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Purpose: To evaluate the feasibility of a 3‐minutes protocol for assessment of the 
microscopic anisotropy and tissue heterogeneity based on tensor‐valued diffusion 
MRI in a wide range of intracranial tumors.
Methods: B‐tensor encoding was performed in 42 patients with intracranial tumors 
(gliomas, meningiomas, adenomas, and metastases). Microscopic anisotropy and tis-
sue heterogeneity were evaluated by estimating the anisotropic kurtosis (MKA) and 
isotropic kurtosis (MKI), respectively. An extensive imaging protocol was compared 
with a 3‐minutes protocol.
Results: The fast imaging protocol yielded parameters with characteristics in terms 
of bias and precision similar to the full protocol. Glioblastomas had lower micro-
scopic anisotropy than meningiomas (MKA = 0.29 ± 0.06 vs. 0.45 ± 0.08, P = 
0.003). Metastases had higher tissue heterogeneity (MKI = 0.57 ± 0.07) than both 
the glioblastomas (0.44 ± 0.06, P < 0.001) and meningiomas (0.46 ± 0.06, P = 0.03).
Conclusion: Evaluation of the microscopic anisotropy and tissue heterogeneity in 
intracranial tumor patients is feasible in clinically relevant times frames.
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1  |   INTRODUCTION

Diffusion MRI (dMRI) has long been recognized as use-
ful for the characterization of tumor microstructure. 
Quantification of the apparent diffusion coefficient (ADC) 
yields an imaging biomarker linked with tumor cellularity,1-3 

and monitoring the response of ADC to treatment can enable 
early prediction of therapy response.4,5 However, the ADC 
is also sensitive to a number of mechanisms other than the 
cellularity,6,7 such as aquaporin expression.8 Therefore sev-
eral approaches have been proposed to improve the ability 
of dMRI to characterize tumor microstructure. Some rely on 
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microstructure modeling, where assumptions on the micro-
geometry of tumors are translated into mathematic models 
that enable estimation of parameters with an assigned inter-
pretation (e.g., the “intracellular volume fraction”). However, 
such approaches may lead to misleading results if the model 
assumptions are invalid.9-12 Signal representations belong to 
another class of approaches that provide parameters without 
predetermined interpretations10 but can be associated with mi-
croscopic features of the tissue in a pathology‐by‐pathology  
basis. An example of the latter is diffusional kurtosis imag-
ing (DKI),13 which demands imaging protocols with higher 
b‐values than what is required for ADC quantification alone, 
and provides parameters such as the mean kurtosis (MK). 
DKI has shown promise in enabling a higher sensitivity to 
changes in tumor microstructure and an improved ability to 
predict glioma grade.14-16 However, the biologic interpreta-
tion of the mean kurtosis is ambiguous in tumors, because 
it is sensitive to both microscopic diffusion anisotropy and 
intra‐voxel variation in isotropic diffusivity, also known as 
tissue heterogeneity,17 as well as intra‐compartmental kurto-
sis13,18 and water exchange.19

Tensor‐valued diffusion encoding is a concept for dMRI 
that can be used to separate microscopic anisotropy from iso-
tropic heterogeneity. Where conventional dMRI encodes for 
diffusion by a single pair of pulsed gradients,20 tensor‐valued 
encoding use gradients that encode for diffusion in more than 
one direction before the image readout.21-23 This enables con-
trol of the shape of the so‐called b‐tensor.21-23 Separation of 
microscopic anisotropy and heterogeneity is enabled by com-
bining dMRI data acquired with more than one shape of the 
b‐tensor and is therefore not possible with just conventional 
dMRI because it can only generate linear b‐tensors.22,24-26 
Tensor encoding protocols that support separation of micro-
scopic anisotropy and heterogeneity can be based on so‐called 
double diffusion encoding that permits linear and planar 
tensor encoding27-29 or continuous gradient waveforms that 
enables encoding with arbitrary b‐tensor shapes, for example, 
combinations of linear and spherical tensor encoding,25,26,30 
or any combination of linear, prolate, spherical, and oblate 
encoding tensors.21-23 Here, we used continuous gradient 
waveforms to achieve linear and spherical encoding because 
these waveforms can be optimized for minimal TEs and there-
fore enhanced SNR,31,32 while also (in contrast to spin echo 
double diffusion encoding) eliminating artefacts from con-
comitant fields.33

Data acquired with multiple b‐tensor shapes at moderate 
or high b‐values can be analyzed by the use of higher‐order 
tensors,22 microstructure models,9 or by using an approach 
similar to the inverse Laplace transform.34 Here, we chose 
to use a signal representation based on the cumulant expan-
sion and high‐order tensors,21,22 because it yields robust pa-
rameters and does not require explicit assumptions on the 

tumor microstructure. The analysis involves estimation of 
a fourth‐order tensor, similar to the kurtosis tensor in dif-
fusional kurtosis imaging (DKI).13 It differs in that conven-
tional diffusion encoding in DKI necessitates an assumption 
of full symmetry of this fourth‐order tensor, whereas the 
inclusion of tensor‐valued encoding can be used to relax 
this assumption to one of major and minor symmetry. This 
allows the separation of two invariant components of this 
fourth‐order tensor,22 which capture the information on the 
microscopic anisotropy and the heterogeneity of isotropic 
diffusivities, respectively.26 Note that this interpretation 
of the results assumes that data is acquired with different 
b‐tensor shapes while keeping other experimental features 
constant. Violating this assumption may result in a parameter 
bias, with a magnitude that depends on the protocol. This is 
obvious for relaxation weighting: echo and repetition times 
should be kept constant while varying the b‐tensor shape. 
It may be less obvious but, depending on the context, just 
as important for features such as diffusion times (spectral 
content)35,36 or concomitant field gradients.33

Previous studies including tensor‐valued diffusion encod-
ing were relatively lengthy that may hamper their clinical use. 
In this study, we used the insights from “fast DKI,”37,38 show-
ing that the relevant components of the fourth‐order tensor 
can be estimated with a parsimonious and rapid signal sam-
pling scheme. The purpose of this study was to demonstrate 
that tensor‐valued diffusion encoding can be performed in 
just 3 minutes of scan time and to provide an initial survey of 
the microscopic anisotropy and tissue heterogeneity in vari-
ous intracranial tumors.

