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Abstract: Circulating phagocytic cells often serve as cellular targets for a large number of pathogens
such as Leishmania parasites. Studying primary human cells in an infectious context requires lengthy
procedures for cell isolation that may affect the analysis performed. Using whole blood and a no-lyse
and no-wash flow cytometric assay (NoNo assay), we monitored the Leishmania infantum infection of
primary human cells. We demonstrated, using fluorescent parasites, that among monocyte cell popu-
lations, L. infantum preferentially infects classical (CD14+CD16−) and intermediate (CD14+CD16+)
primary human monocytes in whole blood. Because classical monocytes are the preponderant popu-
lation, they represent the larger L. infantum reservoir. Moreover, we also found that, concomitantly to
monocyte infection, a subset of PMNs is infected early in whole blood. Of interest, in whole blood,
PMNs are less infected compared to classical monocytes. Overall, by using this NoNo assay, we
provided a novel avenue in our understanding of host–leishmania interactions.

Keywords: Leishmania; flow cytometry; blood; monocyte; neutrophil

1. Introduction

Leishmania donovani and infantum are intracellular parasites belonging to the Trypanoso-
matidae family that are the causative agents of visceral leishmaniasis (VL) [1]. This disease
affects vulnerable populations, and approximately 90,000 infections occur each year [1,2].
The clinical manifestations of VL are fever, anemia, weight loss, splenomegaly and hep-
atomegaly, leading to death if left untreated [3]. Leishmania parasites are transmitted as
promastigotes (extracellular forms) to the mammalian host during phlebotomine sandfly
blood meals. Thus, parasites are introduced into the skin following sand fly inocula-
tion [4,5]. In turn, tissue damage due to the inoculation of parasites causes the recruitment
and accumulation of immune cells at the bite’s site, involving monocytes and polymor-
phonuclear neutrophils (PMNs). In addition, it has been reported that sand fly salivary
proteins attract and activate host cells, and taking advantage of this inflammatory response,
parasites invade their host [6]. PMNs may act as a Trojan horse, silently transmitting
parasites to infiltrate mononuclear cells [4,5,7–10]. Furthermore, Leishmania hijack host
machinery to survive and multiply into host cells [11,12]. Of importance, the parasite has
also been detected in the peripheral blood of patients with cutaneous or visceral leish-
maniasis [13,14]. Risks of the contamination of leishmaniasis via blood transfusion or
organ donation (bone marrow and liver) in endemic regions where asymptomatic cases
predominate are not negligible [14–16]. However, little attention has been paid regarding
the interaction between viscerotropic strains and monocyte subsets.
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Human monocytes are heterogeneous populations including three main circulating
subsets that are defined in humans as classical (CL: HLA-DR+CD14+CD16−), intermediate
(ITM: HLA-DR+CD14+CD16+) and nonclassical (NCL: HLA-DR+CD14lowCD16+) [17–19].
CL monocytes are attracted by CCL2 and CCL3 gradients and are more efficient than
ITM monocytes in producing ROS and pro-inflammatory molecules, which highlights
their potential to migrate to injured or inflamed tissues [20]. On the other hand, NCL
populations possess a more mature phenotype and are associated with a gene expression
profile related cell-to-cell adhesion, cell trafficking, proliferation, and differentiation. Thus,
they express higher levels of CX3CR1, which contribute to migration and adherence to
fractalkine-secreting endothelium [21]. ITM and NCL populations bridge the gap between
innate and adaptive immunity. Thus, among their many functions, they are both involved
in T-cell proliferation and stimulation [18,19]. Furthermore, in infectious and inflammatory
conditions, these two populations are amplified [22–24]. They have redundant functions
with classical monocytes; in fact, ITM populations are able to produce ROS, and NCL
populations produce pro-inflammatory cytokines such as TNF-α and IL-1β [25]. Previous
reports on L. braziliensis, responsible for cutaneous leishmaniasis, have demonstrated that
promastigotes infect CL and ITM monocytes [26], while amastigotes do not preferentially
target a monocyte subset but rather infect the three subsets [20]. Thus, studying the
dynamics of parasite interaction with myeloid cells in the blood may provide information
about the dissemination of viscerotropic strains from the periphery to the organs.

