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Abstract Thermal biology predicts that vector-borne disease transmission peaks at intermediate
temperatures and declines at high and low temperatures. However, thermal optima and limits
remain unknown for most vector-borne pathogens. We built a mechanistic model for the thermal
response of Ross River virus, an important mosquito-borne pathogen in Australia, Pacific Islands,
and potentially at risk of emerging worldwide. Transmission peaks at moderate temperatures
(26.4°C) and declines to zero at thermal limits (17.0 and 31.5°C). The model accurately predicts that
transmission is year-round endemic in the tropics but seasonal in temperate areas, resulting in the
nationwide seasonal peak in human cases. Climate warming will likely increase transmission in
temperate areas (where most Australians live) but decrease transmission in tropical areas where
mean temperatures are already near the thermal optimum. These results illustrate the importance
of nonlinear models for inferring the role of temperature in disease dynamics and predicting
responses to climate change.

DOI: https://doi.org/10.7554/eLite.37762.001

Introduction

Temperature impacts the transmission of mosquito-borne diseases via effects on the physiology of
mosquitoes and pathogens. Transmission requires that mosquitoes be abundant, bite a host and
ingest an infectious bloodmeal, survive long enough for pathogen development and within-host
migration (the extrinsic incubation period), and bite additional hosts—all processes that depend on
temperature (Mordecai et al., 2013, Mordecai et al., 2017). Although both mechanistic
(Mordecai et al., 2013, Mordecai et al., 2017; Liu-Helmersson et al., 2014; Wesolowski et al.,
2015; Paull et al., 2017) and statistical models (Perkins et al., 2015; Siraj et al., 2015; Paull et al.,
2017, Pena-Garcia et al., 2017) support the impact of temperature on mosquito-borne disease,
important knowledge gaps remain. First, how the impact of temperature on transmission differs
across diseases, via what mechanisms, and the types of data needed to characterize these differen-
ces all remain uncertain. Second, the impacts of temperature on transmission can appear idiosyn-
cratic—varying in both magnitude and direction—across locations and studies (Gatton et al., 2005;
Jacups et al., 2008a; Stewart-lbarra and Lowe, 2013; Pefia-Garcia et al., 2017, Koolhof et al.,
2017). Although inferring causality from field observations and statistical approaches alone remains
challenging, nonlinear thermal biology may mechanistically explain this variation. As the climate
changes, filling these gaps becomes increasingly important for predicting geographic, seasonal, and
interannual variation in transmission of mosquito-borne pathogens. Here, we address these gaps by
building a model for temperature-dependent transmission of Ross River virus (RRV), the most impor-
tant mosquito-borne disease in Australia (1500-9500 human cases per year) (Koolhof et al., 2017),
and potentially at risk of emerging worldwide (Flies et al., 2018).
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elLife digest Mosquitoes cannot control their body temperature, so their survival and
performance depend on the temperature where they live. As a result, outside temperatures can also
affect the spread of diseases transmitted by mosquitoes. This has left scientists wondering how
climate change may affect the spread of mosquito-borne diseases. Predicting the effects of climate
change on such diseases is tricky, because many interacting factors, including temperatures and
rainfall, affect mosquito populations. Also, rising temperatures do not always have a positive effect
on mosquitoes — they may help mosquitoes initially, but it can get too warm even for these animals.

Climate change could affect the Ross River virus, the most common mosquito-borne disease in
Australia. The virus infects 2,000 to 9,000 people each year and can cause long-term joint pain and
disability. Currently, the virus spreads year-round in tropical, northern Australia and seasonally in
temperate, southern Australia. Large outbreaks have occurred outside of Australia, and scientists are
worried it could spread worldwide.

Now, Shocket et al. have built a model that predicts how the spread of Ross River virus changes
with temperature. Shocket et al. used data from laboratory experiments that measured mosquito
and virus performance across a broad range of temperatures. The experiments showed that ~26°C
(80°F) is the optimal temperature for mosquitoes to spread the Ross River virus. Temperatures
below 17°C (63°F) and above 32°C (89°F) hamper the spread of the virus. These temperature ranges
match the current disease patterns in Australia where human cases peak in March. This is two
months after the country’s average temperature reaches the optimal level and about how long it
takes mosquito populations to grow, infect people, and for symptoms to develop.

Because northern Australia is already near the optimal temperature for mosquitos to spread the
Ross River virus, any climate warming should decrease transmission there. But warming
temperatures could increase the disease’s transmission in the southern part of the country, where
most people live. The model Shocket et al. created may help the Australian government and
mosquito control agencies better plan for the future.

DOI: https://doi.org/10.7554/eLife.37762.002

RRV in Australia is an ideal case study for examining the influence of temperature. Transmission
occurs across a wide latitudinal gradient, where climate varies substantially both geographically and
seasonally. Moreover, compared to vector-borne diseases in lower-income settings, RRV case diag-
nosis and reporting are more accurate and consistent, and variation in socioeconomic conditions
(and therefore housing and vector control efforts) at regional and continental scales is relatively low.
Previous work has shown that in some settings temperature predicts RRV cases (Gatton et al.,
2005; Bi et al., 2009; Werner et al., 2012, Koolhof et al., 2017), while in others it does not
(Hu et al., 2004; Gatton et al., 2005). Understanding RRV transmission ecology is critical because
the virus is a candidate for emergence worldwide (Flies et al., 2018), and has caused explosive epi-
demics where it has emerged in the past (infecting over 500,000 people in a 1979-80 epidemic in
Fiji) (Klapsing et al., 2005). RRV is a significant public health burden because infection causes joint
pain that can become chronic and cause disability (Harley et al., 2001; Koolhof et al., 2017). A
mechanistic model for temperature-dependent transmission could help explain these disparate
results and predict potential expansion.

