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Abstract: Ribosome-inactivating proteins (RIPs) including ricin, Shiga toxin, and trichosanthin,
are RNA N-glycosidases that depurinate a specific adenine residue (A-4324 in rat 28S ribosomal RNA,
rRNA) in the conserved α-sarcin/ricin loop (α-SRL) of rRNA. RIPs are grouped into three types
according to the number of subunits and the organization of the precursor sequences. RIPs are
two-domain proteins, with the active site located in the cleft between the N- and C-terminal domains.
It has been found that the basic surface residues of the RIPs promote rapid and specific targeting
to the ribosome and a number of RIPs have been shown to interact with the C-terminal regions of
the P proteins of the ribosome. At present, the structural basis for the interaction of trichosanthin
and ricin-A chain toward P2 peptide is known. This review surveys the structural features of the
representative RIPs and discusses how they approach and interact with the ribosome.

Keywords: ribosome-inactivating proteins; RNA N-glycosidases; ribosome; P proteins; ribosomal
interaction

1. Introduction

RNA N-glycosidases are very potent enzymes, and some of them are among the most potent
toxins of plant origin. Ricin, one of the most toxic natural substances discovered in late 19th century
by P. H. Stillmark, agglutinates red blood cells [1] and its lethal dose in humans is about 1.78 mg
for an average adult [2]. It is now known that ricin hydrolyzes the N-glycosidic bond at adenine
4324 (A-4324) in the 28S ribosomal RNA (rRNA) of eukaryotic ribosomes [3], and in some cases
A-2660 in the naked 23S rRNA of prokaryotic ribosomes [4]. This adenine is located at a GAGA
hairpin within the α-sarcin/ricin loop (α-SRL) [5]. The loop is highly conserved in all large ribosomal
subunits and is essential for the proper assembly of the functional core of the large subunit [6].
In eukaryotes, removal of the specific adenine hinders the elongation factor 1-dependent binding of
aminoacyl-transfer RNA (tRNA) and guanosine triphosphate (GTP)-dependent binding of elongation
factor 2 to ribosome. In prokaryotes, damaged ribosomes do not bind elongation factor thermo unstable
(EF-Tu) or elongation factor (EF) G G. As a result, protein synthesis is arrested at the elongation step [7].
rRNA N-glycosidases are therefore also known as ribosome-inactivating proteins (RIPs). There are also
other classes of proteins that inactivate ribosomes. These include phosphodiesterases such as α-sarcin
and restrictocin that inactivate ribosome through the hydrolysis of a single phosphodiester bond
between G4325 and A4326 in the α-SRL [8] and adenosine diphosphate (ADP)-ribosyltransferase such
as diphtheria toxin that catalyzes the transfer of the ADP-ribose of niconiteamide adenine nucleotide
(NAD) to the diphthamide moiety of EF-2 [9]. However, it is a common practice to reserve the name
RIP to RNA N-glycosidases and these two terms are used interchangeably here.
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Under physiological conditions, a single ricin A chain (RTA) molecule depurinates
1000–2000 mammalian ribosomes per minute. Naked rRNA is less susceptible to RIPs, indicating
that RIPs need to bind to specific ribosomal proteins before carrying out their catalytic action [10].
Besides the RNA N-glycosidase activity, RIPs are also found to possess specific DNA cleavage activities
on double-stranded supercoiled DNA and mitochondrial DNA [11], superoxide dismutase [12],
phospholipase [13], or DNA topoisomerase inhibitory activities [14], although it is possible that
some of these activities may be due to contamination in protein preparation [15]. With more than
20 RIP structures available and the recent discoveries on the RIP-ribosome interaction, we set to
provide a survey on the structures of RIPs and their interaction mode with the ribosomes.

