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Letter to the Editor
NuMA forms condensates through phase
separation to drive spindle pole assembly

Dear Editor,
Chromosome movement in mitosis is

orchestratedbyamicrotubule-basedpro-
tein machinery called the mitotic spindle
(Hyman and Karsenti, 1996; Compton,
2000). Thebipolar organization of themi-
totic spindle is essential for the accurate
segregation of chromosomes into daugh-
ter cells. Defects in bipolar spindle as-
sembly can cause chromosome instabil-
ity and aneuploidy, which are frequently
observed in malignant tumors (Silkworth
et al., 2009; McGranahan et al., 2012).
The nuclear mitotic apparatus (NuMA) is
a protein critical for bipolar spindle or-
ganization primarily due to its functions
in the formation of spindle poles. Dys-
regulation of NuMA has been reported in
a number of cancer types and is associ-
ated with cancer development (Bruning-
Richardson et al., 2012). Therefore, it is
of great significance to understand the
molecular mechanisms by which NuMA
contributes to spindle pole assembly.
NuMA contains an amino-terminal do-

main that mediates its interaction with
the dynein motor complex, a central
coiled-coil domain responsible for its
self-assembly, and a carboxyl terminus
thatmediates its binding tomicrotubules
and cortical proteins (Figure1A; Compton
and Cleveland, 1994; Cleveland, 1995).
NuMA is localized in the nucleus in in-
terphase cells and translocated to the
spindle pole and cortex during mitosis
(Lydersen and Pettĳohn, 1980). Cortical
NuMA is a fundamental component of
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the force-generatingmachinery that regu-
lates spindle orientation (Okumura et al.,
2018), whereas spindle pole-localized
NuMA plays an important role in focus-
ing microtubules at the poles (Chu et al.,
2016). Despite the wealth of informa-
tion about the consequences to spin-
dles when NuMA function is perturbed,
little is known about how NuMA orga-
nizes microtubule minus ends at spindle
poles.
To gain mechanistic insight into the

role of NuMA in spindle pole formation,
we examined its subcellular localization
in HeLa cells. Consistent with the
previous study (Chu et al., 2016), both
endogenous NuMA and exogenous
NuMA were found to be densely
concentrated in the spindle poles of
metaphase cells, and endogenous NuMA
also showed robust localization at
the cell cortex (Supplementary Figure
S1A and B). Depletion of NuMA by
specific siRNAs induced a high rate of
multipolar spindles (Supplementary
Figure S1C–E). To identify the region
responsible for the function of NuMA in
spindle pole assembly, we constructed a
series of truncated mutants (Figure 1A).
Immunofluorescence staining revealed
that only the carboxyl terminus of NuMA
(NuMA-C) behaved similarly to the full-
length protein andwas able to rescue the
spindle defects caused by NuMA deple-
tion (Figure 1B–D). Interestingly, time-
lapse imaging showed that green fluo-
rescent protein (GFP)-NuMA condensates
were gradually fused into the spindle
pole in metaphase cells (Supplementary
Figure S1B), suggesting that this protein
may undergo liquid–liquid phase
separation during mitosis. To examine
the mobility of NuMA molecules, we
performed fluorescence recovery after

photobleaching (FRAP) experiments.
We found that the fluorescence signal of
GFP-NuMA in the spindle pole was largely
recovered at 50 sec after bleaching, in-
dicating that these droplets have liquid-
like properties (Figure 1E and F). Taken
together, these results suggest that
NuMA has a phase-separation property
during mitosis, which may be critical for
the organization of spindlemicrotubules.
We then sought to identify the domain

