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Proteins targeting the same subcellular localization tend to participate in mutual protein–protein
interactions (PPIs) and are often functionally associated. Here, we investigated the relationship
between disease-associated proteins and their subcellular localizations, based on the assumption
that protein pairs associated with phenotypically similar diseases are more likely to be connected
via subcellular localization. The spatial constraints from subcellular localization significantly
strengthened the disease associations of the proteins connected by subcellular localizations.
In particular, certain disease types were more prevalent in specific subcellular localizations. We
analyzed the enrichment of disease phenotypes within subcellular localizations, and found that
there exists a significant correlation between disease classes and subcellular localizations.
Furthermore, we found that two diseases displayed high comorbidity when disease-associated
proteins were connected via subcellular localization. We newly explained 7584 disease pairs by
using the context of protein subcellular localization, which had not been identified using shared
genes or PPIs only. Our result establishes a direct correlation between protein subcellular
localization and disease association, and helps to understand the mechanism of human disease
progression.
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Introduction

Establishing the interrelationship between the genotype and the
phenotype is one of the most challenging yet pertinent problems
in biomedical research (Lamb et al, 2006). Molecular and genetic
studies of diseases have been devoted to identifying disease-
causing mutations through diverse gene-based methods such as
recombination mapping and genome-wide association studies
(Botstein and Risch, 2003; Broeckel and Schork, 2004).
Traditional gene-based approaches have been compiled into a
list of disease-associated genes. In addition, the rapid accumula-
tion of functional genomics and proteomics data provides
information on the protein–protein interactome, an extensive
map of metabolism, and regulatory networks that complement
current gene-based approaches (Rual et al, 2005; Stelzl et al,
2005; Duarte et al, 2007; Shlomi et al, 2008).

Recently, it was shown that the emergence of phenotypically
similar diseases are triggered as a result of molecular

connections between disease-causing genes (Oti and Brunner,
2007; Zaghloul and Katsanis, 2010). From a genetics perspec-
tive diseases are associated with certain genes (Goh et al,
2007; Feldman et al, 2008), whereas from a proteomics
perspective phenotypically similar diseases are connected via
biological modules such as protein–protein interactions
(PPIs) or molecular pathways (Lage et al, 2007; Jiang et al,
2008; Wu et al, 2008; Linghu et al, 2009; Suthram et al,
2010). These molecular connections between diseases were
observed on the population level as well: diseases connected
through molecular connections such as shared genes, PPIs,
and metabolic pathways tend to show elevated comorbidity
(Rzhetsky et al, 2007; Lee et al, 2008; Zhernakova et al,
2009; Park et al, 2009a). While these findings constitute a
step toward improving our understanding of the mechanism
of disease progression, there are still many more molecule-
level connections between disease pairs that need to be
explored in order to establish a firmer comorbidity association.
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Subcellular localization provides spatial information of
proteins in the cell; proteins target subcellular localizations to
interact with appropriate partners and form functional com-
plexes in signaling pathways and metabolic processes (Au et al,
2007). Mutations in disease-causing genes alter the synthesis of
the gene product, or change the targeting process of proper
subcellular localizations, which in turn perturb the cellular
functions of the proteins. Abnormal protein localizations are
known to lead to the loss of functional effects in diseases
(Luheshi et al, 2008; Laurila and Vihinen, 2009). For example,
mis-localizations of nuclear/cytoplasmic transport have been
detected in many types of carcinoma cells (Kau et al, 2004). A
proper identification of protein subcellular localization can
hence be useful in discovering disease-associated proteins
(Giallourakis et al, 2005; Calvo and Mootha, 2010). Also, we
have previously demonstrated that proteins associated with the
same disease tend to localize in the same subcellular compart-
ments (Park et al, 2009b). With this understanding, we
postulate that disease-associated proteins connected by sub-
cellular localizations could also explain the phenotypic
similarities between diseases. Furthermore, such connections
may also couple to disease progressions that contribute to
multiple disease manifestation, that is, comorbidity.

In this study, we investigated the interrelationship between
diseases and subcellular localizations. Furthermore, we also
explored the molecular connections between disease-asso-
ciated proteins, and applied the subcellular localization
similarity of disease pairs to understanding the human disease
progression by analyzing comorbid disease pairs (Box 1 and
described further in Materials and methods). We constructed,
for the first time, a matrix of disease-associated proteins and
their subcellular localization which describes the interrelation-
ship between the two. From this matrix, we found that proteins
associated with the same disease are likely enriched in
particular subcellular localizations in the cell. We also
observed that phenotypically similar diseases clustered in
the same disease classes are associated with particular
subcellular localizations. Furthermore, a positive correlation
was found between subcellular localization similarity of
disease pairs and comorbidity measures, which explains the
molecular connections between comorbid disease pairs con-
nected via subcellular localization. Subcellular localization
furthermore enhanced the comorbid tendencies of disease
pairs, and uncovered the hitherto-unknown molecular con-
nections between 7584 disease pairs. This constitutes a novel
approach to establishing the relationship between protein
subcellular localization and the molecular connections of
comorbid disease pairs, offering insight into previously
unexplained mechanisms of disease progression.

