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Abstract

Given the critical risks to public health and safety that can involve lapses in attention (e.g., through implication in workplace
accidents), researchers have sought to develop cognitive-state tracking technologies, capable of alerting individuals
engaged in cognitively demanding tasks of potentially dangerous decrements in their levels of attention. The purpose of
the present study was to address this issue through an investigation of the reliability of optical measures of cortical
correlates of attention in conjunction with machine learning techniques to distinguish between states of full attention and
states characterized by reduced attention capacity during a sustained attention task. Seven subjects engaged in a 30
minutes duration sustained attention reaction time task with near infrared spectroscopy (NIRS) monitoring over the
prefrontal and the right parietal areas. NIRS signals from the first 10 minutes of the task were considered as characterizing
the ‘full attention’ class, while the NIRS signals from the last 10 minutes of the task were considered as characterizing the
‘attention decrement’ class. A two-class support vector machine algorithm was exploited to distinguish between the two
levels of attention using appropriate NIRS-derived signal features. Attention decrement occurred during the task as revealed
by the significant increase in reaction time in the last 10 compared to the first 10 minutes of the task (p,.05). The results
demonstrate relatively good classification accuracy, ranging from 65 to 90%. The highest classification accuracy results were
obtained when exploiting the oxyhemoglobin signals (i.e., from 77 to 89%, depending on the cortical area considered)
rather than the deoxyhemoglobin signals (i.e., from 65 to 66%). Moreover, the classification accuracy increased to 90% when
using signals from the right parietal area rather than from the prefrontal cortex. The results support the feasibility of
developing cognitive tracking technologies using NIRS and machine learning techniques.
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Introduction

Attention to a cognitively demanding task cannot be maintained

at a high level indefinitely. During a sustained attention task, as

time elapses, the level of attention progressively diminishes

negatively impacting task performance [1]. Lapses in attention

are behaviorally characterized by an increase in reaction time

(RT; e.g., [2]) a phenomenon that can impact severely on activities

of daily living. For instance, work-related injuries [3,4] and traffic

accidents [5] are typical consequences of attention decrement.

Recently, researchers have sought to develop cognitive tracking

technologies capable of alerting users to such degradation in their

attention levels [6,7]. The aspiration is that such technology can

facilitate optimal human-machine interactions in real-life settings,

both in the workplace and in the home.

While several indicators have been suggested for the detection

of task-related changes in attention levels such as blink duration

and rate [8], heart rate variability [9] and electroencephalographic

measures [6] there is, however, no accepted ‘‘gold standard’’

technology for detecting attention decrement [7], aside from RT

measures. Although some authors suggest that EEG-measured

changes in brain activity might represent the most promising

indicator of attention decrement [5], other studies have proposed

that hybrid systems - based on the multimodal fusion of a number

of indicators - may allow for more robust performance [10,11]. In

this vein, optical neuroimaging, namely Near Infrared Spectros-

copy (NIRS), may represent a viable additional and complemen-

tary method for cognitive state monitoring. The purpose of this

study is to address the issue by investigating the capability of this

increasingly exploited neuroimaging method (i.e., NIRS), to detect

real-time changes in brain activity related to decrements in the

level of attention during a sustained attention task. In particular,

this study investigates the sensitivity of (i) different NIRS-measured

hemodynamic variables as well as (ii) different attention-related

cortical areas to the attention decrement phenomenon.

NIRS is a versatile neuroimaging tool increasingly adopted in

the neuroimaging-community [12,13]. Ayaz et al. [14] assert that

‘‘NIRS is safe, highly portable, user-friendly and relatively inexpensive, with

rapid application times and near-zero run-time costs’’ [15–19]. The

modality has potential, as a portable measurement system for

cognitive state monitoring outside the laboratory environment

[20,21]. Functional NIRS utilizes, as fMRI does, the tight coupling

between neuronal activity and regional cerebral blood flow [22] to

infer brain activation state from changes in oxy- (O2Hb) and

deoxy-hemoglobin (HHb) concentrations characterizing the cor-

tical hemodynamic response. Recently NIRS-derived cortical
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hemodynamic responses have been demonstrated to be sensitive to

attention decrement during sustained attention tasks [23–30].

Further, it has been demonstrated through machine learning

studies based on NIRS-measured hemodynamic variables (i.e.,

O2Hb and HHb) that the NIRS modality has some utility as a

technology for active brain computer interfaces (e.g., [31–36]).

Taken together, these findings suggest the potential of the

technique as the measurement basis for an automated cognitive

tracking technology. However, to date there have been no studies

conducted to evaluate whether or not NIRS signals could be used

for robust classification of different levels of attention during tasks

requiring sustained attention. The primary object of past NIRS

studies on sustained attention focused on better understanding the

relationship between NIRS-measured cortical activity and degra-

dation in behavioral performance. The current study aspires to go

a step further by investigating the performance of a NIRS-based

classification analysis aiming at distinguishing changes in the level

of attention.