of NuMA that mediates its phase separa-
tion. Phase separation is typically driven
by intrinsically disordered regions (low-
complexity regions) and/or multivalent
weak interactions, such as electrostatic
and hydrophobic interactions (Dunker
et al., 2001; Mitrea and Kriwacki, 2016).
Therefore, we analyzed the electrical
charge, hydrophobicity, and secondary
structure of NuMA. We noticed that
NuMA-C is intrinsically disordered and
contains a number of charged and
hydrophobic segments (Supplementary
Figure S2A), indicating that this region
may mediate its phase separation. To
test this possibility, we purified GFP-
tagged truncated mutants of NuMA-C
and analyzed the phase-separation
capacity in a buffer containing 10%
polyethylene glycol (PEG)-8000.
Fluorescence microscopy revealed that
purified GFP-NuMA-C, but not GFP-NuMA-
N or GFP-NuMA-M, formed droplets
(Figure 1G–I; Supplementary Figure
S2B) and that the droplets exhibited
concentration-dependent liquid–liquid
phase separation (Supplementary Figure
S3A–C). In addition, GFP-NuMA-C formed
droplets in a PEG-8000 concentration-
dependent manner (Supplementary
Figure S3D–F). FRAP analysis further
revealed that the fluorescence signal of
GFP-NuMA-C was quickly recovered after
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Figure 1 Phase separation of NuMA promotes spindle pole formation. (A) Schematic representations of full-length (FL) NuMA and truncated
mutants. (B) Fluorescence images showing the localization of GFP-tagged full-length NuMA and truncated mutants in HeLa cells. Scale bar,
5 μm. (C and D) Immunofluorescence images of mitotic spindles (C) and quantification of the percentage of mitotic cells with multipolar
spindles (D, n = 3 independent experiments) for HeLa cells transfected with the indicated siRNAs and plasmids. For each experiment, 60
mitotic cells were quantified. Scale bar, 5 μm. (E and F) FRAP analysis (E) and quantification (F, n = 2 independent experiments) of GFP-
NuMA signals in HeLa cells. Scale bar, 2 μm. (G and H) Representative images (G) and size (H, n = 100 droplets from three independent
experiments) of droplets formed by purified GFP-NuMA-C wild type (WT) or proline-to-alanine (P/A) mutant. Scale bar, 10 μm. (I) Time-lapse
microscopy showing the fusion of GFP-NuMA-C droplets into a larger droplet. Scale bar, 10 μm. (J and K) FRAP analysis (J) and quantification
(K, n = 3 independent experiments) of droplets formed by 10 μM purified GFP-NuMA-C. Scale bar, 5 μm. (L) Fluorescence images showing
the localization of GFP-NuMA-C wild type and mutant in metaphase HeLa cells. Scale bar, 5 μm. (M and N) Immunofluorescence images of
mitotic spindles (M) and quantification of the percentage of mitotic cells with multipolar spindles (N, n = 4 independent experiments) for
HeLa cells transfected as indicated. For each experiment, 60 mitotic cells were quantified. Scale bar, 5 μm. Data are shown as mean ± SD.
***P < 0.001, ****P <0.0001.
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bleaching (Figure 1J and K). Collectively,
these data demonstrate that NuMA-C un-
dergoes phase separation in vitro.
Next, we investigated whether

NuMA-Cpromotes spindle pole formation
through its phase-separation property.
We assessed the amino acid composition
of NuMA and found that NuMA-C
contains a strikingly high percentage
of prolines (Supplementary Figure S4A),
which are conserved among different
species (Supplementary Figure S4B).
To explore whether these prolines
are required for NuMA-C to undergo
phase separation, we constructed two
NuMA-C mutants, each containing a
set of proline-to-alanine mutations;
in the GFP-NuMA-C-P/A-1 mutant, the
first 20 prolines were mutated, while
in the GFP-NuMA-C-P/A-2 mutant,
the last 18 prolines were mutated.
In vitro phase-separation assays with
purified proteins showed that both
mutants reduced the size of GFP-NuMA-C
droplets (Supplementary Figure S5A),
indicating that both sets of mutations
attenuated the ability of NuMA-C to
undergo phase separation. To further
confirm the role of prolines in regulating
the NuMA phase-separation property
and function, we constructed another
mutant (GFP-NuMA-C-P/A), in which all
the 38 prolines in the carboxyl terminus
were mutated to alanines. Microtubule
co-sedimentation assays showed that
the P/A mutations did not disrupt
the interaction between GFP-NuMA-C
and microtubules (Supplementary
Figure S5B). However, the P/A mutant
exhibited a significantly weakened
phase-separation property (Figure 1G
and H). In addition, this mutant was
localized at the cell cortex instead of
spindle poles (Figure 1L; Supplementary
Figure S5C and D). Given that NuMA
is recruited to the cell cortex via its
interaction with cortical proteins (Zhu
et al., 2011; Okumura et al., 2018;
Takayanagi et al., 2019), it will be
interesting to investigate whether the
phase-separation property of NuMA
controls its interaction with cortical
proteins to promote its localization at
the cell cortex. Furthermore, we found

that the P/A mutant could not rescue
the spindle pole defects caused by
NuMA depletion (Figure 1M and N).
These results therefore suggest that
the conserved prolines in NuMA-C
are essential for its phase-separation
property and its role in promoting spindle
pole formation.
NuMA is known to stimulate the as-

sembly of spindle poles and microtubule
asters in dividing cells (Harborth et al.,
1999; Nachury et al., 2001; Wiese et al.,
2001). However, the underlying molecu-
lar mechanisms remain elusive. In this
study, our findings suggest that the
carboxyl terminus of NuMA triggers its
phase separation to form condensates,
which in turn promote spindle pole as-
sembly (Supplementary Figure S6). In
this scenario, thephase-separationprop-
erty of NuMA may act as an efficient
mechanism to regulate its localization
at spindle poles and subsequently ac-
cumulate diverse proteins at spindle
poles for organizing microtubules. Cer-
tainly, alternative mechanisms may ex-
ist to regulate the localization and ac-
tion of NuMA to promote spindle pole
assembly. In the future, it will be impor-
tant to examine whether the dysregula-
tion of NuMA in tumor tissues disrupts
its phase-separation property to cause
spindle defects. In addition, further stud-
ies are warranted to elucidate how NuMA
phase separation-mediated spindle pole
assembly controls cell division in vari-
ous physiological processes and cancer
development.
[Supplementary material is available at
Journal of Molecular Cell Biology online.
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