Mechanistic models synthesize how environmental factors like temperature influence host and
parasite traits that drive transmission. Thermal responses of ectotherm traits are usually unimodal:
they peak at intermediate temperatures and decline towards zero at lower and upper thermal limits,
all of which vary across traits (Dell et al., 2011; Mordecai et al., 2013, Mordecai et al., 2017).
Mechanistic models are particularly useful for synthesizing the effects of multiple, nonlinear thermal
responses that shape transmission (Rogers and Randolph, 2006; Mordecai et al., 2013). One com-
monly used measure of disease spread is Ry, the basic reproductive number, defined as the number
of secondary cases expected from a single case in a fully susceptible population. Relative Rp— Ry
scaled between 0 and 1—is a modified metric that captures the thermal response of transmission
without making assumptions about other factors that affect the absolute value of Ry
(Mordecai et al., 2013, Mordecai et al., 2017). For mosquito-borne disease, Ry is a nonlinear
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function of mosquito density, biting rate, vector competence (infectiousness given pathogen expo-
sure), and adult survival; pathogen extrinsic incubation period; and human recovery rate
(Dietz, 1993). To understand how multiple traits that respond nonlinearly to temperature combine
to affect transmission, we incorporate empirically-estimated trait thermal responses into a model of
relative Ro. Synthesizing the full suite of nonlinear trait responses is critical because such models
often make predictions that are drastically different, with transmission optima up to 7°C lower, than
models that assume linear or monotonic thermal responses or omit temperature-dependent pro-
cesses (Mordecai et al., 2013, Mordecai et al., 2017). Previous mechanistic models that incorpo-
rated multiple nonlinear trait thermal responses have predicted different optimal temperatures
across pathogens and vector species: 25°C for falciparum malaria in Anopheles vectors
(Mordecai et al., 2013) and West Nile virus in Culex vectors (Paull et al., 2017), and 29 and 26°C
for dengue, chikungunya, and Zika viruses (in Aedes aegypti and Ae. albopictus, respectively) (Liu-
Helmersson et al., 2014; Wesolowski et al., 2015; Mordecai et al., 2017).

Here, we build the first mechanistic model for temperature-dependent transmission of RRV and
ask whether temperature explains seasonal and geographic patterns of disease. We use data from
laboratory experiments with two important vector species (Culex annulirostris and Aedes vigilax) to
parameterize the model with unimodal thermal responses. We then use sensitivity and uncertainty
analyses to determine which traits drive the relationship between temperature and transmission
potential and identify key data gaps. Finally, we illustrate how temperature currently shapes patterns
of disease transmission across Australia. The model correctly predicts that RRV disease is year-round
endemic in tropical, northern Australia with little seasonal variation due to temperature, and season-
ally epidemic in temperate, southern Australia. These results provide a mechanistic explanation for
idiosyncrasies in RRV temperature responses observed in previous studies (Hu et al., 2004;
Gatton et al., 2005; Bi et al., 2009; Werner et al., 2012; Koolhof et al., 2017). A population-
weighted version of the model (assuming a two-month lag between temperature and human cases
based on mosquito and disease development times) also accurately predicts the seasonality of
human cases nationally. Thus, from laboratory data on mosquito and parasite thermal responses
alone, this simple model mechanistically explains broad geographic and seasonal patterns of
disease.

Natural history of RRV

The natural history of RRV is complex: transmission occurs across a range of climates (tropical, sub-
tropical, and temperate) and habitats (urban and rural, coastal and inland) and via many vertebrate
reservoir and vector species (Claflin and Webb, 2015). Marsupials are generally considered the criti-
cal reservoirs for maintaining the virus between human outbreaks, but recent work has argued that
placental mammals and birds may be equally important in many locations (Stephenson et al., 2018).
The virus has been isolated from over 40 mosquito species in nature, and 10 species transmit it in
laboratory studies (Harley et al., 2001; Russell, 2002). However, four species are responsible for
most transmission to humans (Culex annulirostris, Aedes [Ochlerotatus] vigilax, Ae. [O.] notoscriptus,
and Ae. [O.] camptorhynchus), with two additional species implicated in outbreaks (Ae. [Stegomyia]
polynesiensis and Ae. [O.] normanensis).

The vectors differ in climate and habitat niches, leading to geographic variation in associations
with outbreaks. We assembled and mapped records of RRV outbreaks in humans attributed to dif-
ferent vector species (Figure 1, Figure 1—source data 1) (Rosen et al., 1981, Campbell et al.,
1989; Russell et al., 1991; Yang et al., 2009, Lindsay et al., 1993b; Lindsay et al., 1993a;
Lindsay et al., 1996; Lindsay et al., 2007, McManus et al., 1992, Merianos et al., 1992,
Whelan et al., 1992; Whelan et al., 1995, Whelan et al., 1997: McDonnell et al., 1994; Rus-
sell, 1994; Russell, 2002, Dhileepan, 1996; Ritchie et al., 1997, Brokenshire et al., 2000;
Ryan et al., 2000; Harley et al., 2000; Harley et al., 2001; Kelly-Hope et al., 2004a;
Frances et al., 2004; Biggs and Mottram, 2008; Jacups et al., 2008b; Schmaedick et al., 2008;
Lau et al., 2017). Ae. vigilax and Ae. notoscriptus were more commonly implicated in transmission
in tropical and subtropical zones, Ae. camptorhynchus in temperate zones, and Cx. annulirostris
throughout all climatic zones. Freshwater-breeding Cx. annulirostris has been implicated in transmis-
sion across both inland and coastal areas, while saltmarsh mosquitoes Ae. vigilax and Ae. campto-
rhynchus have been implicated only in coastal areas (Russell, 2002) and inland areas affected by
salinization from agriculture (Biggs and Mottram, 2008; Carver et al., 2009). Peri-domestic,
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Figure 1. Vector species implicated in RRV disease outbreaks. Map of specific mosquito species identified as important vectors based on collected
field specimens. Grid (right) shows data availability of trait thermal responses for the five Australian species. Data sources listed in Figure 1—source
data 1. Trait parameters are biting rate (a), fecundity (as eggs per female per day, EFD), mosquito development rate (MDR), the proportion surviving
from egg-to-adulthood (pga), adult mosquito mortality (L = 1/lifespan), vector competence (bc), and parasite development rate (PDR).