Results

Systematic construction of the atlas of human
disease-associated proteins and their subcellular
localizations

Protein subcellular localization has been extensively studied
through various methods to determine a variety of protein
functions. To the best of our knowledge, the connection
between diseases and subcellular localizations are yet to be

studied systematically. To resolve this, we constructed, for the
first time, a human Disease-associated Protein and subcellular
Localization (DPL) matrix (top panel in Box 1). For this
purpose, we utilized the list of 1284 diseases representing the
grouping of phenotypes (MIM record) based on disease names
and their 1777 associated proteins available from the Online
Mendelian Inheritance in Man (OMIM) database (Hamosh
et al, 2005). This approach has been widely used in recent
systematic disease analyses of shared molecular character-
istics between disease subtypes (Lee et al, 2008; Park et al,
2009a; Li and Patra, 2010).

Disease-associated proteins were mapped to their encoded
subcellular localizations based on the Swiss Prot annotation

To build disease-associated proteins and subcellular localization matrix,
1284 diseases and 1777 disease-associated proteins were taken from OMIM
database (Hamosh et al, 2005). Each disease-associated protein was
mapped onto relevant subcellular localizations. Diseases were classified into
22 disease classes by the physiological system affected (Goh et al, 2007).
(Middle) Subcellular localization information of the classified disease-
associated proteins was attributed to the profile of disease classes. Disease
progression was compiled from the hospitalization of 13 million patients from
US Medicare database (Park et al, 2009a). Comorbid disease pairs were
identified by calculating co-occurring disease pairs in individual patients.
Subcellular localization similarity was calculated from the quantitative
relationship between comorbid disease pairs and their subcellular
localization profiles.

Box 1 Schematic overview of the relationship between diseases and
subcellular localizations
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scheme and the consensus localization predictions we recently
reported (Park et al, 2009b; see Supplementary File 1). We
considered 10 different subcellular localizations (cytosol,
endoplasmic reticulum (ER), extracellular, Golgi, peroxisome,
mitochondria, nucleus, lysosome, plasma membrane, and
others) for the localization mapping of disease-associated
proteins, although minor localizations were considered simply
as ‘others’ since the number of disease-associated proteins of
such locations was too small to analyze (fewer than 10 proteins
with confidence). We analyzed the covariance of a disease
with a subcellular localization by identifying the number of
disease-associated proteins by co-assigning diseases and
subcellular localizations. Then, the DPL matrix was built by
transforming the covariance into an association score (AS)
between a disease and a subcellular localization (see Materials
and methods and Supplementary File 2).

Diseases have their unique subcellular localization
profiles

Our DPL matrix provides the ‘cellular localization map of
diseases’ that represents the spatial index of diseases in the
cell. We found that each disease shows unique characteristics
of subcellular localization profile in the DPL matrix. We were
interested in determining whether subsets of 1284 human
diseases exhibit distinct enrichment profiles across subcellular
localizations. We calculated pairwise correlations and per-
formed a hierarchical clustering of the enrichments of the 1284

diseases across 10 different subcellular localizations (Figure 1).
To validate the reliability of ASs, we calculated their Z-values;
the Z-value represents the significance of the subcellular
localization enrichment of a disease. We observed that the
Z-values and subcellular localization-disease association
scores are indeed highly correlated (R2¼0.97), and we
considered an AS X0.05 to be statistically significant
(Po0.01; Supplementary Figure 1A). Specifically, diseases
that are caused by molecular defects in specific organelles
showed significant ASs (AS X0.2, Z-value 410, Po1.00�
10�10) (Supplementary Figure 1B). For example, Mitochondria
Complex I-III deficiency, a well-known mitochondrial disease
(Pagliarini et al, 2008; Rotig, 2010), was significantly enriched
within the mitochondria (Z-value¼10.6, Po1.00�10�10)
(Supplementary Figure 1B). Also, Adrenoleukodystrophy, a
peroxisome biogenesis disorder (Wanders and Waterham,
2005), was significantly enriched within the peroxisome
(Z-value¼17, Po1.00�10�10).

