by addition

of small stem loop structure in the
5’-UTR

• Knockdown
• Overexpression

(by repressor
knockdown)

Lee et al., 2016

CRISPRi • Knockdown tool using catalytically inactivated
effector dCas9 proteins

• Knockdown
• Overexpression

(by repressor
knockdown)

Bruder et al., 2016; Li et al.,
2016; Wang et al., 2016b; Wen
et al., 2017; Woolston et al.,
2018; Muh et al., 2019

Zhang N. et al., 2015; Ehsaan et al., 2016a; Minton et al., 2016).
In ACE, a counter selection marker is coupled to a desired
double crossover event (Figure 1B). The counter selection
marker entitles the isolation of double cross over through
homologous recombination. The pyrE and codA genes are the
most frequently used selectable marker in ACE Technology.
The gene codA encodes for the enzyme cytosine deaminase
while, pyrE encodes orotate phosphoribosyl transferase, which
is a key enzyme required in the de novo pathway for
pyrimidine biosynthesis.

In clostridia genome editing, pyrE allele has been primarily
employed. Mutant and wild type pyrE allele confers resistance
and sensitivity to FOA, respectively. The advantages of pyrE allele
based recombination includes: (i) rapid insertion of heterologous
DNA, (ii) double crossovers which forms the stable integration,
(iii) allows large insert size, and (iv) has higher efficiency as
compared to simple ClosTron and random mutagenesis (Ng
et al., 2013; Ehsaan et al., 2016b; Minton et al., 2016).

The pyrE cassettes consists of two arms, i.e., right homology
arm (RHA) and left homology arm (LHA) with the internal
region comprising of pyrE gene (Figure 1B). A plasmid is
constructed with a selectable marker (antibiotic resistance
gene), origin of replication and a sequence containing ∼300-bp
homologous to pyrE gene and a longer sequence of ∼1,200-
bp homologous to the adjacent region of 3′ end of pyrE.
Once the pyrE based pseudo-suicide plasmid is delivered into
Clostridium cells, single crossover is formed through homologous
recombination. Subsequently, the single crossover mutant is
inoculated into the media containing FOA and uracil (Heap
et al., 2012). Metabolization of FOA kills the single crossover
cells carrying the active pyrE gene. Inactivation of pyrE happens
only if double recombination had occurred on both 1200-bp long
sequence and 300-bp short sequence and the FOA does not affect
the cells obtained by such double crossovers (Ng et al., 2013).
The final double crossovers are formed by ACE of shorter left
homology arm of 300-bp by the second single crossover, which
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FIGURE 1 | Synthetic biology tools developed for genome and transcriptome engineering of solventogenic Clostridium. (A) Mobile group II intron-based genome
engineering. Also known as ClosTron in context of Clostridium sp. In this technology, site directed gene disruption is achieved by insertion of the mobile group II
intron into the target locus of chromosome. Abbreviations: RAM, retrotranscription-activated marker (typically kanamycin resistant marker containing self-splicing
group I intron, phage T4 td intron); RTase, reverse transcriptase; EBS, exon binding site; IBS, intron binding site. (B) pyrE based allele exchange technology for
genome engineering. Here, pyrE encoding orotate phosphoribosyl transferase is used as counter selection marker to ensure double crossover event. The
pyrE-mutant (PyrE∗) and wild type (PyrE) are resistant and sensitive to 5-fluoroorotic acid (FOA), respectively. Abbreviation: RHA, right homology arm.
(C) CRISPR/Cas system for genome engineering. This needs single guide RNA containing crRNA and tracrRNA, Cas endonuclease, and homologous arm for
recombination. Abbreviation: PAM, protospacer-adjacent motif. (D) Synthetic regulatory RNA (sRNA) based knockdown strategy. sRNA are having regulatory role in
gene expression, mediated by chaperon Hfq. sRNA binds to complimentary mRNA sequences, prohibiting ribosome clamping at ribosome binding site located in
translation initiation region. (E) 5′-UTR engineering for regulation of gene expression. The insertion of a small stem loop structure in the 5′-UTR increases the mRNA
stability by blocking RNase, resulting in a high gene expression. (F) Timeline of notable events in the development of synthetic biology tools for genome and
transcriptome engineering of solventogenic Clostridium.
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also leads to the excision of the plasmid (Minton et al., 2016).
This technology has been found to be applicable for many species
of Clostridium genus (Heap et al., 2012).

Butanol yield in C. pasteurianum has been reported to be
improved by application of pyrE based genome editing toolkit.
For this, deletion mutations were created in three genes of
C. pasteurianum: hydrogenase (hydA), redox response regulator
(rex), and glycerol dehydratase (dhaBCE), using plasmid pMTL-
KS01. This resulted in increased availability of NADPH in cell
due to depletion of 1,3-propanediol synthesis, which eventually
contributed to improved butanol production (Schwarz et al.,
2017). Similarly, successful expression of cellulosomal subunits
in C. acetobutylicum has also been achieved using this method
(Kovacs et al., 2013). Few other Clostridium species modified
using ACE technology includes C. acetobutylicum, C. sporogenes,
and C. difficile (Heap et al., 2012; Ng et al., 2013; Bankar et al.,
2015; Zhang J. et al., 2015; Ehsaan et al., 2016b; Minton et al.,
2016; Willson et al., 2016).