2. Distribution and Classification of RIPs

RIPs are widely distributed in over 100 different plant species and in different organs [16,17].
They are also found in fungi, algae, and bacteria [18,19]. However, some of these RIPs have
very different molecular weights and N-terminal protein sequences and may not be true RNA
N-glycosidases. RIPs might play an important role in plant physiology and defense mechanisms
because some of them could be induced by development [20], stress [21], or viral infection [22,23].
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Based on the number of subunits and the organization of the precursor sequences, RIPs are 
grouped into three types (Figure 1). Type 1 RIPs such as trichosanthin (TCS), pokeweed antiviral 
protein (PAP) and saporin (SO6) consist of a single polypeptide, with molecular weight around  
28 kDa. Type 2 RIPs such as ricin and abrin consist of two polypeptide chains linked by a disulfide 
bridge, with molecular weight around 60–65 kDa. Chain A is the catalytic subunit that is homologous 
to type 1 RIPs, while chain B is a lectin domain that facilitates the intracellular delivery of chain A by 
interacting with glycoconjugates on the cell surface [4]. As a result, type 2 RIPs are in general more 
cytotoxic than type 1 RIPs. Some type 2 RIPs such as eublin and cinnomomin are less toxic because 
the sugar-binding amino acid residues in the lectin domain have impaired affinity for galactosides, 
resulting in a greatly reduced uptake of these RIPs [24]. Shiga toxin is a representative bacterial RIP, 
comprising a catalytic A subunit (30 kDa) and five B subunits (7 kDa) that bind specifically to the 
glycolipid receptor on cell surface [25]. Atypical RIPs or type 3 RIPs such as maize b-32 and 
jasmonate-induced protein (JIP60) have unusual precursor sequence organization (Figure 1). Maize 
b-32 is synthesized from a large proenzyme [16]. During germination, the N-terminal and C-terminal 
pro-sequences and an internal fragment of the proenzyme precursor are removed by proteolysis to 
generate an active and basic protein of 248 residues (MOD) [26]. After removal of the internal 
fragment, the activity of MOD is at least 600-fold higher than immature maize RIPs [27]. JIP60 consists 
of an RIP domain and an unknown domain at the C-terminal and is activated upon deletion of the  
C-terminal domain and an internal fragment in the RIP domain [28]. As the Pfam protein families 
database [29] summarized, RIP domain not only has been found duplicated or triplicated in a protein, 

Figure 1. Schematic representation of the organization structures of ribosome-inactivating proteins
(RIPs). The RIP domains are colored yellow; lectin domain is colored purple; binding moiety of Shiga
toxin is colored blue; unknown domain is colored green; internal inactivation fragments being removed
during maturation are colored gray. JIP60 = jasmonate-induced protein.

Based on the number of subunits and the organization of the precursor sequences, RIPs are
grouped into three types (Figure 1). Type 1 RIPs such as trichosanthin (TCS), pokeweed antiviral
protein (PAP) and saporin (SO6) consist of a single polypeptide, with molecular weight around 28 kDa.
Type 2 RIPs such as ricin and abrin consist of two polypeptide chains linked by a disulfide bridge,
with molecular weight around 60–65 kDa. Chain A is the catalytic subunit that is homologous to type 1
RIPs, while chain B is a lectin domain that facilitates the intracellular delivery of chain A by interacting
with glycoconjugates on the cell surface [4]. As a result, type 2 RIPs are in general more cytotoxic than
type 1 RIPs. Some type 2 RIPs such as eublin and cinnomomin are less toxic because the sugar-binding
amino acid residues in the lectin domain have impaired affinity for galactosides, resulting in a greatly
reduced uptake of these RIPs [24]. Shiga toxin is a representative bacterial RIP, comprising a catalytic
A subunit (30 kDa) and five B subunits (7 kDa) that bind specifically to the glycolipid receptor on cell
surface [25]. Atypical RIPs or type 3 RIPs such as maize b-32 and jasmonate-induced protein (JIP60)
have unusual precursor sequence organization (Figure 1). Maize b-32 is synthesized from a large
proenzyme [16]. During germination, the N-terminal and C-terminal pro-sequences and an internal
fragment of the proenzyme precursor are removed by proteolysis to generate an active and basic
protein of 248 residues (MOD) [26]. After removal of the internal fragment, the activity of MOD is at
least 600-fold higher than immature maize RIPs [27]. JIP60 consists of an RIP domain and an unknown
domain at the C-terminal and is activated upon deletion of the C-terminal domain and an internal
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fragment in the RIP domain [28]. As the Pfam protein families database [29] summarized, RIP domain
not only has been found duplicated or triplicated in a protein, but it can also fuse with variant
functional domains, such as peptidase C48, Uridine 5′-diphospho-glucuronosyltransferase, amino acid
kinase, RNA recognition motif, reverse transcriptase, glycoside hydrolase family 18 domain etc.
These additional domains may impart distinct functions to RIPs.