2  |   THEORY

2.1  |  Signal expression
The magnetic‐resonance signal (S) becomes diffusion‐
weighted by inducing a dispersion in the phase distribution 
(ϕ). In the absence of net flow, the signal can be approxi-
mated by the second and fourth cumulants of the phase dis-
tribution (c2 and c4)

where ⟨⋅⟩ indicates averaging over all spin‐bearing parti-
cles in the voxel, �= � ∫ g (t) ⋅r (t) dt, γ is the gyromagnetic 
ratio, g(t) is the magnetic field gradient vector at time t, and 
r(t) is the position of the spin‐bearing particle.39 Assuming 
the voxel can be subdivided into multiple local and non‐
exchanging microenvironments in which the diffusion is 
approximately Gaussian, so that effects of time‐dependent 
diffusion on the time‐scales of g(t) can be neglected, we 
express the second cumulant as

(1)
S

S0

= ⟨exp (−i�)⟩ ≈ exp
�
−

1

2
c2+

1

24
c4

�
,
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where B is the b‐tensor, ⟨D⟩ is the voxel‐average of local 
diffusion tensors, and ‘:’ denotes the double inner product 
between 2 tensors, so that A:B=

∑
i=1..3,j=1..3 aijbij. For com-

pleteness, we note that

where τ is the echo time, ⊗ denotes the outer product so that 
x⊗2 =x⊗x, and

The conventional b‐value is given by the trace of the 
b‐tensor:

The fourth cumulant is given by

where c′
2
 and c′

4
 denotes the cumulants of the phase distribu-

tion in each local microenvironment, and ⟨⋅⟩ averaging across 
those microenvironments. Assuming the phase distribution in 
each microenvironment is approximately Gaussian, c′

4
 is ~0, 

and therefore

where

is the covariance between the diffusion tensors of the local mi-
croenvironments.22 Under these assumptions, the MR signal is 
given by

The voxel‐average diffusion tensor has six independent 
elements and the fourth‐order tensor  has 21 independent para
meters because it has major and minor symmetry.22 Methods 
that support calculations with fourth‐order tensors can be 
found in the multidimensional diffusion MRI framework 
(https​://github.com/markus-nilss​on/md-dmri/tree/maste​
r/tools/​tensor_maths​).40 Note that this approach includes 
only second‐order terms in b, which results in parameter 
bias when higher‐order terms have a relevant impact on the 
acquired signal.41

2.2  |  Powder averaging
To simplify estimation of the relevant properties of the tensor 
covariance, we can use so‐called powder averaging where the 
signal is averaged across a number of rotations of the b‐tensor 
to induce approximately complete orientation dispersion 
regardless of the actual orientational distribution within the 
voxel.26,29,42 In this section, we assume the b‐tensors to be 
cylinder symmetric. After averaging, the second and fourth 
cumulants are given by

and

where ⟨B⟩ and 
⟨

B⊗2
⟩
 are averages of B and B⊗2 across the 

b‐tensor rotations, and ⟨D⟩I and ℂI are isotropic second and 
fourth‐order tensors. The goal is to include a sufficient number 
of rotations so that

where I is the second order identity tensor (δij), and

where and �I and �A are two isotropic but orthogonal fourth‐
order tensors (�I:�A =0). The parameter bΔ describes the shape 
of the b‐tensor, is unitless and has a value of –1/2 for planar b‐
tensor encoding, 0 for spherical b‐tensor encoding, and 1 for 
linear tensor encoding.23 The isotropic tensors are given by 
�I =

(
1

3
I
)⊗2

=
1

9
𝛿ij𝛿kl and �A = �T− �I where �T =

1

6

(
�ik�jl+�il�jk

)
. 

In Westin et al.,22 �I, �A, and �T were denoted �BULK, �SHEAR, and 
�ISO, respectively.

Under these conditions, the logarithm of the powder aver-
aged signal will be given by a linear equation

where e =
[
1 −b

1

2
b

2 1

2
b

2
b

2

Δ

]
 describes the experiment 

and m =

[
ln S

0
MD V

I
V

A

]T are the model parameters 
defined by
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where the first parameter ⟨dI⟩ is the voxel‐averaged isotropic 
diffusivity and referred to as the mean diffusivity (MD) in the 
context of DTI and DKI, and VI and VA are the intra‐voxel vari-
ances in apparent diffusivities because of isotropic heterogeneity 
and microscopic anisotropy, respectively.22,26 Note that the aver-
age eigenvalue variance of local diffusion tensors, often denoted 
⟨V�⟩, is related to VA according to 2

5
⟨V�⟩=VA.17,26 An estimate 

of the model parameters (m̂) can now obtained from the linear 
least squares solution, just as for DTI,43 according to

where E
T
=

[
e

T

1
e

T

2
… e

T

n

]
 is a 4 by n matrix describing an 

encoding protocol featuring n “shells,” meaning acquisitions 
with b‐tensors of identical size (b) and shape (bΔ) but different 
orientations, S is an n by one vector of the acquired signal, and 
a C is a diagonal matrix correcting for the heteroscedasticity 
induced by the logarithm operation43 and the possibly different 
number of acquisition directions (m) in shell i by having diago-
nal elements given by Cii =S2

i
mi.

2.3  |  A minimal protocol
Our goal was to enable rapid estimation of the four unknowns 
in Equation 5: S0, MD, VI, and VA. With four unknowns and 
in the absence of voxel‐scale anisotropy, this requires at the 
very minimum four acquisitions of the signal S with different 
“shells.” It can be shown that four “shells” with 

[
b, bΔ

]
 = [0, 0],  

[1, 0], [2, 0], and [2, 1], with b in units of ms/µm2, is sufficient 
for the matrix inversion in Equation 6 to be performed and 
could therefore enable estimation of the four parameters.

In the presence of voxel‐scale anisotropy, data for each 
shell would have to be acquired with a sufficient number of 
rotations of the b‐tensors (“directions”) to provide an accu-
rate powder average. From theory, we know this number to 
increase with the b‐value.44 For low b‐values, rotation invari-
ance is obtained by fulfilling Equation 3. This can be done 
with a single spherical b‐tensor or by averaging over three 
linear b‐tensors

At higher b‐values, we need to fulfil Equation 4 to ob-
tain rotation invariance. This can be obtained by averaging 
over the six directions defined by the icosahedral sampling 
scheme, because

where n1 =
[

0 c1 c2

]
, n2 =

[
0 c1 −c2

]
, 

n3 =
[

c1 c2 0

]
, n4 =

[
c1 −c2 0

]

,n5 =
[

c2 0 c1

]
, and n6 =

[
−c2 0 c1

]
, where 

c1 =

√(
5−51∕2

)
∕10, and c2 =

√(
5+51∕2

)
∕10.45 Previous 

studies have shown that a similar rotation invariance is pos-
sible also by averaging across nine custom directions.46 In 
practice, just six directions may not be sufficient because of 
the influence of higher‐order terms (e.g., b3 terms).41 For 
the purpose of rotation invariance, however, we have previ-
ously shown that six directions are sufficient for an accurate 
powder average up to moderate attenuation factors 
(b ⋅MD<2) if the system of interest has a low voxel‐level 
anisotropy (FA < 0.5),32 which is likely the case for most 
tumors.