Regarding PMNs, it is now becoming clear that they are also heterogeneous cells with
potentially multiple subsets in health and disease [27,28]. PMNs are the most abundant type
of circulating myeloid cells constituting around 50% of peripheral blood, being identified
in flow cytometry by CD16 positivity and HLA-DR negativity. Recent studies indicated an
in vitro polarization of PMNs toward N1- and N2-like phenotypes, mirroring macrophage
polarization, in which the latter is less potent in killing parasites than that observed in
the presence of N1 [27]. However, PMNs are short-lived cells once isolated, and most of
the studies directed at understanding parasite infection use PMNs isolated after density
gradient centrifugation [29–35]. However, consideration should be given to cell isolation
that can modulate the cell surface expression of markers such as CCR2 and CD14 [36–40].

Thereby, by using a no-lyse and no-wash assay, using flow cytometry, we assessed
the L. infantum infection of monocytes and PMNs concomitantly in whole blood. This
assay gave us an extensive vision of infected cells without the need for cell isolation and
consequently no cell marker loss. Thus, we demonstrated that L. infantum infects the
different subsets of myeloid cells with a selective tropism for CL and ITM populations,
with PMNs being less infected as compared to the former. Interestingly, a subset of PMNs
seemed to be preferentially infected. This assay provided a novel avenue to analyze
host–pathogen interaction, which limits cell manipulation, in greater depth.

2. Methods
2.1. CFSE Labeling of Leishmania infantum

Metacyclic promastigotes of L. infantum (Li, MHOM/MA/67/ITMAP-263) were cul-
tured under axenic culture (at 26 ◦C), and low passage was used to guarantee infectivity.
Parasites were labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE, Ther-
moFischer Scientific, Montigny le Bretonneux, France), as described by Moreira et al. [41].
Briefly, promastigotes were counted using a Kova slide and resuspended in 2 mL of PBS
containing 5 µM of CFSE for 1.2 × 108 parasites and incubated for 10 min at 37 ◦C and then
washed. The labeled promastigotes suspension was divided. One part was heat-inactivated
at 60 ◦C for 15 min (heat-killed, HK) and validated using microscopy (non-motile parasites).
The two suspensions of parasites (live and HK) were used for infections.

2.2. Whole-Blood Infection

Whole blood from healthy donors (between 18 and 50 years old) was provided by
Etablissement Français du Sang (R75069, CPD-SAGM whole blood), and all donors pro-
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vided informed consent to EFS. In order to monitor the dynamic of interaction between
the cells and parasites, the infection rate was assessed at two times (4 and 24 h). Whole
blood (1 mL), transferred in a 15 mL tube (Falcon tube, BD Biosciences, Le Pont-de-Claix,
France), was infected with either live parasites at three doses (1 × 106, 5 × 106 and 10 × 106

of parasites per mL) or HK parasites (10 × 106 parasites per mL). For each condition, whole
blood was incubated at 37 ◦C and 5% CO2 before analysis.

2.3. Flow Cytometry

Whole blood was stained with LIVE/DEAD fixable violet stain (ThermoFisher Sci-
entific, Montigny le Bretonneux, France), CD3-PerCP (clone SP34-2, BD Biosciences, Le
Pont-de-Claix, France), CD20-PE (clone 2H7, BD Biosciences, Le Pont-de-Claix, France),
HLA-DR-ECD (clone immu357, Beckman Coulter, Villepinte, France), CD8-PECy7 (clone
RPA-T8, BD Biosciences, France), CD14-APC (clone TÜK4, Miltenyi Biotec, Paris, France)
and CD16-APC-AF750 (clone 3G8, Beckman Coulter, Villepinte, France). Monocytes and
PMNs were analyzed in whole blood after fixation with paraformaldehyde (1%). Cells
were analyzed using an Attune NxT acoustic focusing cytometer (ThermoFischer Sci-
entific, Montigny le Bretonneux, France) with a violet scatter filter (NxT No-Wash No-
Lyse filter) installed with a collection rate of 200 µL/min. Analyses of two time points
(4 and 24 h) were performed at the same time in order to attain comparative analyses of
fluorescence intensities.