DOI: https://doi.org/10.7554/elife.37762.003

The following source data is available for figure 1:

Source data 1. Vector species implicated in RRV disease outbreaks.
DOI: https://doi.org/10.7554/eLife.37762.004

container-breeding Ae. notoscriptus has been implicated in urban epidemics (Russell, 2002). The
vectors also differ in their seasonality: Ae. camptorhynchus populations peak earlier and in cooler
temperatures than Ae. vigilax, leading to seasonal succession where they overlap (Yang et al., 2009;
Russell, 1998). This latitudinal and temporal variation suggests that vector species may have differ-
ent thermal optima and/or niche breadths. If so, temperature may impact disease transmission dif-
ferently for each species.

General modeling approach

Transmission depends on a suite of vector, pathogen, and human traits, including mosquito density
(M). Our main model (‘full Rp Model,” Equation 1) assumes temperature drives mosquito density and
includes the relevant life history trait thermal responses (Parham and Michael, 2009,
Mordecai et al., 2013, Mordecai et al., 2017). We initially compare this model to an alternative
(‘constant M model," Equation 2) where mosquito density does not depend on temperature. We
make this comparison because many transmission models do not include the thermal responses for
mosquito density, assuming it depends primarily on habitat availability.

Here, we focus on the relative influence of temperature on transmission potential, recognizing
that absolute Ry also depends on other factors. Accordingly, we scaled model output between zero
and one (‘relative Ry'). Relative Ry describes thermal suitability for transmission. Combined with fac-
tors like breeding habitat availability, vector control, humidity, human and reservoir host density,
host immune status, and mosquito exposure, relative Ry can be used to predict disease incidence. In
this approach, only the relative thermal response of each trait influences Ry, which is desirable since
traits can differ substantially due to other factors and in laboratory versus field settings (particularly
mosquito survival: Clements and Paterson, 1981). Relative Ry does not provide a threshold for sus-
tained disease transmission (i.e. where absolute Ry = 1), since this threshold is not controlled solely
by temperature. Instead, relative Ry preserves the temperature-dependence of Ry to provide three
key temperature values: upper and lower thermal limits where transmission is possible (Ry >0; a
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conservative threshold where transmission is not excluded by high or low temperatures) and the
temperature that maximizes Ro.

Results

Vector and pathogen traits that drive transmission consistently responded to temperature (Figure 2),
though data were sparse (McDonald et al., 1980; Mottram et al., 1986; Russell, 1986; Rae, 1990;
Kay and Jennings, 2002). Although we exhaustively searched for experiments with trait measure-
ments at three or more constant temperatures in the Australian vector species (Cx. annulirostris, Ae.
vigilax, Ae. camptorhynchus, Ae. notoscriptus, and Ae. normanensis), no species had data for all nec-
essary traits (Figure 1). Thus, we combined traits from two species to build composite Ry models.
We used mosquito life history traits measured in Cx. annulirostris: fecundity (as eggs per female per
day, EFD), egg survival (as the proportion of rafts that hatch, pRH, and the number of larvae emerg-
ing per viable raft, nLR), the proportion surviving from larvae-to-adulthood (p4), mosquito develop-
ment rate (MDR), adult mosquito lifespan (If), and biting rate (a). We used infection traits measured
in Ae. vigilax: vector competence (bc) and parasite development rate (PDR). For comparison, we
also fit traits for other mosquito and virus species: MDR and p;a from Ae. camptorhynchus and Ae.
notoscriptus, and PDR and bc from Murray Valley encephalitis virus (another important pathogen
transmitted by these mosquitoes in Australia) in Cx. annulirostris (Figure 2—figure supplements 2,
3 and 4) (Kay et al., 1989, Barton and Aberton, 2005; Williams and Rau, 2011). We used sensitiv-
ity analyses to evaluate the potential impact of this vector mismatch. However, all spatial and tempo-
ral predictions of Ry (Figures 5-7) use the full Ry model parameterized with mosquito life history
traits from Cx. annulirostris and infection traits from Ae. vigilax (as shown in Figure 2).

Thermal optima ranged from 23.4°C for adult lifespan (If) to 33.0°C for parasite development rate
(PDR; Figure 2). The data supported unimodal thermal responses for most traits, though declines at
high temperatures were not directly observed for biting rate (a) and parasite development rate.
Data from other mosquito species and ectotherm physiology theory imply these traits must decline
at very high temperatures, so we used strong priors to make them decline near ~40°C. Because our
approach is designed to identify which traits constrain transmission at thermal limits, this choice is
conservative since it means Ry will be limited by other traits with better data. Accordingly, in the
absence of data we preferred to overestimate upper thermal limits and underestimate lower thermal
limits rather than vice versa.

Transmission potential (relative Ry from the full Ry model) peaked at 26.4°C, and was positive
from 17.0-31.5°C (Figure 3). Removing the temperature-dependence of mosquito density [M] did
not substantially affect the peak, because the optima for transmission and mosquito density were
closely aligned (constant M model: 26.6°C, M: 26.2°C). By contrast, the range of temperatures suit-
able for transmission is much larger when mosquito density does not depend on temperature
because M(T) constrains transmission at the thermal limits (constant M model positive from 12.9-
33.7°C). The thermal constraints that mosquito density imposes on transmission are important
because, although demographic traits are well-known to vary with temperature in the laboratory,
many temperature-dependent transmission models do not assume that temperature influences mos-
quito density (Martens et al., 1997; Craig et al., 1999; Paull et al., 2017; Caminade et al., 2017,
Hamlet et al., 2018, but see Parham and Michael, 2009; Mordecai et al., 2013, Mordecai et al.,
2017; Johnson et al., 2015). The moderate optimal temperature for RRV (26-27°C) fits within the
range of thermal optima found for other diseases: malaria transmission by Anopheles spp. at 25°C,
and dengue and other viruses by Ae. aegypti and Ae. albopictus at 29 and 26°C, respectively (Fig-
ure 4) (Mordecai et al., 2013; Mordecai et al., 2017).