In summary, the theoretical analysis shows that rotation‐
invariant estimates of the four model parameters of interest 
can be obtained in a voxel with low to moderate voxel‐level 
anisotropy with just nine measurements: three with spheri-
cal b‐tensors having b = 0, 1, and 2 ms/µm2 and six with 
linear b‐tensors and b = 2 ms/µm2 played out along the ico-
sahedral sampling scheme. In practice, more measurements 
may be preferred to improve the precision of the estimated 
parameters.

2.4  |  Microstructure measures
From the parameters in Equation 5, we define the two micro-
structure measures that we will focus on in this study, which 
we refer to as the isotropic and anisotropic kurtosis (MKI and 
MKA, respectively), defined by

and

The sum of these parameters yields the total mean kurto-
sis (MKT = MKI + MKA), which is similar but not identical 
to the mean kurtosis (MK) obtained in diffusional kurtosis 
imaging. The dissimilarity stems from the powder averaging 
operation applied in the present analysis.

We have previously demonstrated that MKA and MKI 
capture microstructure features of tumors via quantitative 
histology.17 Results showed that the MKI was associated with 
cell density heterogeneity within the voxel, whereas the MKA 
was associated with what can informally be described as the 
average cell shape within the voxel and formally as the aver-
age anisotropy of the structure tensor, determined by image 
analysis of the histology images.47-49

(6)m̂=
(
ET

⋅C ⋅E
)−1

⋅ET
⋅C ⋅ ln S,
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MKA =3VA∕MD2.
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3  |   METHODS

3.1  |  Acquisition protocol
Imaging was performed on a 3T MAGNETOM Prisma 
with a 20‐channel head coil array (Siemens Healthcare, 
Erlangen, Germany). Morphologic imaging was performed 
with a T1‐weighted 3D‐MPRAGE sequence pre‐ and post‐ 
intravenous gadolinium (Gd) administration and a FLAIR 
(fluid‐attenuated inversion recovery) sequence. Diffusion‐
weighted images were acquired before the administration of 
Gd with a prototype spin‐echo sequence that enables diffu-
sion encoding with arbitrarily shaped b‐tensors.32 Imaging 
was performed with TE = 80 ms, TR = 3.2 s, FOV = 230 × 
230 mm2, slices = 21, resolution = 2.3 × 2.3 × 2.3 mm3, 
iPAT = 2 (GRAPPA), and partial‐Fourier = 6/8. Tensor en-
coding was performed using asymmetric gradient waveforms 
that were optimized to minimize TE using a constrained opti-
mization approach described in Sjölund et al31 and available 
at https​://github.com/jsjol/​NOW. The optimization used the 
following settings: “max norm,” heat dissipation factor 0.5, 
and a slew rate limit of 50 T/m/s. A short TR was enabled by 
limiting the number of slices. The resulting 5‐cm thick imag-
ing volume was positioned across the lesion of interest by the 
radiographers based on images from previous examinations 
(CT or MRI).

3.2  |  Evaluating the rotation 
invariance of the tensor encoding protocol
The dMRI protocol comprised four b‐values (b = 0.1, 0.7, 
1.4, and 2.0 ms/μm2) acquired in 3, 3, 6, and 6 directions 
for the linear tensor encoding, and with 6, 6, 10, and 16 
averages of the spherical tensor encoding, respectively. 
This resulted in an acquisition time of 3 minutes. Previous 
b‐tensor encoding protocols has featured more than six di-
rections at the maximum b‐value to ensure that a rotation‐
invariant powder‐averaged signal could be obtained.17,32 
The accuracy of powder averaging with a limited number 
of directions was analyzed by acquiring extra data in a vol-
unteer using three different diffusion protocols referred to 
as the “full,” “subsampled,” and “optimized” protocols. All 
protocols comprised the same four b‐values (b = 0.1, 0.7, 
1.4, and 2.0 ms/μm2), but were applied in 6, 6, 10, and 16 
directions for the full protocol and in 3, 3, 6, and 6 direc-
tions for the subsampled and optimized protocols. All pro-
tocols sampled STE signals with 6, 6, 10, and 16 averages 
for the different b‐values. The directions in the full proto-
col were obtained by the so‐called electrostatic repulsion 
algorithm.50,51 The directions in the subsampled protocol 
were selected from the full protocol to be as spread out 
across the sphere as possible. The optimized protocol was 
the one used in the full study, and for that protocol, the 

3 directions used for the lower b‐values were orthogonal, 
and the six directions used at higher b‐values were selected 
from an icosahedral sampling scheme (that intrinsically 
minimize the electrostatic repulsion). The accuracy of MD, 
MKA, and MKI was then assessed by investigating the dif-
ference between the two shorter protocols (subsampled and 
optimized) and the full protocol. The hypothesis was that 
the short optimized protocol would provide for rotationally 
invariant parameter estimates (high accuracy), whereas the 
subsampled protocol would exhibit a parameter bias de-
pendent on the direction of anisotropic structures.

The rotation invariance were also investigated by sim-
ulations of a system comprised of cylinder‐symmetric dif-
fusion tensors with an axial and radial diffusivity of 2.0 
µm2/ms and 0.2 µm2/ms, respectively. The diffusion tensors 
were aligned along a given direction with a small orienta-
tion dispersion corresponding to an angular standard devai-
tion (SD) of 15°. This represents a realistic scenario with 
highly anisotropic diffusion tensors and a sharp orientation 
distribution function, therefore serving as a worst‐case test 
of the ability of the protocols to produce accurate (rota-
tion‐invariant) parameters. Noise was added to the simu-
lated signal so that it followed a Rice distribution, with a 
noise‐free magnitude given by the true signal and a noise 
level corresponding to SNR = 40 at b = 0. The noisy sig-
nal was then powder‐averaged, and used to estimate MD, 
MKA, and MKI. The process was repeated for 1000 ran-
dom rotations of the diffusion tensors and for each rotation, 
the mean and SD of the three parameters were computed 
for each of the three protocols. For a protocol with an ac-
curately determined powder averaged signal, the SD (σ) 
would represent only noise, whereas it would be higher for 
a protocol with suboptimal directions because of a variable 
rotation‐dependent bias. Assuming the two sources or error 
are uncorrelated, we can express this as σ2 =σ

2
rotation

+σ
2
noise

. 
Simulations performed without noise therefore allowed 
separate estimation of σ2

rotation
, and therefore the two terms 

were reported separately.