3. Crystal Structure and Structural Comparison of RIPs

In the Protein Data Bank (PDB), structures of more than 20 RIPs are available (Table 1).
Although the amino acid sequence identity in RIPs is less than 50% and antibodies raised against
one RIP usually do not cross-react with one another [16], the key residues of N-glycosidase catalytic
subunit of RIPs are highly conserved. In general, the N-glycosidase subunit of RIPs contains two
domains, the large N-terminal domain consists of six α-helices and a six-stranded mixed β-sheet,
while the small C-terminal domain consists of an anti-parallel β-sheet and an α-helix with a bend in
the middle (α-helix G and H) (Figure 2a). The invariant active site residues Y70, Y111, E160, R163,
and W192 (reference to TCS sequence in PDB code 2JDL) are located in the cleft between the N-terminal
and C-terminal domains (Figure 3a). At the C-terminal region, the hydrogen bonds L240-N-P35-O
and L240-O-L37-N in TCS are highly conserved among the known structures. These hydrogen bonds
are essential to maintain structure stability between the N- and C-terminal domains, and deletion of
them has been shown to disrupt the folding of TCS [30]. The ribosomal protein binding site is located
between the anti-parallel beta-sheets 9 and 10 in the C-terminal domain [31].

Table 1. Available structures of representative RIPs and their similarity in comparison with
trichosanthin (TCS).

RIP Source Ligand PDB Resolution (Å) Cα RMSD

Type 1

Bouganin Bougainvillea spectabilis - 3CTK 1.8 1.1
Bryodin 1 Bryonia dioica - 1BRY 2.1 0.4
Charybdin Charybdis maritima 2-N-morpholino-ethanesulfonic acid 2B7U 1.6 1.9

Cucurmosin Cucurbita moschata - 3BWH 1.0 0.4
Dianthin Dianthus caryophyllus Adenine 1LPD 1.7 2.6

Luffaculin 1 Luffa acutangula N-Acetyl D-glucosamine 2OQA 1.4 0.5
beta-luffin Luffa cylindrica N-Acetyl-D-glucosamine 1NIO 2 0.5

GAP31 Gelonium multiforum 3KTZ 1.6 0.745
Lychnin Lychnis chalcedonica - 2G5X 1.7 1.9
MAP30 Momordica charantia - 1D8V NMR 1.6

α-Momorcharin Momordica charantia Adenine 1AHA 2.2 0.5
β-Momorcharin Momordica charantia Modified hexasaccharide 1CF5 2.6 0.6

PAP Phytolacca americana 2-(acetylamino)-2-deoxy-A-D-
glucopyranose 1GIK 1.8 1.6

PD-L4 Phytolacca dioica 2Z4U 1.1 1.7
TCS Trichosanthes kirilowii Adenine 2JDL 1.8 -

Saporin Saponaria officinalis - 1QI7 2 2.0

Type 2

Abrus agglutinin 1 Abrus precatorius N-Acetyl-D-glucosamine 2Q3N 3.5 1.0
Cinnamomin Cinnamonum camphora - 2VLC 2.95 0.752

Ebulin Sambucus ebulus Beta-D-galactose 1HWM 2.8 0.9
Mistletoe lectin 1 Viscum album N-Acetyl-D-glucosamine 1ONK 2.1 1.0