At the upper thermal limit fecundity (EFD) and adult lifespan (/f) constrain Ry, while at the lower
thermal limit fecundity, larval survival (pLA), egg survival (raft viability [pRH] and survival within rafts
[nLR], and adult lifespan constrain Ry (Figure 3—figure supplement 2). All of these traits (except
adult lifespan) only occur in, and adult lifespan is quantitatively more important in, the full Ry model,
illustrating the importance of incorporating effects of temperature on vector life history. Corre-
spondingly, uncertainty in these traits generated the most uncertainty in Ry at the respective thermal
limits (Figure 3—figure supplement 2C). The optimal temperature for Ry was most sensitive to the
thermal response of adult lifespan. Near the optimum, most uncertainty in Ry was due to uncertainty
in the thermal responses of biting rate and egg raft viability. For comparison, substituting larval traits
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Figure 2. Thermal responses of Cx. annulirostris and RRV (in Ae. vigilax) traits that drive transmission. Mosquito life history traits (A, C, E, F, G, H, I) are
from Cx. annulirostris. Virus-mosquito infection traits (B, D) are from Ae. vigilax. Functions were fit using Bayesian inference with priors fit using data
from other mosquito species and viruses. Black solid lines are posterior distribution means; dashed red lines are 95% credible intervals. (E, C) Points are
data means; error bars are standard error. Data sources and function parameter estimates given in Figure 2—source data 1. Data sources and function
parameter estimates for priors given in Figure 2—source data 2. Thermal responses fit with uniform priors given in Figure 2—figure supplement 1.
Thermal responses for alternative vectors and virus given in Figure 2—figure supplements 2, 3 and 4.

DOI: https://doi.org/10.7554/eLife.37762.005

The following source data and figure supplements are available for figure 2:

Source data 1. Trait thermal response functions and data sources for Ross River virus Rg models (Equations 1 and 2).

DOI: https://doi.org/10.7554/eLife.37762.011

Source data 2. Trait thermal response functions and data sources used to parameterize priors for data-informed trait thermal responses.
DOI: https://doi.org/10.7554/elife.37762.012

Figure supplement 1. Thermal responses of Cx. annulirostris fit with uniform priors.

DOI: https://doi.org/10.7554/eLife.37762.006

Figure supplement 2. Thermal responses of Ae. camptorhynchus.

DOV https://doi.org/10.7554/elife.37762.007

Figure supplement 2—source data 1. Trait thermal response functions and data sources for Murray Valley Encephalitis virus and additional vector spe-
cies (Ae. notoscriptus and Ae. camptorhynchus).

DOI: https://doi.org/10.7554/elife.37762.008

Figure supplement 3. Thermal responses of Ae. notoscriptus.

DOI: https://doi.org/10.7554/eLife.37762.009

Figure 2 continued on next page
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Figure 2 continued

Figure supplement 4. Thermal responses of Murray Valley Encephalitis virus.
DOV https://doi.org/10.7554/eLife.37762.010
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Figure 3. Thermal response of relative Ro. (A) Posterior means across temperature for the full Ry model (Equation 1, dark blue) and constant M model
(Equation 2, light blue). Predicted mosquito density (M) shown for comparison (red). The y-axis shows relative Ry (or M) rather than absolute values,
which would require additional information. Histograms of posterior distributions for (B) critical thermal minimum, (C) thermal optimum, and (D) critical
thermal maximum temperatures for both models (same colors as in A). Additional Ry model results given in Figure 3—figure supplement 1. Sensitivity
and uncertainty analyses given in Figure 3—figure supplement 2. Example comparison of mean and median results given in Figure 3—figure
supplement 3.

DOI: https://doi.org/10.7554/elife.37762.013

The following figure supplements are available for figure 3:

Figure supplement 1. Thermal response of relative RO using traits from alternative vectors.

DOV https://doi.org/10.7554/eLife.37762.014

Figure supplement 2. Sensitivity and uncertainty analyses for RO results.

DOI: https://doi.org/10.7554/elife.37762.015

Figure supplement 3. Example comparison of mean and median RO results.

DOI: https://doi.org/10.7554/eLife.37762.016
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in Ae. albopictus (orange, optimum = 26.4°C), and dengue virus in Ae. agypti (red, optimum = 29.1°C). Results for all diseases use the full Ry model.
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from alternative vectors or infection traits for Murray Valley Encephalitis virus did not substantially
alter the Ry thermal response, since Cx. annulirostris life history traits strongly constrained transmis-
sion (Figure 3—figure supplement 1).

Temperature suitability for RRV transmission varies seasonally across Australia, based on the full
Ro model (Equation 1) using monthly mean temperatures from WorldClim. In subtropical and tem-
perate locations (Brisbane and further south), low temperatures force Rg to zero for part of the year
(Figures 5A and 6). Monthly mean temperatures in these areas fall along the increasing portion of
the Ry curve for the entire year, so thermal suitability for transmission increases with temperature. By
contrast, in tropical, northern Australia (Darwin and Cairns), the temperature remains suitable
throughout the year (Figures 5 and 6). Darwin is the only major city where mean temperatures
exceed the thermal optimum, and thereby depress transmission. Because most Australians live in
southern, temperate areas, country-scale transmission is strongly seasonal. Using the average (1992-
2013) seasonal incidence at the national scale, human cases peak two months after population-
weighted Ro(T), matching our a priori hypothesized time lag between temperature suitability and
human cases (based on empirical work in other mosquito-borne disease systems, see
Materials and methods and Discussion; Figure 7).