3.3  |  Subjects
Patients were recruited from those scheduled for a clinical 
MRI because of a suspected or recurrent brain lesion and 
were enrolled after giving informed consent. The study was 
approved by the Ethical Review Board in Lund, Sweden. 
During the period between March 2017 and August 2018, 
42 patients (24 female and 18 male) with intracranial 
tumors were enrolled with an average (SD) age of 56 (15) y.  
The analyzed material included 22 gliomas (13 glioblastoma, 
4 astrocytoma, 2 oligoastrocytoma, 1 oligodendroglioma,  
1 unclassified glioma, 1 brain stem glioma), 5 meningi-
omas, 1 hemangiopericytoma, 6 brain metastases (3 with 
primary breast tumors, 2 with primary lung tumors, and  

https://github.com/jsjol/NOW
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1 with rectal cancer), and 1 pituitary adenoma. Of the 
gliomas, 12 had undergone surgery before imaging. Six 
patients were excluded because there were no lesions vis-
ible in the contrast‐enhanced T1W images. One patient was 
excluded because the lesion was in the frontal lobe close to 
the petrous apex that led to strong susceptibility artefacts.

3.4  |  Image post processing
The diffusion‐weighted images were processed in three 
steps. The first step aimed at correction of motion and image 
distortions from eddy currents and included registration of 
the diffusion‐weighted volumes to extrapolated references 
using ElastiX.52,53 The use of extrapolation‐based references 
has been shown to be necessary for accurate registration of 
high b‐value data.53 In the second step, all volumes were 
smoothed by a 3D Gaussian kernel with a SD of 0.4 voxels. 

In the third step, parameter maps were obtained by fitting 
S0, MD, VI, and VA to the data using Equation 6. The fit-
ting was performed by linear least squares fitting of the log 
signal, while correcting for heteroscedasticity (see Theory 
section for details). Once these parameters were estimated, 
the isotropic and anisotropic kurtosis components were com-
puted. In addition to these steps, the post‐Gd T1W image 
volumes were registered to the diffusion‐weighted volumes 
to enable the tumor definition for the quantitative analysis. 
All post processing was performed using the multidimen-
sional diffusion MRI toolbox,40 which is implemented in 
MATLAB (The MathWorks, Natick, MA) and available at 
https​://github.com/markus-nilss​on/md-dmri.

For one subject, perfusion maps of the relative cerebral 
blood volume (rCBV) were calculated using Nordic ICE 
(NordicNeuroLab, Bergen, Norway) from data acquired 
with dynamic susceptibility contrast (Gd) acquisition with 

F I G U R E  1   Accuracy and precision for the different imaging protocols. (A) Visualizes the diffusion encoding directions (with antipodal 
points) in each b‐shells of the linear tensor encoding part of the three protocols. The full protocol featured more directions than the subsampled (sub) 
and optimized (opt) protocols. (B) Average parameter values (error bars show SDs) from the numerical simulation with the different protocols.  
The dashed line represents the true values. The right‐hand plot shows parameter errors from the same simulation, separated into errors from rotation 
variance and noise. (C and D) Parameter and bias maps, respectively, from a healthy volunteer. The optimization yielded results similar to the full 
protocol, whereas the subsampled protocol exhibited location‐dependent bias likely caused by the suboptimal distribution of encoding directions

https://github.com/markus-nilsson/md-dmri
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a time resolution of 1.5 s using a single‐shot gradient echo 
EPI‐gradient sequence and a spatial resolution of 1.7 × 1.7 × 
6.0 mm3 and an TE of 28 ms. The maps were computed using 
truncated singular value decomposition, leakage‐corrected 
with Boxerman and gamma fitting, and coregistered with the 
diffusion data.

3.5  |  Quantitative analysis
Regions of interest (ROIs) were drawn in the contrast‐en-
hancing regions on the post‐Gd T1W images, excluding ap-
parently necrotic parts where MD >2 μm2/ms. Parts of the 
images affected by image artefacts because of for example 
insufficient fat suppression were also excluded. ROIs were 
also drawn in normal‐appearing frontal white matter to char-
acterize normal‐appearing white matter. The diffusion pa-
rameters were then obtained from all subjects except those 
with glioblastoma, extensive edema, or an imaging slab that 
did not cover frontal white matter. Average values of MD, 
MKA, and MKI were obtained for each ROI, and basic de-
scriptive statistics were calculated.

4  |   RESULTS

Figure 1 shows a comparison of the three sampling pro-
tocols: the first was a full protocol (5‐minutes long) 
whereas the second and third were shorter and referred to 

as the subsampled and optimized protocols (both 3‐minutes 
long). Numeric simulations showed estimated values of 
MD close to the expected value of 0.8 µm2/ms for all three 
protocols, with average values (SD) of 0.78 (0.03), 0.78 
(0.07), and 0.78 (0.04) µm2/ms, respectively. For MKA, 
the expected value was 1.35 and there was a substantial 
bias for all three protocols, with average (SD) values of 
1.10 (0.12), 1.14 (0.28), and 1.09 (0.15). A similar level of 
bias was found for MKI, with values of –0.12 (0.18), –0.17 
(0.42), and –0.09 (0.22), compared with the true value 
of zero. Bias of this magnitude is expected when using 
truncated cumulant expansions for the data analysis.41,54 
The parameter uncertainty, represented by SDs, has two 
origins: noise and incomplete rotation invariance that con-
tributed to random errors because of the random rotation 
applied to the synthetic sample in the simulations. For both 
the full and the optimized protocols, the variation caused 
by rotation was substantially smaller than that because of 
noise, whereas for the subsampled protocol it was larger 
(Figure 1B). Corresponding results were found in the bias 
maps from the volunteer measurement (Figure 1D), where 
the subsampled protocol showed location‐dependent bias 
in all parameters, whereas the bias from the optimized 
protocol appeared negligible. In summary, the full and the 
short protocols exhibited similar characteristics, whereas 
the naively subsampled protocol suffered from high vari-
ance because of rotational variance.

F I G U R E  2   Morphology and microstructure parameter maps in 4 brain tumor types. Both the glioblastoma and brain metastasis cases 
exhibited low microscopic anisotropy, whereas the pituitary adenoma and the meningioma cases exhibited higher microscopic anisotropy.  
All tumors in this figure, except the meningioma, displayed regions with markedly elevated tissue heterogeneity (isotropic kurtosis)
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Figure 2 shows post‐Gd T1W and FLAIR images and 
maps of the mean diffusivity, microscopic anisotropy, and 
tissue heterogeneity (columns) in four different types of 
brain tumors (rows). Data were obtained with the optimized 
protocol. Within the contrast enhancing parts of the glioma 
and the metastasis, we note a low but non‐zero microscopic 
anisotropy probably indicating the presence of some residual 
white matter. Parts of the enhancing lesions also displayed 
an elevated tissue heterogeneity. In the glioma and brain 
metastasis patients, edema surrounded the contrast enhanc-
ing lesions. This region exhibited elevated mean diffusivity, 
reduced microscopic anisotropy, and a moderately increased 
tissue heterogeneity. The pituitary adenoma and the menin-
gioma both had higher microscopic anisotropy than what 
was observed in the glioma and the metastasis, indicating 
the presence of elongated cell structures within these tumors.  
The pituitary adenoma differed from the meningioma in 
terms of its tissue heterogeneity, which was clearly elevated.