Our DPL matrix revealed that 778 diseases (B62%,
P¼1.40�10�3) are enriched in a single localization and 273
diseases (B21%, P¼3.45�10�3) are enriched in dual localiza-
tions. In the DPL matrix, certain disease-associated proteins
are likely to be found in membrane-bounded organelles such
as mitochondria, lysosome, and peroxisome, indicating that
the mutations of proteins localized to these compartments
are connected to the pathophysiological conditions of those
organelles. For example, HMG-CoA synthase deficiency
caused by the shortage of mitochondrial 3-hydroxy-3-methly-
glutaryl-CoA synthase is enriched in mitochondria, whereas

Figure 1 Hierarchical clustering demonstrating the intimate relationships between disease-associated proteins and their subcellular localizations. A two-dimensional
hierarchical clustering was performed to organize and visualize the matrix of 10 different subcellular localizations and 1284 diseases. Enlarged portions represent
clusters of highly enriched diseases in certain subcellular localizations (right panel).
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genetic disorders belonging to lysosomal diseases caused by
the dysfunction of lysosomal storage enzymes such as GM2-
ganglinosidosis and sialidosis are enriched in lysosome
(Parenti, 2009). Meanwhile, certain disease-associated pro-
teins in the DPL matrix are enriched in dual localizations, such
as extracellular/plasma membrane or ER/Golgi. Although
these two pairs of subcellular localizations appear to be
distinct compartments at first, they are functionally related
compartments in close proximity during protein translocation
process in the cell, and thus are likely to share interacting
protein partners (Gandhi et al, 2006). Disease-associated
proteins localizing in cytosol, interestingly, were not highly
enriched when compared with other subcellular localizations.
It might be related to the dynamic nature of many cytosolic
proteins that are known to shuttle across subcellular compart-
ments and interact with proteins in other localizations.

Although calculating the ASs of disease-subcellular locali-
zations turned out to be rigorous (see Materials and methods),
we note the existence of potential issues related to the coverage
of OMIM database due to the fact that our matrix reflects only
the curated disease-gene associations. For instance, diseases
with a single associated protein might introduce bias into the
enrichment profile in the DPL matrix. To test the validity of the
DPL matrix against such bias, we used disease sets having two
or more disease-associated proteins and reconstructed the
matrix of disease-associated proteins and their subcellular
localization (Supplementary Figure 2A). Even without dis-
eases with only one associated proteins, we confirmed that
most diseases (B63%, 307 diseases) were preferentially
enriched in particular subcellular compartments when com-
pared with random expectation (Supplementary Figure 2B,
P¼1.00�10�5).

Next, we applied the disease-associated protein complex
data to test the variations in disease-protein associations (Lage
et al, 2007). To reconstruct the DPL matrix in this case, 882
diseases were used along with the disease-associated proteins
as the ‘seed’ from which disease-associated protein complexes
were assembled from the physical interactions of disease-
associated proteins in the human protein interaction network
based on the study of Lage et al (2008). This matrix again
confirmed that disease enrichments in particular subcellular
localizations are strongly correlated in the DPL matrix based
on the OMIM data set (Supplementary Figure 3A). To compare
the similarity between subcellular localization profiles, we
selected an identical disease set from the matrices based on the
OMIM data and on the disease-associated protein complex
data, and confirmed that there exists a significant correlation
(Supplementary Figure 3B, Pearson’s correlation coefficient
(PCC)¼0.78, P¼1.17�10�100), indicating the robustness of
the properties that the profiles of disease-associated proteins
and their subcellular localizations against the variations in
disease-protein association data sets.

Phenotypically related diseases have similar
subcellular localization enrichment profile

Subcellular localization enrichments of diseases in the DPL
matrix show that certain disease types display strikingly
similar enrichment patterns across multiple subcellular

localizations. Moreover, we found that in many cases
phenotypically similar diseases were enriched in specific
subcellular localizations. For instance, many diseases in the
metabolic disease class including HMG-CoA synthase-2
deficiency and CPT II deficiency are co-enriched in mitochondria.
This suggests that phenotypically similar diseases are clustered
on the molecular level, and display similar subcellular localiza-
tion profiles due to the proteins of same molecular pathway likely
being located in the same compartment.