2.4. Confocal Microscopy

Leukocytes were isolated after cell lysis with NaCl 0.2% and submitted to magnetic
separation with CD14 Microbeads (130-050-201, Miltenyi Biotec, Paris, France). The cells’
cytoplasms were stained with CellTrackerTM Deep Red (C34565, Invitrogen, Villebon-sur-
Yvette, France) for 45 min at 37 ◦C. After being washed several times and fixation, cells
were visualized with a Zeiss LSM 710 confocal microscope.

2.5. Statistical Analyses

All values were expressed as means ± SEM. Statistical analysis was performed using
the non-parametric paired Wilconxon test or the Two-Way ANOVA test with a Tukey
analysis and a Spearman test for correlation. Comparisons were considered significant
when p < 0.05. All statistical analyses were performed with GraphPad Prism 8 software
(San Diego, CA, USA).

3. Results
3.1. L. infantum Infects Monocytes in Whole Blood

The method that we used to monitor infection exploited the difference between red
blood cells that contain hemoglobin, which absorbs violet laser (405 nm) light, and leuko-
cytes, which do not. Thus, by coupling 405 nm (violet) and 488 nm (blue) laser excitations
to study whole-blood cells, a unique side scatter (SSC) pattern was observed (Figure 1A(a)),
separating erythrocytes from leukocytes and platelets [42]. Cell populations were then
discriminated using a cocktail of specific antibodies. The gating strategy used to identify
the myeloid populations is shown in Figure 1. After selecting white cells from whole blood,
leukocytes were defined on SSC and FSC parameters (Figure 1A(b)), and the analysis was
performed on single cells (Figure 1A(c)) and excluded dead cells using the LIVE/DEAD
probe. Then, T lymphocytes (CD3+) were excluded (Figure 1A(d)), as well as the CD3−CD8+

(natural killer cells) and CD20+ (B cells) populations (Figure 1A(e)). To discriminate myeloid
cell populations, we used HLA-DR expression, because it was only expressed on mono-
cytes. Thus, by combining HLA-DR and CD16 markers, (Figure 1A(f)), we separated PMNs
(CD16+DR−) from monocytes (DR+) independently to be CD16− or CD16+.
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Figure 1. Leishmania infantum infects primary human monocytes in whole blood. (A) Immunophe-
notyping of whole blood from healthy donors was conducted using a No-Wash No-lyse flow cy-
tometric approach. Here, it was the representative gating strategy. Platelets and red blood cells
were excluded by combining side scatter plot (SSC) of 405 nm and 488 nm lasers (a). Leukocytes
were visualized on FSC against SSC plot (b), and singlet cells (c) were selected for further gating.
(d) Lymphocytes expressing CD3 were excluded as well (e), CD8 (NK) and CD20 (B cells) populations;
(f) on CD8negCD20neg population, we analyzed the expression of CD16 against HLA-DR (monocytes).
(B) CFSE intensity of live and dead parasites in myeloid cells. For comparison, unstained parasite
is shown. (C) (a) Flow cytometry of CFSE-labeled Leishmania infantum in non-infected (NI) and
infected monocytes with different quantities (1 × 106, 5 × 106 and 10 × 106/mL noted 1, 5 and 10,
respectively) of live or heat-killed (HK, 10 × 106/mL) parasites. (b) The percentages of infection
at 4 and 24 h are shown. Data are the mean of 7 donors. Statistical analysis was performed using
one-tailed Wilcoxon test (* p < 0.05, ** p < 0.01, n = 7).
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To distinguish between the infection versus uptake of parasites via myeloid cells,
L. infantum was killed at 60 ◦C. Firstly, we validated the CFSE staining of labeled live and
dead (heat-killed) parasites showing similar fluorescence intensities after in vitro treatment
for both live (geometric mean fluorescence intensity (geo MFI), 5782) and HK (geo MFI,
5938) parasites (Figure 1B). Then, we assessed the percentages of infected monocytes (DR+)
via flow cytometry after 4 h of infection with an increasing dose of parasites in whole
blood (Figure 1C(a)). Hence, with 1 × 106 parasites per mL, 11.4 ± 2.4% of monocytes
were infected (Figure 1C(a–b)), whereas with higher doses (5 × 106 or 10 × 106 parasites),
the percentages of L. infantum-infected monocytes were relatively similar (31.4 ± 5.0%
and 39.8 ± 5.0%, respectively). The infection of monocytes increased with the time of
parasite infection (Figure 1C(b)). Thus, the percentages of infected cells at 24 h increased
to 22.2 ± 8.0% with 1 × 106 parasites. With 5 × 106 and 10 × 106 parasites, these rates
reached a plateau of 50.6 ± 9.3% and 52.5 ± 8.5%, respectively (Figure 1C(b)). Of note,
the percentages of HK-labeled monocytes were 30.1 ± 3.7% at 4 h and 39.9 ± 10.3% at
24 h, which were lower compared to live parasites, particularly early after infection. Thus,
L. infantum promastigotes can infect monocytes in whole blood without cell isolation.