Ricin Ricinus communis Adenine 1IFS 2 1.1
Shiga toxin Bacteriophage 933W Adenine 2GA4 1.8 2.9

Atypical RIP

MOD Zea mays - 2PQI 2.5 3.4
Maize RIP Zea mays 2PQG 2.4 3.8

Cα RMSD (Root mean square deviation) with reference to TCS was calculated by PyMOL (De Lano Scientific,
San Carlos, CA, USA) [32]. All the structures were solved by X-ray crystallography, except MAP30,
which was solved by NMR. PDB = Protein Data bank; GAP 31 = Gelonium Anti-HIV Protein,
MW 31 kDa; MAP30 = (Momordica Anti-HIV Protein, MW 30 KDa; PAP = pokeweed anti-viral protein;
PD-L4 = The RIP from leaves of Phytolacca dioica; MOD = the active form of maize RIP.
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The structures of RIPs are, in general, well-conserved. For example, the overall root-mean-square
deviation (RMSD) of TCS and RTA is 1.1 Å (Table 1). Between TCS and RTA, the major differences
occur in the N-terminal domain, in which strands 2 and 3 are missing (Figure 2b). These two strands
are far away from the active site. We have also compared the structures of RIPs that have RMSD > 2
with TCS (Figure 2c). In saporin, β-strands 9 and 10 in the C-terminal domain are replaced by a
short loop. Dianthin does not have strand 2. It has a long loop between strands 6 and 7 and a
dissimilar C-terminal region. The structures of Shiga toxin and maize RIP are more deviated from
TCS. In Shiga toxin, the C-terminal domain only reserves the bended α-helices but has two extra
α-helices and four-stranded mixed β-sheets. For the mature form of the maize RIP, the α-helix B
and β-strand 8 in the large domain are missing and the anti-parallel β-strands 9 and 10 in the small
domain are replaced by a short α-helix. As shown in the structural comparison, the small domains
are, in general, more varied. As discussed below, the small domains in several RIPs are shown to bind
ribosomal P proteins. Structural variation of this domain may influence the specificity to the target
ribosomal subunit.

In type 2 RIPs, the N-glycosidase domain (chain A) is linked with a lectin domain (chain B) by a
disulfide bond. The chain B binds to β-1,4-linked galactose residues on the cell surface and facilitates
delivery of chain A. The overall structure of ricin chain B (RTB) is highly conserved and consists of two
homologous domains arisen by gene duplication. Each domain is composed of 12 β-strands and is
arranged in a β-trefoil structure of three lobes α, β, and γ [33]. The sugar-binding pockets are located
in 1α and 2γ sub-domains in RTB, and consist of aspartic acid, valine, arginine and a variable aromatic
residue to provide a sugar binding platform [34].
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Figure 2. Representative structures and fold of RIPs. (a) Structure of TCS complexed with a C-terminal
11aa fragment of the ribosomal P protein (PDB code: 2JDL). The conserved secondary elements
are labeled individually. α-Helices are colored yellow, β-strands are colored blue and loops are
colored pink. The last 11 residues of ribosomal stalk protein P2 (C11-P2) are shown as gray sticks;
(b) The structure of the catalytic chain A of Ricin (RTA); (c) Structural comparison of selected RIPs
with TCS. The C-terminal domain of TCS is colored light blue. Differences in the structural features
compared to TCS are highlighted in the RIP. It is found that the N-terminal domains are more conserved
among the RIPs.
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[37,38]. However, maize RIP, Shiga toxin, and known RIPs of the Family Poaceae have only one 
glutamate in the active site. Structure-function study of maize RIP indicates the active site pocket of 
maize RIP is too small for two glutamate residues and it is suggested that maize RIP may be 
evolutionarily more related to bacterial RIPs [39]. 