We grouped the manually determined classification of 1284
diseases to 22 human disease classes based on the physiolo-
gical systems affected (Goh et al, 2007), and investigated
whether phenotypically similar diseases share similar sub-
cellular localization profiles. Here, we built the Disease Class-
associated proteins and their subcellular Localization (DCL)
matrix similar to the DPL matrix (middle panel in Box 1). Most
disease classes (B80%) show statistically significant enrich-
ments in particular subcellular localizations (Figure 2A,
P¼1.00�10�5). An interesting example is the class of cancers
(Figure 2B, P¼1.00�10�12)—known to be associated with
genes that typically express themselves in a broad range of
tissues (Lage et al, 2008)—which appear to be significantly
enriched inside the nucleus. This tells us that the molecular
connections between cancer-associated proteins in the onco-
genic activation of transcription factors localized in the
nucleus are key in the progression of cancer (Libermann and
Zerbini, 2006). Meanwhile, the immunological disease class is
significantly enriched in the extracellular region (Figure 2C,
P¼1.00�10�20) where cell communication and signal trans-
duction take place. Extracellular proteins serve as transducers
of extracellular signals into intracellular physiology, having
important roles in the modulation of the immune response in
disease processes (Lin et al, 2008). Connective tissue diseases
are also found to be significantly enriched in the extracellular
region (Supplementary Figure 4A, P¼1.75�10�11); mutations
in extracellular matrix proteins are known to cause a wide
range of inherited connective tissue diseases (Bateman et al,
2009). Osteoarthritis, a common connective tissue disease, for
example, is related to the expression of MATN3 located in the
cartilage extracellular matrix that contributes to the develop-
ment of cartilage (Klatt et al, 2009). In contrast to the disease
classes highly enriched in a specific subcellular localization,
several other disease class exhibits enrichment within multiple
subcellular localizations in the DCL matrix (Supplementary
Figure 4B), the developmental disease class being an example.
These diseases are known to be related to diverse pathological
changes in various cellular processes and signaling pathways
(Tomancak et al, 2007; Zhang et al, 2010). Indeed, we found
that the proteins associated with developmental diseases are
located in diverse subcellular compartments such as the
nucleus, the plasma membrane, and the extracellular region.

Comorbid disease pairs are connected by
subcellular localization on molecular level

Comorbidity represents the co-occurrence of multiple diseases
in the same individual (Lee et al, 2008; Hidalgo et al, 2009;
Park et al, 2009a). Many comorbid disease pairs have been
shown to share common genes in the human disease network.
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For example, Diabetes and Alzheimer’s disease share a risk
factor in angiotensin I converting enzyme, and frequently
occur together in an individual. In such instances, comorbidity
can be partially attributed to the disease connections on the
molecular level. Such line of thinking has been applied to
identifying the molecular connections of diseases such as
shared genes, PPIs, co-expression, and metabolic pathways as
potential causes of comorbidity (Rzhetsky et al, 2007; Lee et al,
2008; Park et al, 2009a). To explore the impact of protein
subcellular localization on comorbidity, we hypothesized that
certain disease pairs could also be connected via subcellular
localization by the molecular connections between the
disease-associated proteins (bottom panel in Box 1 and
Supplementary Figure 5). Multiple myeloma and Glomerulo-
pathy is an example of comorbid disease pairs associated with
nuclear proteins, in which subcellular localization is likely to
be the contributor of disease co-manifestation, not shared
genes or PPIs (Figure 3A).

To explore whether the quantitative correlation between
subcellular localizations can explain the comorbidity of
disease pairs, we utilized the US Medicare database document-
ing diagnoses of 13 039 018 elderly patients between the
years 1990 and 1993, which has also been successfully used

in recent comorbidity studies (Lee et al, 2008; Hidalgo et al,
2009; Park et al, 2009a). Relative risk (RR) was used as a
quantitative index of the comorbidity tendency, the degree
of co-occurrences of disease pairs in patients (see Materials
and methods).

We found a positive correlation between subcellular
localization similarity and RR (Figure 3B, PCC between RR
and subcellular localization similarity¼0.81, P¼2.96�10�5).
The subcellular localization similarity represents the correla-
tion of subcellular localization profiles between disease pairs.
This result appears robust since comorbidity tendency
depends neither on the number of disease-associated proteins
nor the measurement of comorbidity indices (Supplementary
Figure 6). We repeatedly observed positive correlations
between RR and subcellular localization similarity when we
considered only disease pairs with more than two associated
proteins or used an alternative comorbidity index, the
f-correlation (Lee et al, 2008; Hidalgo et al, 2009; Park et al,
2009a). We discovered that many comorbid disease pairs are
indeed connected via subcellular localization. Analbumine-
mia and Pneumonitis, for example, exhibit a statistically
significant comorbidity relationship (P¼1.45�10�12) and are
both associated with extracellular proteins (Figure 3C).

Figure 2 Correlation between disease classes and subcellular localizations. (A) The enrichment of disease-associated proteins in specific subcellular localization is
evident in various disease classes. The enrichment ratio is proportional to the diameter of the circles: it indicates fold-enrichments calculated as the ratio of the number of
observed to the expected disease class-associated proteins in the subcellular localization. Color saturation represents the statistical significance (the P-values) of the
enrichment ratio. (B, C) Cancer and immunological disease classes offer examples of disease classes significantly enriched in particular subcellular localizations.
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Analbuminemia is a genetic metabolic defect caused by an
impairment in the syntheses of serum albumin (Koot et al,
2004) and Pneumonitis is known to be caused by low albumin
concentration in the blood (Conde and Lawrence, 2008),
suggesting that the similarity of the subcellular localization
of associated proteins, in this case extracellular region, gives
rise to the observed comorbidity. Similarly, HMG-CoA lyase
deficiency and acidosis, both having associated proteins
in mitochondria, also show significant comorbidity
(P¼2.73�10�6) (Figure 3C). It is known that HMG-CoA lyase
deficiency affects the metabolic processes of leucine and
keratones that lead to the acidic condition of blood (Olpin, 2004).