In some patients, parts of the tumor edges showed excep-
tionally high tissue heterogeneity (Figure 3). This parameter 
depends on data acquired with isotropic diffusion weight-
ing (spherical tensor encoding), and regions with high 

heterogeneity also had a conspicuous contrast in the raw sig-
nal data (Figure 4). The increase in image contrast with high 
b‐value spherical encoding compared to conventional linear 
tensor encoded data is particularly striking.

Follow‐up examinations were available for one patient. 
Figure 5 shows morphologic images, a perfusion map (rel-
ative cerebral blood volume), and the diffusion parameter 
maps (columns) at the baseline and at 12 and 26 weeks post 
treatment (rows). All diffusion parameter maps were consis-
tent across time on the side contralateral to the lesion, except 
for some image artefacts. Changes on the maps of the mean 
diffusivity and microscopic anisotropy on the side ipsilateral 
to the lesion were aligned with the changes of the edema. The 
tissue heterogeneity was elevated at baseline but was gradu-
ally reduced at later time points. Elevated tissue heterogene-
ity co‐occurred with low relative blood volumes.

Finally, average parameter values across the tumors are 
displayed in Figure 6, categorized by tumor type (glioma, 
glioblastoma, metastasis, and meningioma) and compared 
with normal‐appearing white matter. The glioma group in-
cluded a diverse set of tumors, which manifested as a high 
variability between the tumors in this group. Compared with 
normal‐appearing white matter, all tumors except two glio-
mas had higher mean diffusivity, lower microscopic anisot-
ropy, higher tissue heterogeneity, and lower total kurtosis. 
Glioblastomas had lower average microscopic anisotropy 
than meningiomas (MKA = 0.29 ± 0.06 vs. 0.45 ± 0.08, 
P = 0.003, rank‐sum test). Metastases had higher tissue het-
erogeneity (MKI = 0.57 ± 0.07) than both the glioblastomas 
(0.44 ± 0.06 P < 0.001, rank‐sum test) and meningiomas 
(0.46 ± 0.06, P = 0.03, rank‐sum test).

5  |   DISCUSSION

In this study, we demonstrated that tensor‐valued diffusion 
encoding can be performed in just 3 minutes to quantify MKA 
and MKI as measures of microscopic anisotropy and tissue 
heterogeneity in brain tumors. In contrast to normal‐appear-
ing white matter that exhibited high microscopic anisotropy 
and low tissue heterogeneity, the tumors exhibited low to 
intermediate microscopic anisotropy and low to high tissue 
heterogeneity, with the specific characteristics depending on 
tumor type. Considerable variation was also found within 
the tumors themselves. Differences in microscopic anisot-
ropy between the glioma and meningioma groups were in 
line with previous investigations showing that meningiomas 
contain more microscopically anisotropic tissue.17 High mi-
croscopic anisotropy was also found in the pituitary tumor, 
suggesting that the tumor comprised elongated spindle cells 
common for e.g., pituicytomas,55 however, we reserve final 
interpretation until MKA can be associated to structural 
anisotropy from histology in a larger sample of this type of 

F I G U R E  3   Examples of tumors with high tissue heterogeneity. 
Cases include two glioblastomas (top rows) and one brain metastasis 
(bottom row). The yellow arrows point to regions with exceptionally 
high tissue heterogeneity. The red arrow points to an artefact caused by 
insufficient fat suppression
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tumor. Moreover, substantially elevated tissue heterogeneity 
were found in some tumors. The biologic interpretation of 
this is unclear but indicates a high variation of the diffusiv-
ity within the voxel. Although speculative, we hypothesize 
that this could be caused by partial necrosis within the voxel, 
meaning that some parts of the voxel feature high cell den-
sity and therefore low apparent diffusivity whereas others 
are necrotic with high diffusivity. The co‐occurrence of low 
relative blood volumes and high tissue heterogeneity could 
support this hypothesis (Figure 5). Note that high MKI can 
also be the result of partial volume effects. This can be seen 
for example along the ventricle walls where there are voxels 
that contain both tissue and cerebrospinal fluid, which have 
substantially different isotropic diffusivities. Further investi-
gations are therefore necessary to determine the association 
between these novel diffusion parameters and pathology.

Previous imaging protocols with b‐tensor encoding were 
longer than the one used in the present study. The acceler-
ation relied on four factors: optimized gradient waveforms, 
limited number of directions, limited slice coverage, and 
sample balancing. Gradient waveforms were optimized to 
make use of all the encoding time available in a spin echo 

sequence.31 Therefore, the gradient waveforms were asym-
metric in contrast to the symmetric approach taken in some 
previous papers.17,22 The limited number of directions made 
it possible to reduce the total scan time, and by using a com-
bination of directions that provide a balanced sample of the 
fourth‐order tensor, and was inspired by previous papers 
on “fast DKI.”37,38 However, because of the limited num-
ber of directions (6), we expect a slight rotation‐dependent 
bias in white matter signal with high orientation coherence, 
however, in tumors, this bias should be negligible because 
of their low voxel‐level anisotropy (FA).32 The results in 
Figure 1 indicate that the orientation‐dependent bias in the 
short protocol is indeed small. The third factor contributing 
to a faster protocol was the use of a limited number of slices. 
This allowed a shorter repetition time and therefore a shorter 
total scan time. The shorter scan time also led to a lower total 
heat load on the gradient coils, which in turn could be used 
to shorten the repetition time further while still respecting 
duty cycle limits.56 Although using a limited number of slices 
also reduces the coverage, this limitation can be addressed 
by the use of simultaneous multislice acquisition.57 Finally, 
high quality maps were enabled by an adapted distribution 

F I G U R E  4   Illustration of stronger 
image contrast with spherical compared 
with linear tensor encoding. Yellow arrows 
point to the locations with high gadolinium 
load. These regions were associated with 
high contrast in the high b‐value image 
with spherical encoding (middle column), 
whereas a lower contrast was observed 
when using linear encoding (right column). 
Identical windowing was applied to the 
spherical and linear encoding data. Data 
represent consecutive slices from one 
patient. The images indicate that tissue 
anisotropy in surrounding tissue can 
obfuscate regions of dense tumor tissue, 
which can reduce detectability



      |  617NILSSON et al.

of samples. In previous works,32 we observed that MKI had a 
lower precision than MKA when acquiring an equal number 
LTE and STE volumes. Therefore, this protocol featured a 
higher relative fraction of STE volumes. It should be noted, 
however, that the protocol design was the result of an expe-
rience‐based act of balancing a number of factors that influ-
enced scan time and parameter precision. Future work could 
explore formal means of protocols optimization to improve 
parameter precision.58,59 Such optimization does not gener-
ally address the parameter bias reported in Figure 1. This bias 
is expected when higher order terms affect the acquired data, 
but the analysis is truncated to second cumulant.41 Finding an 

optimal protocol requires balancing accuracy and precision,54 
and here, we prioritized precision over accuracy (with the ex-
ception of minimizing rotation‐dependent bias by using an 
optimized protocol).