 

Figure 3. Stereo image on the active site and P2 binding mode of TCS (PDB code: 2JDL) and RTA
(PDB code: 5GU4). (a) The active site and P2 binding pocket of TCS. The conserved active site residues
in TCS are shown in purple sticks. The P2 binding residues are shown in cyan sticks. The C11-P2
peptide is shown as gray sticks. Hydrogen bonds are highlighted with black dash lines; (b) P2 peptide
adopts distinct conformation for binding to TCS and RTA. The conserved active site residues in RTA
are shown in green sticks. The magenta and gray colored C11-P2 peptides indicate the orientations of
P2 peptide in binding to RTA and TCS, respectively.

4. Invariant Residues in the Catalytic Subunit

Sequence alignment of all these structure available RIPs indicates the existence of invariant
residues, including Y14, R22, Y70, Y111, E160, R163, W192, and S196 as reference to TCS (Figure 4).
Although Y14 and R22 are invariant, they are not crucial for the activity [35]. On the other hand,
the active site residues Y70, Y111, E160, R163, and W192 are structurally conserved (Figure 3a).
The orientation of the active site Y70 tyrosine ring is flexible and this may facilitate substrate binding.
W192 lies at the bottom of the active site pocket, defines the binding site, stabilizes the ligand inside
the cavity, and protects it from the solvent. The indole ring shows hydrophobic interaction with R163
and L241, which is essential for structure stability. S196 is located within α-helix H near the active site
and its side chain forms two hydrogen bonds with both backbone and side chain of active site W192,
and is important for holding the indole ring and stabilize adenine binding. The mechanism of catalysis
has been described previously [36].

In many RIPs, there are two key glutamate residues in the active site. In TCS, they are E160 and
E189. The active site residue E160 serves to stabilize the ribooxocarbenium ion-like transition state
intermediate, while E189 acts as back-up for the catalytic glutamate in case the latter is mutated [37,38].
However, maize RIP, Shiga toxin, and known RIPs of the Family Poaceae have only one glutamate in
the active site. Structure-function study of maize RIP indicates the active site pocket of maize RIP is
too small for two glutamate residues and it is suggested that maize RIP may be evolutionarily more
related to bacterial RIPs [39].
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ENDscript 2 web server [40]. The conserved key residues of the active pocket of TCS (Y70, Y111, E160,
R163, and W192) are marked with purple triangles. The top secondary structure elements are shown
according to the crystal structure of TCS. The consensus sequences are highlighted with blue rectangles
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5. The Interaction of RIPs with Ribosomes

Although the target site of RIPs is a specific adenine residue in the 28S RNA, the presence of
ribosomal proteins is essential for efficient catalysis. It was observed that the kcat value of RTA on
naked RNA is 105-fold slower than on intact ribosome [10]. In PAP, the binding affinity on naked rRNA
is 10-fold weaker than on intact ribosome [41]. Subsequently, RIPs have been shown binding to specific
ribosomal proteins. For examples, TCS binds to the acidic ribosomal P proteins and L10a [31,42];
RTA binds to ribosomal protein L9 and P0 (=L10e) [43]; and PAP binds to L3 [41,44,45]. RTA and
Shiga-like toxin 1 bind to the C-terminal region of P protein [46] and depurination of ribosome
is reduced when RTA is expressed in the Saccharomyces cerevisiae mutants with P1 or P2 deleted.
These mutants are more resistant to the cytotoxicity of RTA [47]. These indicate that the ribosomal
stalk facilitates the recruitment of some RIPs by transporting them to the spatial proximity of SRL.
The known ribosomal proteins which were identified to interact with RIPs and their distribution
around the target adenine of the α-SRL are shown in Figure 5.

The early RTA and ribosome interaction studies showed that the electrostatic surfaces of RTA and
ribosome are essential for the delivery of RTA to the surface of ribosome [48–50]. The target location
may be achieved through the following steps: (i) the toxin is oriented for productive association and
catalysis when it approaches the ribosome; (ii) the toxin is attracted to the ribosome even if they are far
apart; and (iii) once the toxin binds to the ribosome, it is guided to the specific ribosomal subunit by the
electrostatic field on the ribosome, probably through several association-dissociation processes [48–50].
The subsequent proposed two-step interaction model stated that the initial non-specific electrostatic
interaction increases local concentration of RTA, facilitating the encounter and accelerating the reaction
rate above the expected diffusion limit [51]. Then the more specific interaction of RTA with the
ribosomal stalk pentamer facilitates the proximity to the α-SRL of ribosomes [51,52]. This two-step