CRISPR/CAS BASED CLOSTRIDIA
GENOME ENGINEERING

Clustered regulatory interspaced short palindromic repeats
(CRISPR) have been developed as one of the most advanced
genetic engineering tools along with CRISPR-associated (Cas)
protein (Doudna and Charpentier, 2014). As bacterial genome
manipulation tool, CRISPR/Cas system needs single guide
RNA (sgRNA), Cas endonuclease, and homologous arms for
recombination (Jiang et al., 2013). The Streptococcus pyogenes
type II CRISPR was the first CRISPR system which was exploited
for genome engineering applications. Cas9 endonuclease is
the basis of CRISPR based genome editing system. Cas9
recognize the protospacer adjacent motif (PAM) site (5′-NGG-
3′ in S. pyogenes) and cleave at the 3′ end of the target
gene (Mojica et al., 2009; Garneau et al., 2010; Jinek et al.,
2012) (Figure 1C).

Various strains of Clostridium genus have been manipulated
using the CRISPR/Cas9 system including C. acetobutyricum
(Bruder et al., 2016; Li et al., 2016; Wasels et al., 2017), C.
beijerinkii (Wang et al., 2016b), C. autoethanogenum (Nagaraju
et al., 2016), C. difficile (McAllister et al., 2017; Wang et al.,
2018), C. cellulolyticum (Xu et al., 2015, 2017), C. pasteurianum
(Pyne et al., 2016), C. ljungdahlii (Huang et al., 2016), and
C. saccharoperbutylacetonicum (Wang S. et al., 2017). However,
the expression of Cas9 becomes detrimental for bacteria,
including clostridia, in terms of the toxicity it causes. The
mutation of 10th amino acid (aspartic acid to alanine) in Cas9
inactivates it’s RuvC-like nuclease domain resulting in formation
of Cas9 nickase (Cas9n), which can cleave only single-strand
of DNA (Jinek et al., 2012; Nishimasu et al., 2014; Swarts
and Jinek, 2018; Li et al., 2019). Cas9n have advantage in
terms of overcoming the toxicity caused by expression of Cas9.
Introduction of highly regulated inducible promoter for Cas9
expression is another strategy to circumvent the associated
toxicity (Wang et al., 2016a; McAllister et al., 2017; Wasels et al.,
2017). Nevertheless, the CRISPR/Cas9n system is still being used

for clostridia genome editing (Wang et al., 2016b; Wang S. et al.,
2017; Wang Y. et al., 2017; Wang et al., 2018; McAllister et al.,
2017; Wasels et al., 2017).

Moreover, modified CRISPR systems like CRISPR interference
(CRISPRi) and dCas9 has also been developed to knockdown of
the essential genes required for host survival (Jinek et al., 2012;
Qi et al., 2013; Peters et al., 2016; Zheng et al., 2019). The dCas9
has two silenced catalytic domains (D10A and H840A; RuvC-like
and HNH domains, respectively) which remains bound and block
the target DNA instead of cleavage. CRISPRi/dCas9 system has
also been applied to develop several mutant strains of Clostridium
sp. (Bruder et al., 2016; Wang et al., 2016a,b; Wen et al., 2017;
Woolston et al., 2018; Muh et al., 2019).

Similar to Cas9, the Cpf1 from Acidaminococcus sp. is another
protein that is used for PAM recognition in CRISPR based
system. While Cas9 recognizes G-rich PAM site, the PAM
recognition site for Cpf1 is T-rich (5′-TTTN-3′) (Swarts and
Jinek, 2018) making it best suited for application in AT-rich
organisms like Clostridium sp. (Zetsche et al., 2015; Yamano et al.,
2016). Single CRISPR/Cpf1 system plasmid can make multiple
mutants in a single application (Zetsche et al., 2017; Hong et al.,
2018; Zhang et al., 2018a). CRISPR/Cpf1 system has been applied
in C. ljungdahlii, C. difficile, and C. beijerinckii (Hong et al., 2018;
Zhang et al., 2018a; Zhao et al., 2019).

Additionally, endogenous CRISPR systems have been
developed in C. pasteurianum and C. tyrobutyricum to overcome
the toxic effect associated with Cas9 and Cpf1 endonucleases
(Pyne et al., 2016; Zhang et al., 2018b). The endogenous
CRISPR system uses endonuclease encoded by the genome
and can contain multiple pre-crRNAs under one promoter,
facilitating multiple genome modification using a single plasmid
(Luo et al., 2014; Makarova et al., 2015; Pyne et al., 2016;
Zhang et al., 2018b).