Discussion

As the climate warms, it is critical to understand effects of temperature on transmission of mosquito-
borne disease, particularly as new mosquito-borne pathogens emerge and spread worldwide. Identi-
fying transmission optima and limits by characterizing nonlinear thermal responses, rather than sim-
ply assuming that transmission increases with temperature, can more accurately predict geographic,
seasonal, and interannual variation in disease. Thermal responses vary substantially among diseases
and vector species (Mordecai et al., 2013; Mordecai et al., 2017; Tesla et al., in press), yet we lack
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Ro >0.5. Predictions are based on the posterior median of the full Ry model (Equation 1) parameterized with trait thermal responses shown in Figure 2.
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The following figure supplement is available for figure 5:

Figure supplement 1. RRV transmission potential from monthly mean temperatures using RO model 2.5% and 97.5% credible intervals.
DOI: https://doi.org/10.7554/eLife.37762.019

mechanistic models based on empirical, unimodal thermal responses for many diseases and vectors.
Here, we parameterized a temperature-dependent model for transmission of RRV (Figure 2) with
data from two important vector species (Cx. annulirostris and Ae. vigilax; Figure 1). The optimal
temperature for transmission is moderate (26-27°C; Figure 3), and largely determined by the ther-
mal response of adult mosquito lifespan (Figure 3—figure supplement 2). Both low and high tem-
peratures limit transmission due to low mosquito fecundity and survival at all life stages—thermal
responses that are often ignored in transmission models (Figure 3—figure supplement 2). Temper-
ature explains the geography of year-round endemic versus seasonally epidemic disease (Figures 5
and 6) and accurately predicts the seasonality of human cases at the national scale (Figure 7). Thus,
the model for RRV transmission provides a mechanistic link between geographic and seasonal varia-
tion in temperature and broad-scale patterns of disease.

While the thermal response of RRV transmission generally matched those of other mosquito-
borne pathogens, there were some key differences. The moderate optimal temperature for RRV
(26-27°C) fit within the range of thermal optima found for other diseases using the same methods:
malaria transmission by Anopheles spp. at 25°C, and dengue and other viruses by Ae. aegypti and
Ae. albopictus at 29 and 26°C, respectively (Figure 4) (Mordecai et al., 2013, Mordecai et al.,
2017). For all of these diseases, the specific optimal temperature was largely determined by the
thermal response of adult lifespan (Mordecai et al., 2013,;Mordecai et al., 2017, Johnson et al.,
2015). However, the traits that set the thermal limits for RRV transmission differed from other sys-
tems. The lower thermal limit for RRV was constrained by fecundity and survival at all stages, while
the upper thermal limit was constrained by fecundity and adult lifespan. By contrast, thermal limits
for malaria transmission were set by parasite development rate at cool temperatures and egg-to-
adulthood survival at high temperatures (Mordecai et al., 2013). As with previous models, the upper
and lower thermal limits of RRV transmission are more uncertain than the optimum (Figure 3)
(Johnson et al., 2015; Mordecai et al., 2017), because trait responses are harder to measure near
their thermal limits where survival is low and development is slow or incomplete. Overall, our results
support a general pattern of intermediate thermal optima for transmission where the well-resolved
optimal temperature is driven by adult mosquito lifespan, but upper and lower thermal limits are
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Figure 7. Seasonality of relative Ry and RRV infections. Human cases aggregated nationwide from 1992 to 2013
(bars). Temperature-dependent Ry weighted by population (line), calculated from Australia’s 15 largest cities
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winter). Cases peak two months after Ry, the a priori expected lag between temperature and reported cases.
DOI: https://doi.org/10.7554/eLite.37762.021

more uncertain and may be determined by unique traits for different vector-pathogen systems.
Additionally, upper thermal limits of mosquito-borne disease transmission (a major concern for cli-
mate change) are primarily determined by vector life history traits with symmetrical thermal perfor-
mance curves (like fecundity and survival at various life stages) rather than rate-based traits with
asymmetrical thermal performance curves (like biting rate or pathogen development rate).

The trait thermal response data were limited in two keys ways. First, two traits (fecundity and
adult lifespan) had data from only three temperatures. We used priors derived from data from other
mosquito species to minimize over-fitting and better represent the true uncertainty (Figure 2, versus
uniform priors in Figure 2—figure supplement 1). However, data from more temperatures would
increase our confidence in the fitted thermal responses. Second, no vector species had data for all
traits (Figure 1), so we combined mosquito traits from Cx. annulirostris and pathogen infection traits
in Ae. vigilax to build composite relative Ry models. Geographic and seasonal variation in vector
populations suggests that Ae. camptorhynchus and Ae. vigilax have different thermal niches (cooler
and warmer, respectively) and Cx. annulirostris has a broader thermal niche (Figure 1) (Rus-
sell, 1998). We need temperature-dependent trait data for more species to test the hypothesis that
these niche differences reflect the species’ thermal responses. If true, the current model, parameter-
ized primarily with Cx. annulirostris trait responses, may not accurately predict the thermal responses
of transmission by Ae. camptorhynchus and Ae. vigilax. Hypothesized species differences in thermal
niche could explain why RRV persists over a wide climatic and latitudinal gradient. Thus, thermal
response experiments with other RRV vectors are a critical area for future research.

The temperature-dependent Ry model provides a mechanistic explanation for independently-
observed patterns of RRV transmission across Australia. As predicted by the model (Figures 5 and
6), RRV is endemic in tropical Australia, with little seasonal variation in transmission potential due to
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temperature, and seasonally epidemic in subtropical and temperate Australia (Weinstein, 1997).
The model also accurately predicts disease seasonality at the national scale (Figure 7), reproducing
the a priori predicted lag (8-10 weeks, or 2 months) for temperature to affect reported human cases
(Hu et al., 2006; Jacups et al., 2008b; Stewart Ibarra et al., 2013; Mordecai et al., 2017). This lag
between temperature and reported human cases arises from the time it takes for mosquito popula-
tions to increase, bite humans and reservoir hosts, acquire RRV, become infectious, and bite subse-
quent hosts; for pathogens to incubate with vectors; for humans to potentially develop symptoms,
seek treatment, and report cases. Further, RRV transmission by Cx. annulirostris in inland areas often
moves south as temperatures increase from spring into summer (Russell, 1998), matching the model
prediction (Figure 6). Although temperature is often invoked as a potential driver for these types of
patterns, it is difficult to establish causality from statistical inference alone, particularly if temperature
and disease both exhibit strong seasonality and could both be responding to another latent driver.
Thus, the mechanistic model is a critical piece of evidence linking temperature to patterns of
disease.