3.2. L. infantum Preferentially Infects CL and ITM Monocytes in Whole Blood

To further characterize the nature of infected monocyte cell subsets, we analyzed the
three main subsets, CL, ITM and NCL (Figure 2A). Furthermore, the double-negative pop-
ulation (DN: HLA-DR+CD14−CD16−) was also analyzed (Figure 2A). Firstly, we analyzed
the distribution of the parasite among monocyte cell subsets (Figure 2B). According to
the intensity of L. infantum-CFSE+ in each quadrant of the heat-map view (Figure 2B), 4 h
after infection, most of the L. infantum parasites were localized in the CL monocytic region
(88.4 ± 1.8% at the lowest dose), whereas less than 5% of the parasites were observed in the
other regions. Increasing the doses of parasites, we did not observe major changes in the
distribution of parasites between the different subsets (Figure 2C). HK parasites were also
mostly observed in the region of CL (78.3 ± 5.5%) compared to in ITM (3.5 ± 0.8%), NCL
(8.1 ± 2.4%) and DN subsets (10.0 ± 4.4%) (Figure 2C). To validate the concept that parasites
infect cells in whole blood and do not remain at the surface, we purified monocytes using
anti-CD14 beads which included both CL and ITM. The fraction of cells was analyzed using
confocal microscopic analysis. The images showed that both live and dead L. infantum
parasites were detected inside the cells (Figure 2D). Interestingly, the images showed the
transition of the living parasites into amastigotes (1–5 µm), while, as expected, the HK
parasites remained in the promastigote form (10–15 µm).

