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Abstract: We present the development of the approach to thermodynamics based on measurement.
First of all, we recall that considering classical thermodynamics as a theory of measurement of
extensive variables one gets the description of thermodynamic states as Legendrian or Lagrangian
manifolds representing the average of measurable quantities and extremal measures. Secondly, the
variance of random vectors induces the Riemannian structures on the corresponding manifolds.
Computing higher order central moments, one drives to the corresponding higher order structures,
namely the cubic and the fourth order forms. The cubic form is responsible for the skewness of
the extremal distribution. The condition for it to be zero gives us so-called symmetric processes.
The positivity of the fourth order structure gives us an additional requirement to thermodynamic state.
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1. Introduction

The geometrical interpretation of thermodynamic systems in equilibrium goes back already
to the 19th century [1] and is reflected recently in Reference [2]. In modern terms, it is clear that
thermodynamic states are Legendrian submanifolds, i.e., maximal integral manifolds of the structure
contact form (for more details, see Reference [3–5]) in the contact space where the mentioned structure
form is the first law of thermodynamics. Additional structures, such as Riemannian structures on these
Legendrian manifolds, were studied in, for example, Reference [6]. Considering thermodynamics
in the context of measurement of random vectors [7], one gets both structures as coming from
the minimal information gain or Kullback-Leibler divergence principle [8]. Namely, Legendrian
manifolds represent averages of measurable quantities (or extremal probability distributions) that are
extensive thermodynamic variables, while the Riemannian structure is their variance, i.e., contact and
Riemannian structures arise from the first two central moments of random vectors. It is worthy of
note that both these structures were widely studied, but, at the same time, the higher order structures,
corresponding to central moments of higher order, have not been addressed before.

In this paper, we develop the geometrical approach to thermodynamic states and extend it by
considering the third and the fourth order moments and corresponding symmetric forms of the third
and the fourth order on Legendrian manifolds of two types of gases, ideal and van der Waals. The third
order symmetric form represents the skewness of the extremal probability distribution, as well as
thermodynamic processes along which the skewness is equal to zero, we, therefore, call symmetric.
We elaborate such processes for ideal gases explicitly, and, in the case of real gases represented by
the van der Waals model, we show that there are domains on their Legendrian manifold where
there are either three types of such processes, or one. It is natural to require that the fourth order
symmetric form must be positive. It is known that the positivity of the variance leads to the notion of
thermodynamic phases [7], and the positivity of the fourth order form gives us an additional separation
of applicable phases.

Entropy 2020, 22, 1147; doi:10.3390/e22101147 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0001-6000-5063
https://orcid.org/0000-0001-6573-9808
http://dx.doi.org/10.3390/e22101147
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/22/10/1147?type=check_update&version=2


Entropy 2020, 22, 1147 2 of 8

2. Geometry, Measurement, Thermodynamics

In this section, we briefly recall how contact geometry naturally appears in the context of
measurement, as well as how symmetric k-forms represent kth central moments. For details, we refer
to Reference [4,7,9].

Let (Ω,A, q) be a probability space, where Ω is a sample space, A is a σ-algebra on Ω, and q is a
probability measure. Then, a random vector X : (Ω,A, q)→W, where W is a vector space, dim W = n
is a measurement of x0 ∈W if EqX = x0. To measure another vector x ∈W, one has to choose another
measure dp = ρdq, where ρ is a probability density, such that

EpX =
∫
Ω

Xρdq = x,
∫
Ω

ρdq = 1. (1)

To find ρ, we also use the principle of minimal information gain:

I(ρ) =
∫
Ω

ρ ln ρdq→ min .

This gives us the extremal probability distribution (see Reference [7]):

ρ =
e〈λ,X〉

Z(λ)
,

where λ ∈W∗, and Z(λ) =
∫

Ω e〈λ,X〉dq.
Introducing the Hamiltonian H(λ) = − ln Z(λ) and using the first relation in (1), we obtain that

the measurement belongs to a manifold

L =

{
x = −∂H

∂λ

}
⊂W ×W∗,

which is Lagrangian with respect to the symplectic form

ω =
n

∑
i=1

dλi ∧ dxi,

i.e., ω|L = 0. Considering the relation xi = −Hλi , i = 1, . . . , n as an equation for λi, one gets (locally)
λi = λi(x). The information gain I(x) is a function on L which is related with Hamiltonian H(λ) as

I(x) = H(λ(x)) + 〈λ(x), x〉. (2)

Therefore, we have Ixi = λi, and, if u is a coordinate on R, then the submanifold

L̂ = {u = I(x), λi = Ixi} ⊂W ×W∗ ×R

is Legendrian with respect to the contact form θ = du−
n
∑

i=1
λidxi.