In addition to explaining broad-scale patterns, the unimodal thermal model explains previously
contradictory local-scale results. Specifically, statistical evidence for temperature impacts on local
time series of cases is mixed. RRV incidence is often—but not always—positively associated with
warmer temperatures (Tong and Hu, 2001; Tong et al., 2002a; Tong et al., 2004; Hu et al.,
2004; Hu et al., 2010; Jacups et al., 2008b, Williams et al., 2009; Werner et al.,, 2012,
Koolhof et al., 2017). However, variation in the effects of temperature on transmission across space
and time is expected from an intermediate thermal optimum, especially when observed tempera-
tures are near or varying around the optimum. The strongest statistical signal of temperature on dis-
ease is expected in temperate regions where mean temperature varies along the rapidly rising
portion of the Ry curve (~20-25°C). If mean temperatures vary both above and below the optimum
(as in Darwin), important effects of temperature may be masked in time series models that fit linear
responses. Additionally, if temperatures are always relatively suitable (as in tropical climates) or
unsuitable (as in very cool temperate climates), variation in disease may be due primarily to other
factors. A nonlinear mechanistic model is critical for estimating temperature impacts on transmission
because the effect of increasing temperature by a few degrees can have a positive, negligible, or
negative impact on Ry along different parts of the thermal response curve. Although field-based evi-
dence for unimodal thermal responses in vector-borne disease is rare (but see Mordecai et al.,
2013; Perkins et al., 2015; Pefa-Garcia et al., 2017), there is some evidence for high temperatures
constraining RRV transmission and vector populations: outbreaks were less likely with more days
above 35°C in part of Queensland (Gatton et al., 2005) and populations of Cx. annulirostris peaked
at 25°C and declined above 32°C in Victoria (Dhileepan, 1996). Future statistical analyses of RRV
cases may benefit from using a nonlinear function for temperature-dependent Ry as a predictor
instead of raw temperature (Figure 6B versus Figure 6A).

Breeding habitat availability also drives mosquito abundance and mosquito-borne disease. Local
rainfall or river flow have been linked to the abundance of RRV vector species (Barton et al., 2004;
Tall et al., 2014; Jacups et al., 2015) and RRV disease cases (Tong and Hu, 2001; Tong et al.,
2002a; Hu et al., 2004; Kelly-Hope et al., 2004b; Tong et al., 2004, Gatton et al., 2005;
Jacups et al., 2008b; Bi et al., 2009; Williams et al., 2009; Werner et al., 2012), as have high tides
in coastal areas with saltmarsh mosquitoes, Ae. vigilax and Ae. camptorhynchus (Tong and Hu,
2002b; Tong et al., 2004; Jacups et al., 2008b; Kokkinn et al., 2009). Overlaying models of spe-
cies-specific breeding habitat with temperature-dependent models will better resolve the geo-
graphic and seasonal distribution of RRV transmission. Relative Ry peaked at similar temperatures
whether or not we assumed mosquito abundance was temperature-dependent (Equation 1 versus
Equation 2); however, the range of suitable temperatures was much wider for the model that
assumed a temperature-independent mosquito population (Figure 3). Since breeding habitat can
only impact vector populations when temperatures do not exclude them, it is critical to consider
thermal constraints on mosquito abundance, even when breeding habitat is considered a stronger
driver. Nonetheless, many mechanistic, temperature-dependent models of vector-borne disease
transmission do not include thermal effects on vector density (Martens et al., 1997; Craig et al.,
1999; Paull et al., 2017, Caminade et al., 2017; Hamlet et al., 2018). Our results demonstrate that
the decision to exclude these relationships can have a critical impact on model results, especially
near thermal limits.
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Several important gaps remain in our understanding of RRV thermal ecology, in addition to the
need for trait thermal response data for more vector species. First, the relative Ry model needs to
be more rigorously validated using time series of cases to determine the importance of temperature
at finer spatiotemporal scales. These analyses should incorporate daily, seasonal, and spatial temper-
ature variation, including aquatic larval habitat and adult microhabitat temperatures
(Paaijmans et al., 2010; Cator et al., 2013; Carrington et al., 2013, Thomas et al., 2018). They
should also integrate species-specific drivers of breeding habitat availability, like rainfall and tidal
patterns, infrastructure (e.g. drainage), and human activities (e.g. deliberate and accidental water
storage). Second, translating environmental suitability for transmission into human cases also
depends on disease dynamics in reservoir host populations and their impact on immunity. For
instance, in Western Australia heavy summer rains can fail to initiate epidemics when low rainfall in
the preceding winter depresses recruitment of susceptible juvenile kangaroos (Mackenzie et al.,
2000). By contrast, large outbreaks occur in southeastern Australia when high rainfall follows a dry
year, presumably from higher transmission within relatively unexposed reservoir populations
(Woodruff et al., 2002). Third, as the climate changes, long-term predictions should consider poten-
tial thermal adaption of vectors, since transmission at upper thermal limits is currently limited by vec-
tor life history traits. To date, we know very little about standing genetic variation for thermal
performance or existing local thermal adaptation in vectors for any disease system. Building vector
species-specific Ry models and integrating thermal ecology with other drivers are important next
steps for forecasting variation in RRV transmission. These more advanced models are necessary to
translate our relative Ry results into predictions of absolute Ry (i.e. estimating the secondary cases
per primary case, and where and when Ry >1 for sustained transmission).