We acknowledge three main limitations of the current 
study. First, the presence of artefacts because of concomitant 
fields may have led to parameter bias because of the use of 
asymmetric waveforms.60 Waveforms can today be optimized 
to mitigate this effects,60 however, this project was initiated 
before such waveforms were available and may have resulted 
in a minor bias toward higher values of the microscopic an-
isotropy. This should be addressed in future studies. Second, 

F I G U R E  5   Temporal evolution of the morphological images, relative cerebral blood volume (rCBV), and the diffusion parameter maps in 
a brain metastasis patient. Contrast enhancement is seen on all of the T1W + Gd images. The edema seen on the FLAIR image contracts at week 
12 but expands at week 26. Parts of the tumor shows consistently elevated relative blood volume. All diffusion parameter maps were consistent 
across time on the side contralateral to the lesion, except for some image artefacts (red arrow). Changes on the maps of the mean diffusivity and 
microscopic anisotropy on the side ipsilateral to the lesion were aligned with the changes of the edema. The tissue heterogeneity was elevated at 
baseline but was gradually reduced at later time points

F I G U R E  6   Overview of parameters in tumors and normal‐appearing white matter (WM). The tumors were categorized by type: glioma 
excluding glioblastoma (G*), glioblastoma (GB), metastasis (MET), and meningioma (MEN). Bars show average values, whereas black dots show 
values from individual patients (averaged across the ROIs)
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the linear and spherical tensor encoding were performed 
using gradient waveforms with different timings, so the dif-
ference between the acquisitions was not only in the shape 
of the b‐tensor, but also in the effective diffusion time.35,36,41  
In the protocol design process, we tried to minimize this 
difference by making the diffusion time of the linear tensor 
encoding as short as possible, but the remaining timing differ-
ence could have resulted in parameter bias. In healthy white 
and gray matter, the time‐dependence of the diffusion is neg-
ligible between ~10 and 250 ms,61,62 but whether this is true 
in all of the tumors investigated remains to be tested. Third, 
some patients were investigated before surgery and others 
after. This may have affected the parameters. To test whether 
the novel diffusion parameters can contribute with diagnosti-
cally relevant information, future studies should do imaging 
before treatment.

Future work can use this short protocol to test clinically 
relevant questions, for example, whether separation of the 
2 diffusional kurtosis components can increase the perfor-
mance of glioma grade discrimination over the total kurto-
sis alone,63 enable mapping of meningioma consistency,64,65 
monitor or predict treatment response, or to correlate imag-
ing and histologic analysis of biopsies to elucidate the mi-
crostructural underpinnings of the observed contrasts. The 
impact of the sampling protocol (e.g., b‐values and b‐tensor 
shapes) on the accuracy and precision of MD, MKI, and MKA 
also need to be investigated, and such work is ongoing.66

ACKNOWLEDGMENTS

This study was supported by grants from Swedish Research 
Council (2016‐03443, 2016‐02199‐3), Swedish Cancer 
Society (CAN 2016/365), and the Crafoord Foundation 
(20160990), and Random Walk Imaging AB (MN15)  
The funding sources had no role in the design and conduct 
of the study; in the collection, analysis, interpretation of 
the data; or in the preparation, review, or approval of the 
manuscript. We thank Siemens Healthcare for providing 
sequence source code and the pulse sequence programming 
environment.

CONFLICTS OF INTEREST

M.N. declares research support from and ownership in-
terests in Random Walk Imaging (formerly Colloidal 
Resource), and patent applications in Sweden (1250453‐6 
and 1250452‐8), USA (61/642 594 and 61/642 589), and 
PCT (SE2013/050492 and SE2013/050493). F.S. has been 
employed at Random Walk Imaging.

ORCID

Markus Nilsson   https://orcid.org/0000-0002-3140-8223 
Filip Szczepankiewicz   https://orcid.org/0000-0002-5251-587X 

REFERENCES

	 1.	 Sugahara T, Korogi Y, Kochi M, et al. Usefulness of diffusion‐
weighted MRI with echo‐planar technique in the evaluation of cel-
lularity in gliomas. J Magn Reson Imaging. 1999;9:53–60.

	 2.	 Chenevert TL, Stegman LD, Taylor JM, et al. Diffusion magnetic 
resonance imaging: an early surrogate marker of therapeutic effi-
cacy in brain tumors. J Natl Cancer Inst. 2000;92:2029–2036.

	 3.	 Chen L, Liu M, Bao J, et al. The correlation between apparent dif-
fusion coefficient and tumor cellularity in patients: a meta‐analysis. 
PLoS ONE. 2013;8:e79008.

	 4.	 Ross BD, Moffat BA, Lawrence TS, et al. Evaluation of cancer 
therapy using diffusion magnetic resonance imaging. Mol Cancer 
Ther. 2003;2:581–587.

	 5.	 Moffat BA, Chenevert TL, Lawrence TS, et al. Functional 
diffusion map: a noninvasive MRI biomarker for early stratifica-
tion of clinical brain tumor response. Proc Natl Acad Sci U S A. 
2005;102:5524–5529.

	 6.	 Morse DL, Galons J‐P, Payne CM, et al. MRI‐measured water mo-
bility increases in response to chemotherapy via multiple cell‐death 
mechanisms. NMR Biomed. 2007;20:602–614.

	 7.	 Nilsson M, Englund E, Szczepankiewicz F, van Westen D, 
Sundgren PC. Imaging brain tumour microstructure. NeuroImage. 
2018;182:232–250.

	 8.	 Badaut J, Ashwal S, Adami A, et al. Brain water mobility decreases 
after astrocytic aquaporin‐4 inhibition using RNA interference. 
J Cereb Blood Flow Metab. 2011;31:819–831.

	 9.	 Lampinen B, Szczepankiewicz F, Mårtensson J, van Westen D, 
Sundgren PC, Nilsson M. Neurite density imaging versus imaging 
of microscopic anisotropy in diffusion MRI: a model comparison 
using spherical tensor encoding. NeuroImage. 2017;147:517–531.

	10.	 Novikov DS, Kiselev VG, Jespersen SN. On modeling. Magn 
Reson Med. 2018;79:3172–3193.

	11.	 Lampinen B, Szczepankiewicz F, Novén M, et al. Searching for 
the neurite density with diffusion MRI: challenges for biophysical 
modeling. Hum Brain Mapp. 2019;27:48–17.