SYNTHETIC SRNA AND UNTRANSLATED
REGION ENGINEERING AS POTENTIAL
DOMAINS FOR CLOSTRIDIUM STRAIN
IMPROVEMENT

Prokaryotic small RNAs (sRNA) are short strands of
ribonucleotides (about 50–500 nucleotides) which have a
regulatory role in maintaining the cellular processes (Gottesman,
2004). Based on the existence of natural sRNA, synthetic small
RNAs are produced to alter the gene expression of the organisms.
Many such naturally occurring sRNAs have been detected and
analyzed in Clostridium sp. (Chen et al., 2011), which leads to the
development of synthetic sRNA (Na et al., 2013).

The sRNA mediated gene expression usually results in
repression of the gene which complements the sRNA nucleotide
sequence, mediated by a protein called Hfq (De Lay et al., 2013).
Hfq is the chaperone mediated protein which stabilizes the sRNA-
mRNA binding. The translation process is prevented by sRNA
binding to ribosome binding site (RBS) or by masking the access
to the start codon (Na et al., 2013; Yoo et al., 2013). Recently, Cho
and Lee (2017) have reported the development of synthetic small
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regulatory RNA (sRNA) system for controlled gene expression
in C. acetobutylicum, consisting of a target recognition site,
MicC scaffold, and an RNA chaperon Hfq (Figure 1D). In
this study, C. acetobutylicum Hfq was found to be ineffective
in binding with Escherichia coli MicC scaffold-based synthetic
sRNA, however Hfq from E. coli itself resulted in much enhanced
knockdown efficiency. This E. coli MicC-Hfq sRNA system
was used to knockdown adhE1 gene expression resulting in
40% reduction in butanol production. Further, this synthetic
sRNA system was used to knockdown the pta gene expression
in PJC4BK strain, resulting in PJC4BK (pPta-HfqEco) strain
with improvement of butanol titer from 14.9 to 16.9 g/l
(Cho and Lee, 2017).

Untranslated regions (UTRs) are non-coding regions in
the mRNA helps to regulate the gene expression. UTRs are
present on both the ends of the mRNA (5′-UTR and 3′-UTR)
(Figure 1E). There are sufficient reports to confirm that the
5′-UTR in C. acetobutylicum has the regulatory effect on the
secondary structure of enzyme adhE1, which is involved in
solvent production (Thormann et al., 2002; Scotcher et al., 2003).
Lee et al. (2016) has recently found that the presence of a single
stranded short 5′-UTR in the solventogenic C. acetobutylicum
leads to decreased gene expression (Figure 1E). The insertion
of a small stem loop structure in the 5′-UTR was found to
increase the mRNA stability and gene expression by 4.6 folds,
without any modification in the promoter or RBS (Lee et al.,
2016). On the other hand, the 3′-UTR mostly harbors the
terminator sequence for transcription process in mRNA (Richard
and Manley, 2009). sRNA sequence containing the codons that
regulates the post transcriptional and translation machinery
is also attached to 3′-UTR. Most importantly 3′-UTR confer
stability to the mRNA (Zhao et al., 2018). Although, there are
very limited studies related to 3′-UTR regions in Clostridium,
the presence of transcripts with long 3′-UTR is confirmed in
Clostridium (Ralston and Papoutsakis, 2018). Although several
RNAseq studies were reported in the Clostridium, only few
studies show the data related to regulation of mRNA based
on 5′- and 3′-UTRs, leaderless transcripts and non-coding
RNA (Soutourina et al., 2013; Wilson et al., 2013; Sedlar
et al., 2018). Further research in RNAseq and proteomics will
explore the complex regulations that control mRNA stability
and degradation, which will be more useful to construction
synthetic toolkit.

In conclusion, many Clostridium sp. have potential to be
utilized at industrial scale to produce value added chemicals,
including butanol as fossil fuel substitute. Up to date, their
true potential was underexploited due to challenges in strain
improvement and unavailability of genome and transcriptome
editing tools for this genus. Nevertheless, during the last
decade, synthetic biology toolkits for Clostridium sp. have
been expanded rapidly (Figure 1F). Furthermore, a recent
advancement, such as phage serine integrase mediated site-
specific genome engineering technique for C. ljungdahlii could
be extended to other Clostridium species (Huang et al., 2019).
The synthetic biology techniques that have been applied in other
microorganisms may also be adopted to solventogenic clostridia
in the near future: CRISPR associated site-specific insertion of
transposons and base editing techniques (Ronda et al., 2015;
Zhang et al., 2016; Lim and Choi, 2019; Strecker et al., 2019b).
Utilization of improved clostridia strains could be a starting
point for development of an industrial scale, commercially viable
bio-based fuel and chemical production using Clostridium sp.
using a consolidated bioprocessing concept (Wen et al., 2019a).
Furthermore, these synthetic biology tools could be applied to
another biotechnology fields such as degradation of plastics, such
as polyethylene terephthalate and polyethylene.
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