Nonlinear thermal responses are particularly important for predicting how transmission will change
under future climate regimes. Climate warming will likely increase the geographic and seasonal range
of transmission potential in temperate, southern Australia where most Australians live. However, cli-
mate change will likely decrease transmission potential in tropical areas like Darwin, where moderate
warming (~3°C) would push temperatures above the upper thermal limit for transmission for most of
the year (Figure 5). However, the extent of climate-driven declines in transmission will depend on how
much Cx. annulirostris and Ae. vigilax can adapt to extend their upper thermal limits and whether
warmer-adapted vector species (e.g. Ae. aegypti and potentially Ae. polynesiensis) can invade and
sustain RRV transmission cycles. Thus, we can predict the response of RRV transmission by current vec-
tor species to climate change based on these trait thermal responses. However, future disease dynam-
ics will also depend on vector adaptation, potential vector species invasions, and climate change
impacts on sea level and precipitation that drive vector habitat availability.

Materials and methods

Temperature-Dependent Romodels

The ‘full Ry model’ (Equation 1) assumes temperature drives mosquito density and includes vector
life history trait thermal responses (Parham and Michael, 2009, Mordecai et al., 2013;
Mordecai et al., 2017). The ‘constant M model’ (Equation 2) assumes mosquito density (M) does
not depend on temperature (Dietz, 1993). There is disagreement in the literature over whether the
equation for Ry should contain the square root (Dietz, 1993; Heffernan et al., 2005; Smith et al.,
2012). We use the version derived from the next-generation matrix method (Dietz, 1993) in order
to be consistent with our previous work in other mosquito-borne disease systems (Mordecai et al.,
2013; Mordecai et al., 2017; Johnson et al., 2015).

Ro(T) = o(TPbe(T)e” PAEFD(T)pea(T)MDR(T) (1)
0 - 1\]’,/11(7")3
Ro(T) = a(T)2be(T)e” PFTM 12 |
o) (AT ]

In both equations, (T) indicates that a parameter depends on temperature, a is mosquito biting
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rate, bc is vector competence (proportion of mosquitoes becoming infectious post-exposure), L is
adult mosquito mortality rate (adult lifespan, If = 1/u), PDR is parasite development rate (PDR = 1/
EIP, the extrinsic incubation period), N is human density, and r is the recovery rate at which humans
become immune (all rates are measured in days~"). The latter two terms do not depend on tempera-
ture. In the full Ry model, mosquito density (M) depends on fecundity (EFD, eggs per female per
day), proportion surviving from egg-to-adulthood (pga), and mosquito development rate (MDR),
divided by the square of adult mortality rate (1) (Parham and Michael, 2009). We calculated pga as
the product of the proportion of egg rafts that hatch (pRH), the number of larvae per raft (nLR,
scaled by the maximum at any temperature to calculate proportional egg survival within-rafts), and
the proportion of larvae surviving to adulthood (p_4).

We digitized previously published trait data (Figure 2—figure supplement 1, McDonald et al.,
1980; Mottram et al., 1986; Russell, 1986, Rae, 1990; Kay and Jennings, 2002) using the free
web-based tool Webplot Digitizer available at: https://automeris.io/WebPlotDigitizer/. We fit ther-
mal responses of each trait using Bayesian inference with the ‘r2jags’ package (Plummer, 2003;
Su and Yajima, 2009) in R (R Core Team, 2017). Traits with asymmetrical thermal responses were fit
as Briére functions: qT(T—Tmin)(Tmax—Tf/2 (Briere et al., 1999). Traits with symmetrical thermal
responses were fit as quadratic functions: -q(T-Tmin)(T-Tmax)- In both functions of temperature (T),
Trnin @nd T, are the critical thermal minimum and maximum, respectively, and g is a rate parame-
ter. For priors we used gamma distributions with hyperparameters derived from thermal responses
fit to data from other mosquito species (Figure 2—source data 2) (Davis, 1932; Jalil, 1972,
McLean et al., 1974; Watts et al., 1987; Rueda et al., 1990; Focks et al., 1993; Joshi, 1996;
Teng and Apperson, 2000; Tun-Lin et al., 2000; Alto and Juliano, 2001; Briegel and Timmer-
mann, 2001; Kamimura et al., 2002, Calado and Navarro-Silva, 2002; Focks and Barrera, 2006;
Wiwatanaratanabutr and Kittayapong, 2006; Lardeux et al., 2008; Delatte et al., 2009,
Beserra et al., 2009; Yang et al., 2009, Westbrook et al., 2010; Muturi et al., 2011;
Carrington et al., 2013; Tjaden et al., 2013; Eisen et al., 2014; Xiao et al., 2014; Ezeaka-
cha, 2015; Morin et al., 2015). These priors allowed us to more accurately represent the fit and
uncertainty.

Our data did not include declining trait values at high temperatures for biting rate (a) and parasite
development rate (PDR). Nonetheless, data from other mosquito species (Mordecai et al., 2013,
Mordecai et al., 2017) and principles of thermal biology (Dell et al., 2011) imply these traits must
decline at high temperatures. Thus, for those traits we included an artificial data point where the
trait value approached zero at a very high temperature (40°C), allowing us to fit the Briére function.
We used strongly informative priors to limit the effect of these traits on the upper thermal limit of Ry
(by constraining them to decline near 40°C). Because our approach is designed to identify which
traits constrain transmission at thermal limits, this choice is conservative by allowing Ry to be limited
by other traits with better data. Accordingly, in the absence of data we favored overestimating Trmax
and underestimating T,,;, over the alternative. For comparison, we also fit all thermal responses with
uniform priors (Figure 2—figure supplement 1); these results illustrate how the priors affected the
results.

Bayesian inference produces estimated posterior distributions rather than a single estimated
value. Because these distributions can be non-normal and asymmetric, we report and apply medians
rather than means, since medians are less sensitive to outlying values in extended tails. However, we
plot mean values in the figures because they show a smoother and more visually intuitive representa-
tion of where trait and R, thermal responses go to zero at the upper thermal limit. The means and
medians are not substantially different, except at this thermal limit (see example in Figure 3—figure
supplement 3).