Because CL monocytes are the preponderant population in whole blood, using flow cy-
tometry, we assessed the frequency of infected cells in each subset at two time points (4 and
24 h, Figure 3). It is interesting to note that at higher doses (5 × 106 and 10 × 106 parasites),
the rates of infection were quite similar at both time points (Figure 3A,B), reaching
60.8 ± 10% of CL infection with 10 × 106 parasites at 4 h and 74.6 ± 10.5% at 24 h
(Figure 3B), whereas this frequency of infected CL was 15.2 ± 3.7% with 1 × 106 para-
sites at 4 h and tended to be higher at 24 h (26.6 ± 10% p-value = 0.1484).
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Figure 2. Leishmania infantum identifies CL as a main reservoir. (A) Dot plot showing the expression
of CD14 and CD16 on HLA-DR+ monocytes identifying the classical (CL), the intermediate (ITM),
the non-classical (NCL) and the double-negative (DN) populations. (B) Representative heat-map
view of CFSE-labeled parasites. Color intensity of parasite is shown in each population of monocytes.
(C) Parasite distribution in each monocyte subset 4 h after infection with 1.106, 5.106 or 10.106 of live
parasites is noted as 1, 5 and 10, respectively, and heat-killed (HK, 10.106). (D) Confocal microscopy
of monocytes infected with live or HK L. infantum (Li) in CFSE (green). Bright field associated with
CellTracker allowed to determine the membrane and the cytoplasm (red) of each cell. Standard
deviation intensity projection of x, y and z axes confirmed that the parasites were localized inside the
cells (orthogonal view). Statistical analysis was performed using one-tailed Wilcoxon test (* p < 0.05,
** p < 0.01; n = 7).
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Figure 3. CL and ITM populations are preferentially infected by Leishmania infantum. (A) Flow
cytometry of Li-infected cells. Representative concatenation of CFSE parasites in classical (CL),
intermediate (ITM), non-classical (NCL) and double-negative (DN) monocytes. Whole blood
was infected with 1.106, 5.106 or 10.106 live (1, 5 and 10, respectively) and 10.106 HK parasites.
Cells were analyzed 4 and 24 h post-infection. (B) Percentages of Li-infected cells in each subset.
(C) Geometric mean of CFSE parasites in CL-infected monocytes. Statistical analyses were performed
using Wilcoxon test (* p < 0.05, ** p < 0.01; n = 7).
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Interestingly, whereas the ITM population is not the predominant population in whole
blood, we found that the frequency of L. infantum-infected ITM populations was elevated at
4 h (51.0 ± 9.3% of ITM populations were infected with 10 × 106 parasites) and quite similar
to that observed for CL populations (60.8 ± 10%). After 24 h, the rate of infection increased
with a maximum reached with 10 × 106 parasites (74.6 ± 10.5% for CL and 65.0 ± 12.3% for
ITM populations). Of importance, at lower doses, this increase was particularly significantly
higher after 24 h compared to 4 h (29.4 ± 9.8% versus 12.1 ± 2.3%, p-value = 0.0391) of
infection, reaching percentages closer to those observed in CL populations (Figure 3A,B).
Of note, while the same number of parasites was used for HK and live leishmania to
infect whole blood, the frequencies HK parasites’ uptake by the cells were lower at 4 h (CL,
49.8 ± 10.4% and ITM, 35.6 ± 9.3%) to those observed with live parasites in CL (60.8 ± 10%)
and ITM (51.0 ± 9.3%) subsets (CL, p-value = 0.0391 and ITM, p-value = 0.1875).

In contrast to that observed for CL and ITM populations, early after infection (4 h) the
frequencies of L. infantum-infected NCL and DN populations were low (Figure 3A,B), even
at the higher dose of infection (15.6 ± 2.6% and 6.1 ± 1.6%, respectively). After 24 h, the
rates of infection increased for these two subsets with a maximum reached with 10 × 106

parasites (25.5 ± 9.0% for NCL, and 21.1 ± 6.6% for DN). We also analyzed the geo MFI of
infected CL populations at 4 and 24 h, showing quite similar intensities, except for HK, in
which the geo MFI was higher at 24 h compared to live parasites (Figure 3C).

Altogether, our results demonstrated that CL and ITM populations are preferentially
infected cell subsets in whole blood despite the fact that the latter is less abundant compared
to CL populations.