Phenotypically similar diseases are known to be caused by
functionally related modules either in a protein complex or in

molecular pathways through direct or indirect protein inter-
actions (Lage et al, 2008). From the analysis of human protein
interaction network, we discovered that comorbid disease
pairs are found to be not only sharing genes or linked by PPIs,
but also connected by subcellular localization and indirect
interactions in the network (Figure 3D). To our surprise, when
we compared the RR of disease pairs linked via various
molecular connections, we found that disease pairs connected
by subcellular localization showed a near three-fold higher
comorbidity tendency (with link distances equal to 2 or 3)
when compared with random pairs (Figure 3E). Disease pairs
that share genes still displayed the highest comorbidity
tendency as expected: sharing genes themselves indicates a
common genetic origin.

Figure 3 The implication of subcellular localization for disease comorbidity. (A) Multiple myeloma and Glomerulopathy is an example of a comorbid disease pair
connected via subcellular localization, not via share genes or protein–protein interactions (PPI) (upper panel). PPIs are shown as solid lines (middle panel). Shared
subcellular localization of the disease-associated proteins (nucleus) is highlighted using orange (bottom panel). (B) Average comorbidity tendencies (RR) for disease
pairs with increasing subcellular localization similarities. The Pearson’s correlation between average comorbidity tendencies and subcellular localization similarities is
0.8. (C) Examples of two comorbid disease pairs connected by subcellular localizations. (D) Comorbid disease pairs and their molecular connections are overlaid on the
depicted on the PPI network. Molecular connections include shared genes, PPIs, and indirect links connected by subcellular localizations. (E) Average comorbidity
tendencies of disease pairs by using shared genes, co-expression, linked by PPIs, and connected by subcellular localization are compared (Po5.40� 10�3; Mann–
Whitney test). (F) Average comorbidity tendencies were measured for disease pairs connected via subcellular localization and the link distances (*Po0.4� 10�2,
**Po0.2� 10�2; Mann–Whitney test). (G) The numbers of disease pairs that share genes, co-expression, linked by PPIs, and connected via subcellular localization.

Protein subcellular localization and diseases
S Park et al

6 Molecular Systems Biology 2011 & 2011 EMBO and Macmillan Publishers Limited



We then assessed quantitatively the impact of network
distances and subcellular localizations on the comorbidity
tendency of disease pairs. We expected the proteins associated
with comorbid disease pairs to be located closely in the protein
interaction network via fewer links compared with random
disease pairs. Indeed, a higher comorbidity tendency was
found when two disease-associated proteins were positioned
within a shorter distance (gray plots in Figure 3F). Moreover,
when subcellular localization information was combined with
small network distances, the comorbidity tendency increased
dramatically (orange plots in Figure 3F). It suggests that
subcellular localization and close network distances, two
conceptually distinct molecular connections, contributed
synergistically to the comorbidity tendency. We also observed
a similar synergistic effect to the comorbidity tendency when
subcellular localization was combined with co-expression
(Supplementary Figure 7). Indeed, such a combination also
dramatically increased the coverage of disease pairs and
allowed the explanation of the molecular connections
between 7584 disease pairs (Figure 3G, the full list is provi-
ded in Supplementary File 3, http://sbi.postech.ac.kr/dpl).
This increased coverage does not come at the expense
of comorbidity strength; however, subcellular localization
information uncovers a comparable or higher comorbidity
tendency than shared genes, co-expression, or PPIs (Figure 3E
and G).

Discussion

Here, we presented a systematic strategy to correlate diseases
and subcellular localization enrichments of their associated
proteins. We expect subcellular localization to be helpful in
discovering novel disease-associated genes; when proteins are
involved in a common biological pathway or process with
disease-associated proteins, it is very plausible that they are
themselves disease-associated proteins (Barabasi et al, 2011).
For example, we present three disease modules representing
the clusters of interacting proteins connected by subcellular
localizations and sharing disease annotations in Supplemen-
tary Figure 8. For instance, a disease module of cerebral
degeneration comprises eight mitochondrial proteins among
which five are already known to be involved in the same
disease. We expect that the other three proteins could be
associated with the disease since they are connected by same
localization and interact with the same disease-associated
proteins.