Molecules 2016, 21, 1588 7 of 13

model was confirmed by the kinetic observations that the interaction of RTA with intact pentameric
ribosomal stalk fit well with a simple 1:1 interaction model, and the association rate constant of the
RTA-intact stalk pentamer interaction was two-fold greater than its association rate with the stalk
trimers, which contain only one P1/P2 heterodimer [53]. These results indicating multiple copies of
the stalk proteins or intact ribosomal stalk pentamer can accelerate the recruitment of RTA to ribosome
for depurination [52,53].
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Figure 5. Ribosomal subunits that have been found to interact with RIPs. Subunits P0, L3, and L9 are
clustered on a plane and within the vicinity of the targeted adenine. Subunit L10A is almost at the
opposite side of the other three subunits. The interaction with the former three ribosomal subunits
may be more relevant to the biological activity of RIPs, as variants of TCS with reduced interaction
with P proteins are less active in ribosome-inactivation. Model of mammalian ribosome is according to
PDB, code 2ZKR.

Recent structural studies have revealed how eukaryotic stalk protein recruits TCS or RTA to
ribosomes. The crystal structure of TCS and P protein C-terminal peptide complex [54] shows that
three previously identified positively charged residues, K173, R174, and K177 [31,55] form favorable
electrostatic interactions with the P protein peptide. Besides F166 and V232 (as shown in Figure 3a),
other residues A184, L188, L215, and I225 around 4 Å from P2 peptide may form a hydrophobic pocket
for the interaction. Crystal structure of RTA-P2 peptide reveals that the binding manner of RTA and P
protein peptide is similar to that with TCS. RTA donated a unique hydrophobic pocket to stabilize the
C-terminal hydrophobic GFGLFD motif of P2 peptide, while the structurally untraced acidic SDDDM
motif of P2 peptide was shown by biochemical interaction assays for charge-charge interaction with
RTA (Figure 3b) [56]. The structural superposition of the TCS-P2 and RTA-P2 complexes demonstrated
P2 peptide adopted distinct orientations and different interaction modes while binding to these two
RIPs (Figure 3b). In SO6, K220, K226, and K234 in the C-terminal domain are protected by ribosome
upon differential succinic anhydride modification [55]. Interestingly, these charged residues in SO6
are located in a region similar to that of TCS, indicating that the two proteins may use the similar site
to interact with ribosome. Docking analyses showed that SO6 and Shiga toxin may interact with P
proteins in a manner similar to TCS, of which there is a charge-charge interaction at the N-terminal
region of the P peptide and hydrophobic interaction at the C-terminal region [54,57]. In the case of
TCS and ribosome interaction, the structure of the full-length human P1/P2 revealed the well-folded
N-terminal dimerization domain and a C-terminal domain, linked by a proline-alaline rich linker that
can extend C-terminal tail up to 125 Å [58]. The long flexible linker presumably plays an important
role in reaching out to capture the elongation factors nearby [59,60]. Truncation of the linker region
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results in greatly reducing the depurination activity [58]. These observations suggest that the flexible
linker may sweep around to recruit RIPs that are attracted by the ribosome and deposit them to the
specific adenine on the α-SRL. It has also been shown that the C-terminal tail and flexible linker of
the ribosomal stalk are essential for binding the eukaryotic factors 2 (eEF2) [59,61,62]. After binding
to eEF2, ribosomes can be protected from RIP depurination [63,64], suggesting that RIPs and eEF2
may compete for binding to the ribosomal stalk. Therefore, eukaryote-specific RIPs may hijack the
elongation-factor recruiting function of ribosomal stalk in reaching the α-SRL [57].