The kth moment of random vector X is defined by the well-known relation

mk(X) =
∫
Ω

X⊗
k
ρdq. (3)

In coordinates (λ1, . . . , λn), it can be written as

mk(X) =
Zλi1

...λik

Z
dλi1 ⊗ · · · ⊗ dλik . (4)
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Here, and further, we use the Einstein’s summation convention. Formula (4) can be found inductively
using the definition of the partition function Z(λ).

The kth central moment σk is a symmetric k-from on W:

Sk(W) 3 σk =
∫
Ω

(X−m1(X))⊗
k
ρdq. (5)

Applying the standard binomial theorem, one gets the following relation between moments mk and
central moments σk (also see Reference [9]):

σk =
k

∑
i=0

(−1)k−i

(
k
i

)
mi ·m⊗

(k−i)

1 , (6)

where · stands for the symmetric product.
Let us give a coordinate description of central moments of orders 2,3,4.

• k = 2.

Theorem 1. On the Legendrian manifold L̂ the second central moment has the following form in
coordinates (λ1, . . . , λn)

σ2 = − ∂2H
∂λi1 ∂λi2

dλi1 ⊗ dλi2 , (7)

and in coordinates (x1, . . . , xn)

σ2 =
∂2 I

∂xi1 ∂xi2
dxi1 ⊗ dxi2 , (8)

• k = 3.

Theorem 2. On the Legendrian manifold L̂ the third central moment has the following form in coordinates
(λ1, . . . , λn)

σ3 = − ∂3H
∂λi1 · · · ∂λi3

dλi1 ⊗ · · · ⊗ dλi3 , (9)

and in coordinates (x1, . . . , xn)

σ3 = − ∂3 I
∂xi1 · · · ∂xi3

dxi1 ⊗ · · · ⊗ dxi3 , (10)

• k = 4.

Theorem 3. On the Legendrian manifold L̂ the fourth central moment has the following form in
coordinates (λ1, . . . , λn)

σ4 = − ∂4H
∂λi1 · · · ∂λi4

dλi1 ⊗ · · · ⊗ dλi4 + 3σ2 · σ2. (11)

Formulae (7), (9), (11) follow directly from substitution of (4)–(6) and using Z = exp(−H),
while (8), (10) result from formula (2) relating the Hamiltonian H(λ) and information gain I(x).
Formula for σ4 in terms of (x1, . . . , xn) can be found, as well, but we do not provide it here because of
its bulkiness.
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Recall that, in thermodynamics of gases, x = (e, v) ∈ W, λ =
(
−T−1,−pT−1) ∈ W∗,

I(x) = −S(e, v), where e and v are specific inner energy and specific volume, respectively, T is
temperature, p is pressure, and the contact structure is

θ = −ds + T−1de + pT−1dv,

and the Legendrian manifold is given by

L̂ =

{
s = S(e, v), p =

Sv

Se
, T =

1
Se

}
⊂W ×W∗ ×R.

It is natural to require that all the even order symmetric forms must be positive on Legendrian
manifolds. In case of k = 2, this condition leads to the notion of phases [4,7]. Further, we will elaborate
symmetric forms of orders k = 3 and k = 4 in more detail for ideal and van der Waals models of gases.

It is worth mentioning that central moments σk are preserved by the affine group Aff(W) action.
In Reference [9,10], the central moments are used to construct scalar differential invariants of Aff(W).

3. Third Central Moment σ3

The third central moment σ3 is nothing but skewness of the probability distribution ρ. From the
thermodynamic perspective, the symmetric 3-form σ3 gives us a special type of thermodynamic
processes, along which this form vanishes. From geometrical viewpoint, thermodynamic processes
are considered to be contact vector fields preserving the Legendrian manifold L̂. Assuming that these
vector fields have no singular points, one may look for such processes in the form

X =
∂

∂e
+ q

∂

∂v
.

Taking into account that I(x) = −S(e, v) and substituting this relation to formula (10), the condition
σ3(X, X, X) = 0 forces the following equation on the coefficient q:

Svvvq3 + 3Sevvq2 + 3Seevq + Seee = 0. (12)

3.1. Ideal Gas

For ideal gases, the entropy function is given by

S(e, v) = ln
(

en/2v
)

,

where n is the degree of freedom. Equation (12) in case of ideal gases takes the form

2q3

v3 +
n
e3 = 0.

This equation has a unique real solution; therefore, in case of ideal gases, we have one type of symmetric
processes shown in Figure 1. The vector field X takes the form

X =
∂

∂e
+
(n

2

)1/3 v
e

∂

∂v
.
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Figure 1. Symmetric process for ideal gas.

3.2. van der Waals Gas

In case of van der Waals gas, we use the reduced thermodynamic variables, in terms of which the
entropy function is

S(e, v) = ln

((
e +

3
v

)4n/3
(3v− 1)8/3

)
.