We found that certain disease classes showed enrichment in
particular subcellular localizations, such as connective tissue
diseases in the extracellular region. Disease classes are
generally related to tissue types because disease classes
correspond to the physiological systems affected (Jiang et al,
2008), such as the neurological disease class in brain tissue
and the immunological disease class in thyroid. Many diseases
caused by defects in human genes also have tissue-specific
pathology; and thus, tissue types provide another important
layer of spatial information on human pathology (Winter et al,
2004; Lage et al, 2008). While a systematic understanding of
the relationship between tissue and subcellular localization is
still incomplete, it has been shown that genes highly expressed

in a tissue-specific manner are localized in specific subcellular
compartments (Kislinger et al, 2006). For example, tissue-
specific expressions of extracellular matrix proteins are
important for their function, and mutations of those proteins
are known to cause various connective tissue diseases
including Osteogenesis, Chondrodysplasias, and Ehlers–
Danlos syndrome (Bateman et al, 2009). Therefore, it is
evident that the connections between tissue types and
subcellular localizations need to be explored further.

In a data-driven research as ours, the robustness of the
databases themselves is undoubtedly paramount. Thus, an
effort to cross-check and validate one’s findings using similar
yet distinct databases are clearly necessary, some of which we
present and discuss here.

First, we note that a proper scheme of annotating subcellular
localization annotation is key for our analysis. It is possible
that different subcellular localization information may affect
our result, that is, the relevance of the connection via
subcellular localization to the comorbidity tendency. We
therefore performed a test of mitochondrial localization by
using three different subcellular localization annotation sets:
the Swiss Prot annotation, ConLoc, and comprehensive
localization annotation by using MitoCarta (Supplementary
File 4; Pagliarini et al, 2008). We observed that, in general,
MitoCarta covered more diseases and showed higher correla-
tions (PCC) between subcellular localization similarity and
comorbidity tendency (Supplementary Figure 9). Although
MitoCarta gave a somewhat higher correlation (PCC¼0.86),
the present application of ConLoc showed a comparable
coverage of diseases and correlation (PCC¼0.83), demonstrat-
ing the robustness of our original analysis and conclusion. We
also observe that MitoCarta improved our knowledge of the
molecular connections of comorbidity derived from the most
comprehensive and accurate molecular characterization of the
mitochondrial proteins. Given that large-scale experiments
such as Human Protein Atlas or MitoCarta (Pagliarini et al,
2008; Uhlen et al, 2010) have improved our ability to identify
subcellular localizations in human proteome, we expect the
process of uncovering the molecular connections between
comorbid diseases to become expedited and more compre-
hensive.

Second, we combined disease subtypes into single diseases
by disease names introduced in Goh et al (2007). To verify the
effect of combining disease subtypes on the DPL matrix, we
calculated the subcellular localization similarity between
combined disease and their subtypes. We found that disease
subtypes were enriched in the same subcellular localizations
on the DPL matrix, as they were in the analysis of single
diseases (Supplementary Figure 10). It suggests that disease
subtypes tend to share their subcellular localizations as well.
For example, Fanconi anemia subtypes are mostly enriched in
the nucleus, whereas complement deficiency subtypes are
enriched in the extracellular region.

Third, although OMIM stands as a reliable resource for
Mendelian disease-gene association, its main focus is mono-
genic diseases and generally does not consider complex
diseases affected by environmental factors. Since both genetic
and environmental factors contribute to disease progression,
our analysis leaves room for improvement regarding non-
Mendelian diseases (Liu et al, 2009). We therefore performed
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an analysis of subcellular localization enrichments in non-
Mendelian diseases using the Genetic Association Database
(GAD) that covers common complex diseases (Becker et al,
2004). We reconstructed the matrix of disease-associated
proteins and their subcellular localization of 427 diseases from
GAD (Supplementary Figure 11A). From the matrix, we again
observed that proteins associated with non-Mendelian dis-
eases from GAD showed subcellular localization enrichments,
as was the case for Mendelian diseases. For example, proteins
associated with Bipolar Disorder, a complex disease, are
enriched in the cytosol, whereas proteins associated with
Type-2 Diabetes are enriched mostly in the plasma membrane
(Supplementary Figure 11B).

Finally, we again note that the mapping between the OMIM
and the ICD-9-CM codes was constructed by human experts for
the purpose of merging the genetics data and the population-
level comorbidity statistics, used in previous studies (Park
et al, 2009a). It has been brought to our attention that, as our
main analysis was complete, the Unified Medical Language
System (UMLS) also aims to become a compendium of
biomedical vocabularies including OMIM and ICD-9-CM
(Butte and Kohane, 2006), and thus could be used in our
context as well, presenting us with an opportunity to cross-
validate the mappings as well as our results. Indeed, when we
applied the UMLS-based OMIM-to-ICD mapping, we again
observed that disease pairs connected by subcellular localiza-
tions show higher comorbidity than average over all disease
pairs (Supplementary Figure 12). Furthermore, we also
observed that comorbidity increases when subcellular locali-
zation information is combined with small network distances.
There exist some subtle yet understandable disagreements
between the two mappings notwithstanding. For instance, in
the case of ‘Achondroplasia (MIM ID: 100800)’ the human
experts of the original mapping chose to utilize 733.9 in ICD-9-
CM while the UMLS resulted in it being mapped to 756.4 in
ICD-9-CM. Most importantly, though, we observe the afore-
mentioned similarity in the trends of our analyses based on the
two mappings, and that we believe that they strongly indicate
the robustness of our conclusions.