	12.	 Henriques RN, Jespersen SN, Shemesh N. Microscopic anisotropy 
misestimation in spherical‐mean single diffusion encoding MRI. 
Magn Reson Med. 2019;81:3245–3261.

	13.	 Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. Diffusional 
kurtosis imaging: the quantification of non‐gaussian water diffu-
sion by means of magnetic resonance imaging. Magn Reson Med. 
2005;53:1432–1440.

	14.	 Delgado AF, Fahlström M, Nilsson M, et al. Diffusion kurtosis 
imaging of gliomas grades II and III‐a study of perilesional tumor 
infiltration, tumor grades and subtypes at clinical presentation. 
Radiol Oncol. 2017;51:121–129.

	15.	 Raab P, Hattingen E, Franz K, Zanella FE, Lanfermann H. Cerebral 
gliomas: diffusional kurtosis imaging analysis of microstructural 
differences. Radiology. 2010;254:876–881.

	16.	 Van Cauter S, Veraart J, Sijbers J, et al. Gliomas: diffusion kurtosis 
MR imaging in grading. Radiology. 2012;263:492–501.

	17.	 Szczepankiewicz F, van Westen D, Englund E, et al. The link 
between diffusion MRI and tumor heterogeneity: mapping cell 
eccentricity and density by diffusional variance decomposition 
(DIVIDE). NeuroImage. 2016;142:522–532.

	18.	 Nørhøj JS. White matter biomarkers from diffusion MRI. J Magn 
Reson. 2018;291:127–140.

	19.	 Ning L, Nilsson M, Lasič S, Westin CF, Rathi Y. Cumulant expan-
sions for measuring water exchange using diffusion MRI. J Chem 
Phys. 2018;148:074109–074112.

https://orcid.org/0000-0002-3140-8223
https://orcid.org/0000-0002-3140-8223
https://orcid.org/0000-0002-5251-587X
https://orcid.org/0000-0002-5251-587X


      |  619NILSSON et al.

	20.	 Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes 
in the presence of a time‐dependent field gradient. J Chem Phys. 
1965;42:288–292.

	21.	 Westin CF, Szczepankiewicz F, Pasternak O, et al. Measurement 
tensors in diffusion MRI: generalizing the concept of dif-
fusion encoding. Med Image Comput Comput Assist Interv. 
2014;8675:209–216.

	22.	 Westin C‐F, Knutsson H, Pasternak O, et al. Q‐space trajectory 
imaging for multidimensional diffusion MRI of the human brain. 
NeuroImage. 2016;135:345–362.

	23.	 Eriksson S, Lasič S, Nilsson M, Westin CF, Topgaard D. NMR 
diffusion‐encoding with axial symmetry and variable anisotropy: 
distinguishing between prolate and oblate microscopic diffusion 
tensors with unknown orientation distribution. J Chem Phys. 
2015;142:104201.

	24.	 Mitra PP. Multiple wave‐vector extensions of the NMR pulsed‐
field‐gradient spin‐echo diffusion measurement. Phys Rev B. 
1995;51:15074–15078.

	25.	 Eriksson S, Lasič S, Topgaard D. Isotropic diffusion weighting 
in PGSE NMR by magic‐angle spinning of the q‐vector. J Magn 
Reson. 2013;226:13–18.

	26.	 Lasič S, Szczepankiewicz F, Eriksson S, Nilsson M, Topgaard D. 
Microanisotropy imaging: quantification of microscopic diffu-
sion anisotropy and orientational order parameter by diffusion 
MRI with magic‐angle spinning of the q‐vector. Front Phys. 
2014;1–35.

	27.	 Cory DG, Garroway AN, Miller JB. Applications of spin transport 
as a probe of local geometry. Polymer Prepr. 1990;31:149.

	28.	 Shemesh N, Jespersen SN, Alexander DC, et al. Conventions and 
nomenclature for double diffusion encoding NMR and MRI. Magn 
Reson Med. 2016;75:82–87.

	29.	 Jespersen SN, Lundell H, Sønderby CK, Dyrby TB. Orientationally 
invariant metrics of apparent compartment eccentricity from dou-
ble pulsed field gradient diffusion experiments. NMR Biomed. 
2013;26:1647–1662.

	30.	 Szczepankiewicz F, Lasič S, van Westen D, et al. Quantification of 
microscopic diffusion anisotropy disentangles effects of orienta-
tion dispersion from microstructure: applications in healthy volun-
teers and in brain tumors. NeuroImage. 2015;104:241–252.

	31.	 Sjölund J, Szczepankiewicz F, Nilsson M, Topgaard D, Westin 
CF, Knutsson H. Constrained optimization of gradient waveforms 
for generalized diffusion encoding. J Magn Reson. 2015;261: 
157–168.

	32.	 Szczepankiewicz F, Sjölund J, Ståhlberg F, Lätt J, Nilsson M. 
Tensor‐valued diffusion encoding for diffusional variance decom-
position (DIVIDE): technical feasibility in clinical MRI systems. 
PLoS ONE. 2019;14:e0214238.

	33.	 Szczepankiewicz F, Westin CF, Nilsson M. Maxwell‐compensated 
design of asymmetric gradient waveforms for tensor‐valued diffu-
sion encoding. Magn Reson Med. 2019;82:1424–1437.

	34.	 de Almeida Martins JP, Topgaard D. Two‐dimensional correlation 
of isotropic and directional diffusion using NMR. Phys Rev Lett. 
2016;116:087601.

	35.	 Lundell H, Nilsson M, Dyrby TB, et al. Multidimensional diffusion 
MRI with spectrally modulated gradients reveals unprecedented 
microstructural detail. Sci Rep. 2019;9:9026.

	36.	 Jespersen SN, Olesen JL, Ianuş A, Shemesh N. Effects of nongauss-
ian diffusion on “isotropic diffusion” measurements: an ex‐vivo mi-
croimaging and simulation study. J Magn Reson. 2019;300:84–94.

	37.	 Lätt J, Nilsson M, Brockstedt S, Wirestam R, Ståhlberg F. Bias free 
estimates of the diffusional kurtosis in two minutes: avoid solving 

the kurtosis tensor. In Proceedings of the 18th Annual Meeting of 
ISMRM, Stockholm, Sweden, 2010. Abstract 3972.

	38.	 Hansen B, Lund TE, Sangill R, Jespersen SN. Experimentally and 
computationally fast method for estimation of a mean kurtosis. 
Magn Reson Med. 2013;69:1754–1760.

	39.	 Kiselev VG. Fundamentals of diffusion MRI physics. NMR 
Biomed. 2017;30:e3602.

	40.	 Nilsson M, Szczepankiewicz F, Lampinen B, et al. An open‐source 
framework for analysis of multidimensional diffusion MRI data 
implemented in MATLAB. In Proceedings of the 26th Annual 
Meeting of ISMRM, Paris, France, 2018. Abstract 5355.