Sensitivity and uncertainty analyses

We conducted sensitivity and uncertainty analyses of the full Ry model (Equation 1) to understand
how trait thermal responses shape the thermal response of Ry. We examined the sensitivity of Ry
two ways. First, we evaluated the impact of each trait by setting it constant while allowing all other
traits to vary with temperature. Second, we calculated the partial derivative of Ry with respect to
each trait across temperature (0Ry/0X - 0X/OT for trait X and temperature T, Equations 3-6). To
understand what data would most improve the model, we also calculated the proportion of total
uncertainty in Ry due to each trait across temperature. First, we propagated posterior samples from
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all trait thermal response distributions through to Ry(T) and calculated the width of the 95% highest
posterior density interval (HPD interval; a type of credible interval) of this distribution at each tem-
perature: the ‘full Ro(T) uncertainty’. Next, we sampled each trait from its posterior distribution while
setting all other trait thermal responses to their posterior medians, and calculated the posterior dis-
tribution of Ro(T) and the width of its 95% HPD interval across temperature: the ‘single-trait Ro(T)
uncertainty’. Finally, we divided each single-trait Ro(T) uncertainty by the full Ro(T) uncertainty.

The partial derivatives are given below for all traits (x) that appear only once in the numerator of
Ro (bc, EFD, pRH, nLR, pLA, MDR; Equation 3), biting rate (a, Equation 4), parasite development
rate (PDR, Equation 5), and lifespan (If, Equation 6).

ORy Ry

20 _ 70 3

ox  2x &)

oRy R,

9o _ Mo 4

Oa a @
ORy Ro

OPDR_ 2 If PDR? )

ORy _ Ro(1+3PDR)
olf  2PDRIf?

Field observations: seasonality of temperature-dependent Rpacross
Australia

We took monthly mean temperatures from WorldClim for seven cities spanning a latitudinal and
temperature gradient (from tropical North to temperate South: Darwin, Cairns, Brisbane, Perth, Syd-
ney, Melbourne, and Hobart) and calculated the posterior median Ro(T) for each month at each loca-
tion. We also compared the seasonality of a population-weighted Ro(T) and nationally aggregated
RRV cases. We used 2016 estimates for the fifteen most populous urban areas, which together con-
tain 76.6% of Australia’s population (Australian Bureau of Statistics, 2017). We calculated Ry(T) for
each location (as above) and estimated a population-weighted average. We compared this country-
scale estimate of Ry(T) with data on mean monthly human cases of RRV nationwide from 1992 to
2013 obtained from the National Notifiable Diseases Surveillance System.

We expected a time lag between temperature and reported human cases as mosquito popula-
tions increase, bite humans and reservoir hosts, acquire RRV, become infectious, and bite subse-
quent hosts; after an incubation period, hosts (potentially) become symptomatic, seek treatment,
and report cases. Empirical work on dengue vectors in Ecuador identified a six-week time lag
between temperature and mosquito oviposition (Stewart Ibarra et al., 2013). Subsequent mosquito
development and incubation periods in mosquitoes and humans likely add another 2-4 week lag
before cases appear, resulting in an 8-10 week lag between temperature and observed cases
(Hu et al., 2006; Jacups et al., 2008b; Mordecai et al., 2017). With monthly case data, we hypoth-
esize a two-month time lag between Ry(T) and RRV disease cases.

Mapping temperature-dependent Ry across Australia

To illustrate temperature suitability for RRV transmission across Australia, we mapped the number of
months for which relative Ro(T) >0 and >0.5 for the posterior median, 2.5 and 97.5% credibility
bounds (Figure 5—figure supplement 1) for the full Ry model (Equation 1). We calculated Ry(T) at
0.2°C increments and projected it onto the landscape for monthly mean temperatures from World-
Clim data at a 5 min resolution (approximately 10 km? at the equator). Climate data layers were
extracted for the geographic area, defined using the Global Administrative Boundaries Databases
(GADM, 2012). We performed map calculations and manipulations in R with packages ‘raster’ (Hij-
mans, 2016), 'maptools’ (Bivand and Lewin-Koh, 2017), and ‘Rgdal’ (Bivand et al., 2017), and ren-
dered GeoTiffs in ArcGIS version 10.3.1.
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Mosquito nomenclature

In 2000 there was a proposed shift in mosquito taxonomy: several subgenera within the genus
Aedes were elevated to genus status (Wilkerson et al., 2015). This change affected Aedes vigilax
and Aedes camptorhynchus, which were called Ochlerotataus vigilax and Ochlerotatus camptorhyn-
chus for a time by some researchers. More recently, there has been a consensus to return to the pre-
vious naming system, so we use Aedes here, although many of the papers we cite use Ochlerotatus
instead.

Additional methods for digitizing trait data

The fecundity and adult survival data in McDonald et al. (1980) were published as time series of
one experimental population at each temperature. The resulting data needed to be transformed to
fit the corresponding trait thermal responses.

For survival, McDonald et al. reported the percent surviving approximately every other day (here-
after: ‘semi-daily’). We used these data—along with the number of female adults alive on the first
day of oviposition at each temperature—to generate a semi-daily time series estimating the number
surviving. To generate the dataset that we used to directly fit the thermal responses, we converted
this time series into the number of female individuals who died on each day (i.e. lifespan data).

For fecundity, McDonald et al. reported semi-daily fecundity data for entire population. Because
the population was synchronized, and because mosquitoes lay discrete clutches of eggs separated
by several days (the gonotrophic cycle duration), there were many data points when the populations
did not produce offspring. These zero-inflated fecundity data are not ideal for fitting thermal
responses. Therefore, after digitizing the semi-daily fecundity time series, we binned periods of sev-
eral days (the bin size varied by temperature, since the gonotrophic cycle duration varies with tem-
perature) and took a survival-weighted average within each bin (so days with more individual
mothers contributing to offspring production counted more). To generate the dataset that we used
to directly fit the thermal responses, we weighted the values within each bin by the mean number of
surviving mothers in that bin. This approach allowed us to more accurately reflect daily fecundity
averaged over a non-synchronized mosquito population. Note that the variation captured by these
data and this approach is not variation between individual adult females, but rather variation by age
for the whole population.
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