Disease progression is not restricted to the mutation of
disease-causing genes, but also affected by molecular connec-
tions in ‘disease modules,’ resulting in comorbidity (Fraser,
2006; Lee et al, 2008). Phenotypically similar diseases are
caused by the perturbation of network modules such as shared
genes, metabolic pathways, and PPIs. In this study, for the first
time we applied subcellular localization information to
elucidate the molecular connections between comorbid dis-
eases. Furthermore, we demonstrated that integrating sub-
cellular localization and network distances improved the
identification of the molecular connections of disease pairs.
We believe that, based on our finding, our approach helps to
define the boundaries of ‘disease modules.’ Taken together,
integration of diverse molecular connections should improve
the molecular level understanding of hitherto unexplained
comorbid disease pairs and help us in expanding the scope of
our knowledge of the mechanism of human disease progres-
sion. Finally, we believe that, as more sophisticated, large-
scale databases are constructed and come to light, the issues
arising from the distinct features or inconsistencies of data will
need to be addressed in order to go forward in the growing field

of molecular systems research, to which we hope our work
have made a valuable contribution.

Materials and methods

Data sets

The OMIM database (http://www.ncbi.nlm.nih.gov/omim/) provides
gene-disease associations between 2929 disease types in the Morbid
Map (MM) and 1777 disease-associated genes. Some disease types
listed in the MM with a minor difference in their names, however, may
be similar enough to be clustered as on disease, which was done in the
work of Goh et al (2007). Disease can be further grouped into 1340
distinct diseases by combining disease subtypes into a single disease,
based on their given disease names. For example, the 11 Fanconi
anemia subtypes were merged into the disease ‘Fanconi anemia’ as a
single disease ID 523. First, the merge was done by running a string-
match script. Then, each entry was verified manually. As a result, 2161
disease terms were grouped into unique 1228 diseases.

We used the hospitalization records from the US Medicare database
used in recent comorbidity studies (Lee et al, 2008; Hidalgo et al, 2009;
Park et al, 2009a). It contains the Medicare claims of 13 039 018
hospitalized patients during 4 years (from 1990 to 1993) recorded in
the ICD-9-CM format (http://www.icd9data.com) where a disease is
assigned a numeric code. By using the curated mapping of the ICD-9-
CM codes based on the OMIM diseases by using an expert coder and
standard coding procedures implemented in hospitals for assigning
ICD-9-CM codes to prose description of disease (Lee et al, 2008; Park
et al, 2009a), 83 924 pairs of hereditary diseases were considered in
this study.

Subcellular localization mapping for disease-
associated proteins

The subcellular localization of disease-associated proteins was first
derived from the Swiss Prot annotation information. Subcellular
localization information was available for 1168 proteins from the CC
(Cellular Component) field of Swiss Prot. For the remaining 609
proteins which do not have subcellular localization annotations,
ConLoc and Proteome Analyst were used for the prediction of
subcellular localizations (Szafron et al, 2004; Park et al, 2009b).
ConLoc predicts protein subcellular localization based on the
optimization of prediction results from 13 localization predictors for
5 major localizations (cytosol, extracellular, mitochondria, nucleus,
and plasma membrane) (Park et al, 2009b). It achieved the highest
prediction accuracy of 0.96 and Matthew’s correlation coefficient of
0.86 on the localization prediction of human proteins. ConLoc
outperformed all the individual predictors and showed the highest
sensitivity on the independent test set of 345 mitochondrial proteins.
Moreover, ConLoc achieved the equivalent accuracy on the prediction
of multi-localized proteins compared with that of single-localized
proteins. Predictions of other subcellular localizations (ER, Golgi,
peroxisome, mitochondria, and lysosome) are provided by Proteome
Analyst.

DPL matrix

To investigate the correlation between disease-associated proteins and
their subcellular localization, we calculated the number of co-assigned
disease-associated proteins of a given disease to the subcellular
localization. We used Ochiai’s coefficient (OC) as a measure of
similarity derived from the co-annotations (Lage et al, 2008), and
calculated an AS as a percentage of the total normalized co-assigning
of a given disease-associated proteins in subcellular localizations.
When constructing the DCL matrix, the following definitions were
used

OCðkD; kLÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nDL2

nD � nL

r
ASðkD; kLÞ ¼ 100

OCðkD; kLÞP
i

OCðkD; kLiÞ
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where nD is the total number of disease-associated proteins in a
disease and nL is the total number of disease-associated proteins in a
subcellular localization.