Here, Equation (12) is

(54e3v6 − 243e2nv5 + 243e2nv4 + 486e2v5 − 81e2nv3 −
− 729env4 + 9e2nv2 + 729env3 + 1458ev4 − 243env2 − 729nv3 +

+ 27env + 729nv2 + 1458v3 − 243nv + 27n)q3 +

+ (−243env6 + 243env5 − 81env4 + 9env3)q2 + (−243nv7 + 243nv6 − 81nv5 + 9nv4)q +

+ 27nv9 − 27nv8 + 9nv7 − nv6 = 0.

(13)

In general, Equation (13) may have either three or one real roots, depending on the discriminant of the
cubic (13). Therefore, we get domains where there are either three symmetric processes, or only one.
They are shown in Figure 2. We use here coordinates (T, v), where T is temperature, instead of (e, v).

Figure 2. Symmetric processes for van der Waals gas, n = 3.

In this figure, the pink domain corresponds to that on the Legendrian manifold where there
are three real roots of (13). The blue line separates the domains where the 2-form σ2 is positive
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(above) corresponding to applicable domain (where the conditions of thermodynamic stability hold),
and negative (under). This means that, in a pink part of an applicable domain of van der Waals gas,
there is a family of 3 symmetric processes, while, in the white part above the blue line, only one of
them remains. Thus, we can see that, in this case, there is only one transition from three symmetric
processes to one.

In Figure 3, again, we are interested only in an applicable domain which is above the blue line.
In this case, pink domains where there are three symmetric processes are separated from each other by
white domain where there is only one symmetric process.

Figure 3. Symmetric processes for van der Waals gas, n = 13.

4. Fourth Central Moment σ4

The analysis here is similar to that in the previous section. Consider the vector field

X = x1
∂

∂e
+ x2

∂

∂v
.

The conditions σ4 > 0 and σ2 > 0 yield that the homogeneous polynomials P1(x1, x2) = σ2(X, X) and
P2(x1, x2) = σ4(X, X, X, X) in x1 and x2 are positive.

4.1. Ideal Gas

In case of ideal gas, one gets

P1(x1, x2) =
nx2

1
2e2 +

x2
2

v2 , P2(x1, x2) =
3n(n + 4)

4e4 x4
1 +

3n
v2e2 x2

1x2
2 +

9
v4 x4

2,

and both conditions hold on the entire Legendrian manifold.

4.2. van der Waals Gas

In this case, the standard analysis shows that the condition σ2 > 0 holds not everywhere as well
as σ4 > 0 does. The first condition gives us separation of the Legendrian manifold to liquid and gas
phases, while the second one is an additional requirement to applicable with respect to σ2 states. This is
shown in Figure 4. In the pink domain, both conditions σ2 > 0 and σ4 > 0 hold. The red line separates
domains where σ2 has opposite signs.
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Figure 4. Applicable domains for van der Waals gas, n = 3.

We can see that the positivity of σ4 gives us an additional clarification of the applicability of the
van der Waals model.

5. Discussion

This paper presents some new results in equilibrium thermodynamics that arise from the
measurement approach to thermodynamics. By measuring random vectors, components of which in
thermodynamics are specific energy and volume, one gets a Legendrian manifold representing the
average of random vector. The variance σ2 of random vectors leads to the Riemannian structure on the
corresponding Legendrian manifold, and condition of positivity of σ2 forces a well-known condition
of thermodynamic stability of a thermodynamic system in equilibrium. The next natural step is to
elaborate higher order central moments, for instance, σ3, which is skewness, and σ4. They lead to
the third and the fourth order symmetric forms on the Legendrian manifold, similarly to that of the
second order induced by the second central moment σ2. It is clear that the even order forms should
be positive on the thermodynamic Legendrian manifolds, which can be interpreted by the following
way. Not all the points on the Legendrian manifolds correspond to real physical states, but only
those of them where σ2, σ4, and so on are positive. Here, we have considered only σ4, but even this
additional (comparing with traditional ones) structure has lead us to new applicable domains on van
der Waals thermodynamic Legendrian manifold, while, for an ideal gas, σ4 is positive everywhere.
Namely, we can see from Figure 4 that the critical point (Tcrit, vcrit) = (1, 1) no longer belongs to the
domain where both σ2 and σ4 are positive. Instead of this, we get something like a new critical point,
which is the maximum of the curve separating domains where σ4 > 0 and σ4 < 0. Note that this
curve is of the similar form as that separating domains where σ2 > 0 and σ2 < 0. This means that we
get a more accurate applicability condition for van der Waals model, and it may be a considerable
contribution to the theory of phase transitions, since, as we know, it is the sign changing of σ2 that
forces the first order phase transitions in van der Waals model [4,5,7].

We may say that applicable domain of real gases is an intersection of areas where all even central
moments are positive. We could see that, by adding the fourth central moment, we shrink an applicable
domain of the van der Waals model comparing with well-known one where σ2 > 0. The natural
question is will there remain any domains where all even central moments are positive. Our hypothesis
is that there will be such domains, but theoretical proof of this statement is an open question.
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