However, this approach of interaction may not be universal. Comparison of primary sequences
shows that the residues located at the C-terminal domain, which is responsible for P protein interaction
in RIPs, are not conserved (Figure 4). Besides, for the PAP-ribosome interaction, N69, F90, N91,
and D92 in the active site cleft of PAP are shown to be important for binding with L3 [41] and the
C-terminal region of the P protein is not required for PAP to get access to the ribosome [65]. In maize
RIP, the corresponding anti-parallel beta-sheets are replaced by a short α-helix, and no positively
charged residues are found. It has been shown that MOD, the active form of maize RIP, interacts with
the conserved C-terminal peptide of P2 without hydrophobic interactions [66]. Four positively charged
lysines K143-K146 in MOD were identified to be involved in interacting with the negatively charged
DDD motif on P2 [67]. These positively charged amino acids on MOD are located at the base of the
internal inactivating loop, which is removed for the activation of maize RIP.

6. Kingdom Specificity of RIPs to Ribosome

Apart from acting on eukaryotic ribosomes, PAP, dianthin, mirabilis antiviral protein, and Shiga
toxin also capable of depurinating prokaryotic ribosomes at A2660 in 23S rRNA, the equivalent adenine
in eukaryotic 28S rRNA. The efficiency to prokaryotic ribosomes is about 100–500 times weaker [68] or
comparable to eukaryotic ribosomes [69]. The target adenine in GAGA hairpin within the α-SRL is
conserved in most bacteria, plants, and animals. Some RIPs such as RTA do not act on prokaryotic
ribosome but can depurinate naked 23S rRNA [10]. Since the active site residues are invariant in all
RIPs, it is possible that the ribosomal proteins play a role to determine the kingdom specificity of
RIPs. For example, PAP was found to interact with L3, which is highly conserved in yeast, human,
and E. coli, hence the access of ribosome through L3 may justify its dual specificity on eukaryotes and
prokaryotes [47].

7. Conclusions

RIPs are potent toxins. On one hand, they may be used as bioweapons or cause food poisoning.
On the other hand, they have good potential applications in pharmacology and biotechnology [70–72].
The RIP conjugated immunotoxins have exhibited promising tumor inhibition for clinical use [73,74].
For examples, SO6 and RTA immunotoxins can effectively kill lymphocytes in allograft-related
diseases [75,76]. Besides, Shiga toxin can remove contaminated tumor cells in stem cell grafts [77].
TCS has been tested as anti- human immunodeficiency virus (HIV) agent [78] and used to induce
mid-term abortion [36]. PAP and maize RIP are promising anti-insect and anti-fungal agents in
transgenic plants [39,79,80]. Through fusing the transduction domains to type 1 RIP dianthin [81,82] or
saporin [83,84], their intracellular routing can be altered for enhanced cytotoxicity and tumor inhibition.
Besides, we have shown that the active form of maize RIP (MOD) protect chimeric simian-human
immunodeficiency virus-infected macaque peripheral blood mononuclear cells from lysis ex vivo and
transiently reduce plasma viral load in a simian-human immunodeficiency virus (SHIV) 89.6-infected
rhesus macaque model [85]. The specificity of maize RIP to HIV-infected cells can be increased by
fusing the HIV transduction peptide to the N-terminal of maize RIP and by introducing HIV-1 protease
recognition sequences to the internal inactivation region of this protein [85,86]. With the potential uses
of ribosome-inactivating proteins in different areas, it is important to understand how they inactivate
ribosome and cause cell death. The evidence gathered so far indicates that ribosome binding is crucial
for kingdom specificity and ribosome-inactivating activity of RIPs. On the ribosome, the P protein
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complex close to the α-SRL, may offer a major site for RIP to bind and it is found that a common
surface on some RIPs takes part in the interaction with the C-terminal region of P protein. Nevertheless,
there remain some unsolved questions: (i) Some RIPs may bind to other ribosomal subunits. What is
the significance of this binding and how many sites on the ribosome are available for RIPs to dock?
(ii) Why some RIPs possess dual specificity? (iii) After docking on the ribosomal protein, how does the
RIP find the target adenine? Further work on the ribosome recognition is required.
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