3.3. Infection by L. infantum Impacts Monocyte Cell Subsets in Whole Blood

Because L. infantum could impact the nature of infected monocyte cell subsets, we
analyzed their percentages in whole blood. As mentioned, CL was the most abundant
monocyte subset (73.9 ± 3.6%) in the whole blood of healthy donors, whereas ITM and
NCL subsets represented 3.2 ± 0.4% and 8.0 ± 0.4%, respectively (Figure 4). The DN
subsets represented 15.5 ± 4.1% of blood monocytes (Figure 4A). With 10 × 106 parasites,
CL represented 64.5 ± 6.3% in the presence of live parasites and 54.1 ± 9.0% for HK in
comparison to 73.9 ± 3.6% in non-infected cells. We did not observe such significant
differences for ITM and NCL populations (Figure 4A). Thus, both live and HK parasites
induced the lowest CL levels in whole blood. This decrease in the percentage of CL was
associated with an increase in the percentage of DN, which may be suggestive of a CD14
down-regulation in CL (Figure 4(Bb)). The absence of a significant difference between live
parasites was related to the fact that a decrease was only observed in four donors out of the
six. Thus, we found that the percentage of CL was negatively correlated with the rate of CL
infection 4 h post-infection (Figure 4A,(Ba)). Thus, the lowest infection rate was associated
with the highest percentage of CL. Therefore, the increase rate of DN infection that we
observed in whole blood may represent infected, CL in which CD14 is lost.
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Figure 4. Leishmania infantum impacts monocyte cell subsets. (A) The percentages of each monocyte
cell subsets were analyzed after 4 h of culture or exposition to different doses of live and heat-killed
parasites (1.106, 5.106 and 10.106/mL and HK-10.106/mL). Statistical analyses were performed using
a Two-Way ANOVA test with a Tukey analysis (* p < 0.05; n = 6). (B) (a) Correlation between the
percentages of CL and DN. (b) Correlation between the percentage of CL-infected cells and the
percentage of CL, 4 h after infection. Each dot represents one individual. Correlation was assessed
using Spearman test, and r and p are shown in the figure.

Altogether, these results clarify the impact of L. infantum infection on monocyte cell
subsets in whole blood.

3.4. L. infantum Infects PMNs in Whole Blood

Because this assay allowed us to monitor concomitantly with the monocyte PMN
population, we assessed the rate of PMN infection in the same whole blood samples. Early
after infection, we detected PMN infection (Figure 5A). The percentages of CFSE+-PMN
reached 10 ± 4.3% at the dose of 1 × 106 (Figure 5B). Little impact on the infection rate
was observed with higher doses, where 5 × 106 and 10 × 106 parasites led to 14.4 ± 5.0%
and 17.0 ± 5.1% of infected PMNs, respectively. These percentages were lower compared
to the extent of infection of CL (60.8 ± 10% at the same time using 10 × 106 parasites).
Interestingly, PMNs were capable to phagocytize HK parasites (25.37 ± 10.9% of PMNs at
4 h) (Figure 5B).
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Figure 5. Leishmania infantum infects human PMNs in whole blood. (A) Whole blood was infected
with CFSE parasites, as shown in Figure 1, using different quantities of parasites. Representative
concatenation of CFSE+ parasites in PMNs. (B) Percentages of infected PMNs after 4 and 24 h of
infection with different doses of parasites including live (1.106, 5.106 or 10.106 parasites noted as 1, 5
and 10, respectively) and heat-killed (HK, 10.106). (C) Geometric mean of CFSE parasites in infected
PMNs. (D) Representative expression of CD14 and CD16 in PMNs and heat-map view of parasite
distribution (color intensity). (E) Percentages of CD14brightCD16bright PMNs are shown. Statistical
analyses were performed using Wilcoxon test (* p < 0.05, ** p < 0.01; n = 7).
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Our results also indicated that the rate of infection was quite similar between 4 and
24 h with 1 × 106 parasites (9.2 ± 5.5%), while these proportions declined using higher
doses (10 × 106, 8.8 ± 2.8% compared to 17.0 ± 5.1% (p-value = 0.0234) (Figure 5A,B).
The geo MFI indicated the lower intensity of infected PMNs with live parasites at 24 h
compared to 4 h as well as for HK parasites (Figure 5C), and the intensity differed to that
observed in the same conditions for CL geo MFI (Figure 3C).