	41.	 Ianuş A, Jespersen SN, Serradas Duarte T, Alexander DC, Drobnjak 
I, Shemesh N. Accurate estimation of microscopic diffusion an-
isotropy and its time dependence in the mouse brain. NeuroImage. 
2018;183:934–949.

	42.	 Kaden E, Kruggel F, Alexander DC. Quantitative mapping of the 
per‐axon diffusion coefficients in brain white matter. Magn Reson 
Med. 2016;75:1752–1763.

	43.	 Jones DK, Cercignani M. Twenty‐five pitfalls in the analysis of 
diffusion MRI data. NMR Biomed. 2010;23:803–820.

	44.	 Tournier JD, Calamante F, Connelly A. Determination of the 
appropriate b value and number of gradient directions for high‐
angular‐resolution diffusion‐weighted imaging. NMR Biomed. 
2013;26:1775–1786.

	45.	 Akkerman EM. Efficient measurement and calculation of MR 
diffusion anisotropy images using the Platonic variance method. 
Magn Reson Med. 2003;49:599–604.

	46.	 Hansen B, Lund TE, Sangill R, Stubbe E, Finsterbusch J, Jespersen 
SN. Experimental considerations for fast kurtosis imaging. Magn 
Reson Med. 2016;76:1455–1468.

	47.	 Budde MD, Frank JA. Examining brain microstructure using 
structure tensor analysis of histological sections. NeuroImage. 
2012;63:1–10.

	48.	 Knutsson H, Westin CF, Andersson M. Representing local struc-
ture using tensors II. In: Heyden A, Kahl F, editors. Image analysis. 
SCIA 2011. Lecture Notes in Computer Science, vol 6688. Berlin, 
Heidelberg: Springer; 2011. p. 545–556.

	49.	 Bigun J, Granlund G. Optimal orientation detection of linear sym-
metry. IEEE Trans Pattern Anal Mach Intell. 1987;13:433–438.

	50.	 Jones DK, Horsfield MA, Simmons A. Optimal strategies for mea-
suring diffusion in anisotropic systems by magnetic resonance 
imaging. Magn Reson Med. 1999;42:515–525.

	51.	 Leemans A, Jeurissen B, Sijbers J, Jones DK. ExploreDTI: a 
graphical toolbox for processing, analyzing, and visualizing dif-
fusion MR data. In Proceedings of the 17th Annual Meeting of 
ISMRM, Honolulu, HI, 2009. Abstract 3537.

	52.	 Klein S, Staring M, Murphy K, Viergever MA, Pluim J. elastix: a 
toolbox for intensity‐based medical image registration. IEEE Trans 
Med Imaging. 2010;29:196–205.

	53.	 Nilsson M, Szczepankiewicz F, van Westen D, Hansson O. 
Extrapolation‐based references improve motion and eddy‐current 
correction of high B‐value DWI data: application in Parkinson’s 
disease dementia. PLoS ONE. 2015;10:e0141825.

	54.	 Chuhutin A, Hansen B, Jespersen SN. Precision and accuracy of 
diffusion kurtosis estimation and the influence of b‐value selec-
tion. NMR Biomed. 2017;30:e3777.

	55.	 Phillips JJ, Misra A, Feuerstein BG, Kunwar S, Tihan T. 
Pituicytoma: characterization of a unique neoplasm by histolo-
gy,immunohistochemistry, ultrastructure, and array‐based com-
parativegenomic hybridization. Arch Pathol Lab Med. 2010;134: 
1063–1069.



620  |      NILSSON et al.

	56.	 Hutter J, Nilsson M, Christiaens D, et al. Highly efficient diffu-
sion MRI by slice‐interleaved free‐waveform imaging (SIFI).  
In Proceedings of the 26th Annual Meeting of ISMRM, Paris, 
France, 2018. Abstract 5326.

	57.	 Setsompop K, Cohen‐Adad J, Gagoski BA, et al. Improving dif-
fusion MRI using simultaneous multi‐slice echo planar imaging. 
NeuroImage. 2012;63:569–580.

	58.	 Alexander DC. A general framework for experiment design in 
diffusion MRI and its application in measuring direct tissue‐
microstructure features. Magn Reson Med. 2008;60:439–448.

	59.	 Lampinen B, Szczepankiewicz F, van Westen D, et al. Optimal 
experimental design for filter exchange imaging: apparent exchange 
rate measurements in the healthy brain and in intracranial tumors. 
Magn Reson Med. 2017;77:1104–1114.

	60.	 Szczepankiewicz F, Westin CF, Nilsson M. Maxwell‐compensated 
design of asymmetric gradient waveforms for tensor‐valued diffu-
sion encoding. Magn Reson Med. 2019;82:1424–1437.

	61.	 Clark CA, Hedehus M, Moseley ME. Diffusion time dependence 
of the apparent diffusion tensor in healthy human brain and white 
matter disease. Magn Reson Med. 2001;45:1126–1129.

	62.	 Nilsson M, Lätt J, Nordh E, Wirestam R, Ståhlberg F, Brockstedt S. 
On the effects of a varied diffusion time in vivo: is the diffusion in 
white matter restricted? Magn Reson Imaging. 2009;27:176–187.

	63.	 Falk Delgado A, Nilsson M, van Westen D, Falk DA. Glioma 
grade discrimination with MR diffusion kurtosis imaging: 

a meta‐analysis of diagnostic accuracy. Radiology. 2018;287: 
119–127.

	64.	 Yao A, Pain M, Balchandani P, Shrivastava RK. Can MRI predict 
meningioma consistency? A correlation with tumor pathology and 
systematic review. Neurosurg Rev. 2018;41:745–753.

	65.	 Brabec J, Szczepankiewicz F, Englund E, et al. B‐tensor encoding 
in meningiomas: comparisons with histology, microimaging and 
tumor consistency. In Proceedings of the 27th Annual Meeting of 
ISMRM, Montreal, Canada, 2019. 1002.

	66.	 Brynolfsson P, Nilsson M, Olsson LE, Westin CF, 
Szczepankiewicz F. Technical valition of b‐tensor encod-
ing shows the need for standardized acquisition protocols. In 
Proceedings of the 27th Annual Meeting of ISMRM, Montreal, 
Canada, 2019. 553.

How to cite this article: Nilsson M, 
Szczepankiewicz F, Brabec J, et al. Tensor‐valued 
diffusion MRI in under 3 minutes: an initial survey of 
microscopic anisotropy and tissue heterogeneity in 
intracranial tumors. Magn Reson Med. 2020;83:608–
620. https​://doi.org/10.1002/mrm.27959​

https://doi.org/10.1002/mrm.27959