To validate the AS reliability, Z-value was calculated from 1000
randomly constructed DPL matrixes.

Comorbidity measure (RR )

We used the RR as the quantitative measure of comorbidity tendency of
two disease pairs (Park et al, 2009a) and checked the robustness of our
analysis using f-correlation as well. RR and f-correlation allow us to
quantify the co-occurrence of different diseases compared with
random. These are defined as

Relative risk ðRRÞ ¼ Cij

C�ij

fij ¼
NCij � IiIjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

IiIjðN � IiÞðN � IjÞ
p

where N is the total number of Medicare patients; (13 039 018), Ii
is the incidence of disease i, Cij is the number of patients who had
both diseases i and j, and Cij

* is equal to IiIj/N, the random expectation.
When a disease pair co-occurs more frequently than expected by
chance, we have RR41 and f40 (Hidalgo et al, 2009; Park et al,
2009a).

Subcellular localization similarity of disease pairs

We analyzed the subcellular localization similarity of disease
pairs using subcellular localization profiles in the DPL matrix.
Denoting the AS of each disease in each subcellular localization by
xil where i is the disease index and l is the subcellular localization index
running from 1 to Nl (¼10), we calculated the PCC as the subcellular
localization similarity measure for each pair of diseases i and j,
given as

PCCij ¼
Nl

P
l

xilxjl �
P

l

xil

P
l

xjlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nt

P
l

x2
il �

P
l

xil

� �2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nt

P
l

x2
jl �

P
l

xjl

� �2
s

Statistical significance

The P-values for the subcellular localization enrichments shown in
Figures 1 and 2 and Supplementary Figures 1 and 2 were calculated
using the Monte Carlo method (Metropolis and Ulam, 1949). We
randomly assigned the subcellular localization annotation to the
disease-associated proteins and after 100 000 randomizations, the
P-values were taken to be the fraction of the total trials that resulted in
subcellular localization enrichments larger than observed in data
(Park et al, 2009a).

Interaction network construction

The human protein interaction network was compiled from eight
existing interaction databases: the Biomolecular Interaction Network
Database, the Human Protein Reference Database, the Molecular
Interaction database, the Database of Interacting Proteins, IntAct,
BioGRID, Reactome, and the Protein-Protein Interaction Database. We
removed redundant interactions and filtered interactions so that low-
confidence interactions were removed, similar to the work of Kenneth
D et al (Bromberg et al, 2008). Specifically, protein interactions were
excluded from high-throughput methods, orthologous interactions
from lower organisms than human, or predicted by in silico methods.
The final network comprises 65135 interactions between 10 652
human proteins.

Co-expression analysis of disease pairs

To analyze the co-expression of disease pairs, we used the
Novartis Research Foundation Gene Expression Database (GNF)
tissue atlas that includes RNA expression experiments from 79 human
tissues (Su et al, 2004). We normalized microarray data using
MAS5 followed by Bossi and Lehner (2009). Average gene co-
expression (rij) was calculated by the average of the co-expression
levels between every pair of genes associated with each disease.
Denoting the xat as the expression level of gene a on tissue t
(t¼1,y, 79), the gene co-expression level rab between two genes
a and b is defined as the Pearson’s correlation between the two (where
Nt¼79):

rab ¼
Nt

P
t

xatxbt �
P

t
xat

P
t

xbtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nt

P
t

x2
at �

P
t

xat

� �2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nt

P
t

x2
bt �

P
t

xbt

� �2
s

Non-Mendelian diseases and genes association

To analyze non-Mendelian DPL enrichment, we used Gene Association
Database (GAD) archive of human genetic association studies (Becker
et al, 2004). The December 2010 version of GAD was downloaded from
http://geneticassociationdb.nih.gov/. We selected only positive
genetic associations, and collected 427 diseases and 167 disease-
associated genes (Supplementary File 5).

Medicare diseases mapping to the genetic
diseases

We used the BioPortal (http://bioportal.bioontology.org/) (Noy et al,
2009) to construct OMIM-to-ICD code mapping using the UMLS
(Bodenreider, 2004). The ontologies of OMIM and ICD-9-CM were
downloaded from the BioPortal, and then the disease terms in OMIM
and ICD-9-CM were mapped to the concept unique identified (CUI) in
UMLS taking disease synonyms into consideration (Yang et al, 2011).
Through this procedure, we mapped 488 ICD-9-CM codes to 527 OMIM
diseases with 524 CUIs (Supplementary File 6). We considered 250
ICD-9-CM codes to 284 OMIM diseases mapping that contain disease-
associated proteins.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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