As shown here, among PMNs, we identified two populations, in which one expressed
a higher level of CD16 expression (CD16bright). By plotting CD14 against CD16, this
population was represented in whole blood (49.5 ± 9.9% ranging from 21 to 77.3% of PMNs
in the non-infected condition) (Figure 5D). Thus, we defined PMNs as CD14lowCD16+ and
CD14brightCD16bright cell subsets. We observed that the percentages of CD14brightCD16bright

PMNs were lower in the presence of increased doses of parasites compared to the non-
infected condition (Figure 5D-E). Thus, more than 40% of this population disappeared
4 h after infection and even more drastically after 24 h at the highest doses (5 × 106 and
10 × 106 parasites). Analyzing the tropism of L. infantum-infected PMNs in more detail, we
observed that this CD14brightCD16bright population displayed most of the CFSE-labeled
L. infantum parasites early after infection, as shown by the heat-map view (Figure 5D). Thus,
the diminution of these PMN subsets at the highest dose may support the observation
of the lowest infection rate observed at 24 h (Figure 5B). When increasing the number of
parasites, most CFSE-labeled L. infantum parasites were then detected in the CD14lowCD16+

population (Figure 5D). Of interest, our results highlighted that at lower doses of parasites
(1 × 106 parasites per mL), this PMN population persisted even after 24 h of infection in
whole blood.

Collectively, our results highlighted that PMNs can be infected in whole blood, al-
though the percentages of infected cells were lower as compared to CL monocytes. We fur-
ther demonstrated the selective tropism of L. infantum infection for PMN subsets, in which
the majority of the parasites at lower doses infected and persisted in CD14brightCD16bright,
which may represent a “sanctuary” for L. infantum.

4. Discussion

This flow cytometric assay demonstrated the efficacy of monitoring human myeloid
cells’ infection via visceral Leishmania species directly on whole blood. This designed
strategy allowed us to accurately study L. infantum target cells, demonstrating that pro-
mastigotes infect human whole-blood cells, in which CL and ITM populations are the
preferential targets along with a preferential subset of PMNs. These results represent, to
our knowledge, the first demonstration of human monocytic tropism via visceral parasite
strains in whole blood.

Whereas numerous studies have described macrophage infection, less attention has
been paid regarding human monocytic cell subsets. Classical monocytes represent 80–95%
of circulating human monocytes, whereas ITM and NCL populations represent 2–5% and
2–10%, respectively [17–19]. Our results demonstrated that from whole blood, L. infantum
infects CL and ITM populations preferentially. Thus, more than 50% of cell subsets were
infected at the highest dose of parasites. This preference was also highlighted by the fact
that even at lower doses, these two populations were targeted by parasites compared to
NCL or DN cell subsets. However, given the proportion of CL populations in the blood,
this population represents a major target for parasites. This propensity of infection differs
from previous studies using a mucocutaneous Leishmania species. Indeed, the authors
observed that more than 85% of the cells were infected with L. braziliensis amastigotes
without any specific preference among the different monocytic cell subsets [20]. In contrast,
Polari et al. [26]. reported that the infection of PBMCs via L. braziliensis promastigotes leads
to a preferential infection of CL and ITM populations compared to NCL populations. A
difference in the rate of infection could be related to the use of amastigote vs. promastigote
parasites. Herein, L. infantum promastigotes also preferentially infected CL and ITM
populations in whole blood. CL populations have a wide range of functions, including
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a great capacity for phagocytosis, ROS production and immune sensing [17], while ITM
populations participate in Ag-presentation and subsequently in T-cell stimulation [18,19].
Furthermore, CL and ITM monocytes were shown to be better in phagocytizing GFP-
expressing E. coli [43] in comparison to NCL monocytes. In our study, similarly to live
parasites, we found that HK parasites were engulfed by CL and ITM populations better
than NCL populations. Novais et al. [20] proposed that CL monocytes control L. braziliensis
infection by ROS production, while ITM populations promote pathogenesis [20,43]. In the
case of viscerotropic strains, it was revealed that monocytes of patients with VL had
a decrease in ROS production [44]. Given the ability of CL and ITM populations to
migrate into inflamed or damaged tissues, this preferential infection may provide support
to parasite dissemination within tissues. In a study performed in rodents, the authors
showed that pro-inflammatory monocytes (Ly6CHi), besides being a preferential target for
L. donovani, were associated with a pathogenic role [45], promoting dissemination in the
liver and spleen. Whether the infection of ITM populations contributes to favor parasite
visceralization in humans remains an open question.

Concomitantly to monocyte infection, we also reported the infection of PMNs. Whereas
other studies, using purified PMNs, reported that L. infantum can infect 60% of PMNs [44,46],
our results indicated lower levels (less than 25%). In the setting of the experiment per-
formed, using whole blood and not purified PMNs, we cannot exclude the possibility that
those lower levels of PMN infection reflect competition between the different target cells.
Moreover, our results also highlighted the preferential targeting of CD14brightCD16brigh

PMNs. Thus, this approach by using whole blood revealed interesting findings. Firstly,
the observation of this PMN subset can be explained by the absence of density gradi-
ent centrifugation, which modulates cell surface expression [40]. Secondly, this specific
PMN population was lost by increasing the quantity of parasites and time of exposure,
suggesting the short life of cells once infected at higher doses of parasites. This could
be consistent with CD16 lowering, a marker of activated and apoptotic PMNs [47]. The
role of Leishmania in modulating apoptosis as a mechanism employed by the parasites to
manipulate PMNs and guarantee the establishment of a perennial infection [48] seems
to be more complex. Several reports have proposed that PMNs are more prone to die
when infected with L. braziliensis [49], L. infantum or L. major [50], whereas others have
proposed that L. major mediates parasite survival [51]. Thus, human PMN activation and
function are dependent on the parasite strain used [11,52,53]. Whereas at higher doses, this
population, CD14brightCD16brigh, disappeared, at lower quantities (1.106 parasites), this
population persisted and was infected. Recent advances suggest, like for monocytes, the
existence of distinct PMN subtypes including N1 and N2-like phenotypes, in which the
N2 subset is unable to kill parasites [27]. The observation of parasite persistence in this
CD14brightCD16brigh at lower quantities may be indicative that this population represents
the N2 population. Further experiments are needed to characterize this PMN population
more in depth.

By using this approach to infect whole blood, our results also indicated that L. infantum
infection impacts the proportion of CL monocytes in culture. Whereas it is not clearly
defined whether L. infantum parasites bind to the membrane CD14 of myeloid cells, a lower
level of CL populations was positively correlated with the rate of infection. This lower level
may reflect CD14 shedding, which is a hallmark of activated monocytes [54,55]. Indeed,
CD14 is a glycosylphosphatidyl-anchored membrane protein that can be a direct ligand for
LPS and act as a co-receptor for TLR4 [54–56]. A classic explanation for CD14 shedding is
that it could be a way for cells to protect themselves from activation. Thus, sCD14 could
be in competition for PAMPs in binding limiting inflammation [55,57]. It was reported
in some studies that increasing levels of sCD14 was correlated with severity [11,58] and
was associated with the outcome of VL [54]. In this sense, parasites could, by an unknown
mechanism, promote the release of sCD14 and thus decrease the inflammatory response
by inhibiting macrophage activation [59,60]. Our results regarding lower levels of CD14
were different to the report from Melo et al. [54], which may reflect the culture conditions,
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since, instead of using purified macrophages, we used whole-blood cells, which include
PMNs. Indeed, the human leukocyte elastase, a serine proteinase produced by PMNs,
is directly involved in the cleavage of CD14 [61,62]. Thus, by using whole blood as a
model of Leishmania infection, this may have reflected the in vivo situation, in which
higher levels of sCD14 were reported in VL patients [58] or co-infected with HIV [63]. It
is interesting to note that a decrease in the marker Ly6C has also been also observed in
murine inflammatory monocytes infected with L. major, supporting the hypothesis that
such negative modulation may provide a strategy for the parasite to colonize its host [9].
Thus, by analyzing the infection of whole-blood cells and by limiting cell manipulation and
isolation, we provided novel insights about viscerotropic strains infecting primary human
myeloid cell subsets. This flow-cytometric approach may provide a novel assay for the
monitoring of Leishmania infection.
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