It is also worth noting that most of the aforementioned NIRS

studies focused on one area of interest, the prefrontal cortex (PFC,

[23–25,27–30]). The PFC represents an appropriate candidate to

investigate attention-related changes in brain activity since it has

been described on numerous occasions as a cortical area

significantly involved in human cognition (e.g., [37]). There are

also convenient, practical benefits to mounting NIRS probes on

this scalp area. One such benefit is that compared to other, more

dorsal areas, the scalp in this region is hairless. Hair presents a

well-known problem in NIRS as it can impact dramatically on

both photon absorption and the coupling of the probes with the

underlying scalp [38]. The associated optical losses can severely

degrade the signal-to-noise ratio reducing the reliable interpret-

ability of the signal. Another important benefit of PFC-oriented

measurement is that by focusing on a single specific cortical area,

the measurement setup is consistent with the aim of developing

practical, ambulatory cognitive-state tracking technologies since it

allows for a reduction in the number of measurement channels

required at the scalp level. However, by investigating PFC activity

only, NIRS studies in the field may miss other relevant

information conveyed, potentially, by activity in other task-

relevant cortical areas. Excluding information from such areas

could limit the potential classification accuracy of NIRS-based

classification of cognitive states. It is then crucial to investigate the

potential of other attention-related areas’ activity, as measured

through NIRS, to better capture the attention decrement. Lesion

studies in patients [39] as well as neuroimaging studies in healthy

subjects [40–42] suggest a significant role for the right parietal area

in sustained attention processes and changes in activity under this

area has been suggested as involved in attention changes

[26,43,44]. This cortical region represents then another potential

candidate for the discrimination of changes in the level of

attention. Testing this hypothesis is an important aspect of the

research described here.

Selecting the most discriminative variable(s)/feature(s) is an

important aspect of any machine-learning problem [45]. Given

that none of the aforementioned sustained attention studies

performed any NIRS-based classification analysis, there are

currently no guidelines concerning which NIRS variables to focus

on in order to detect as accurately as possible any decrement in the

level of attention. While some previous studies demonstrated that

the HHb variable was insensitive to time-on-task during a

sustained attention task (e.g., [28]), others have described

significant changes in both the HHb and O2Hb variables

throughout sustained attention tasks [23,24,46]. In the study

described here, we hope to shed light on these discrepancies by

investigating classification performance based on the O2Hb

variable, the HHb variable and a combination of both.

In summary, as part of efforts to develop effective cognitive-state

tracking technologies, this paper reports on a study investigating

the potential of detecting attention decrements during a sustained

attention task through optical measurement of related brain

activity. Beyond this primary investigation, we also seek to test the

hypotheses that (i) in addition to the PFC, other attention-related

areas (i.e., the right parietal area) may facilitate the detection of

attention decrement with good accuracy and (ii) exploiting both

NIRS variable(s) (i.e., O2Hb and HHb) is valuable in improving

performance for such efforts.

Materials and Methods

Participants
Seven male volunteers took part in this classification study (aged

29.066.6 years). All subjects were right-handed according to the

Edinburgh Questionnaire [47]. None of the subjects reported that

they suffered from neurological, respiratory, and cardiovascular

disease or medication, which might affect brain perfusion and

function. All procedures were approved by the local Institutional

Review Board for the Protection of Human Subjects (CPP Sud-

Méditerranée II, number 2010-11-05) and complied with the

Declaration of Helsinki for human experimentations. Each subject

provided written informed consent prior to participation.

Experimental Set-up
Experiments were conducted in a quiet and dimly lit room.

Each subject performed the entire protocol once. The subjects

were seated at a table on which a stimulus light (white) source was

positioned level with the eyes at a distance of 1 m. The left

forearm of each subject was rested upon the surface of the table.

The dominant hand (i.e., right hand) was held in a neutral position

in the sagittal plane. The angle of the elbow was set to 110u (with
180u corresponding to full elbow extension). The thumb was fixed

against a dynamometer allowing direct measurement of abduction

force (Captels, Saint-Mathieu-de-Tréviers, France).

Experimental Protocol
First, a standard warm-up phase was performed consisting of

twenty static submaximal contractions of the right abductor

pollicis brevis (i.e., through a thumb abduction task) in an

intermittent mode. The level of force was maintained for five

seconds followed by five seconds of recovery and was gradually

increased after the tenth contraction. Visual feedback of the level

of force generated was given in real-time on a computer screen

positioned in front of the subjects. Once the warm-up phase was

realized, the computer screen was turned off and a simple visual

RT task was performed over the course of one minute in order to

familiarize the subjects with the paradigm. The task onset signal

consisted of a flash (150 ms duration) delivered using the light

source (i.e., photodiode arrays consisting of a few dozen emitters).

A randomly varying inter-stimuli interval (ISI) was set with a range

of between two and fifteen seconds. The motor response requested

from the subject was a thumb abduction task to be performed as

quickly as possible in response to the visual stimulus. In this sense,

the task exploited in our protocol closely replicated the charac-

teristics of the psychomotor vigilance test (PVT) developed by

Dinges et al. [48]. Such a simple RT task has been shown to be

highly sensitive to changes in attention [2,48]. Further, during

simple RT tasks, the stimulus saliency remains constant through-

out the task and the maintenance of optimal performance is

therefore only mediated through top-down processes without any
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stimulus-driven increase in the level of attention. Following the

familiarization RT task, the subjects were instructed to rest for two

minutes in order to produce a reference resting state in the NIRS

signals. This was followed by a sustained attention task of thirty

minutes whose characteristics were the same as those during the

one minute familiarization task. Over the course of the experi-

ment, event labels were set using the NIRS acquisition software

(V6.0, Artinis, The Netherlands) in order to demarcate the periods

of interest (i.e., baseline and task). Immediately after the

experiment, the rating of perceived exertion (RPE) was evaluated

by means of the Borg scale (from 6 to 20; [49]). The time course of

the experimental protocol is presented in Figure 1.A.

Measurements
Reaction time. The force/motor responses and stimuli

signals were synchronized and digitized at 2,048 samples per

second using the Biopac MP100 data acquisition system (Biopac

System, Inc., Santa Barbara, CA).

Near-Infrared spectroscopy. The NIRS technique has

been described elsewhere [13]. NIRS measurements were

performed using a continuous wave (CW) multichannel NIRS

system (Oxymon Mark III, Artinis, The Netherlands). The data

acquisition sampling rate was set to 10 Hz. This system allows

measurement of changes in optical density at two different

wavelengths in the near-infrared range (nominal wavelengths

763 and 855 nm) before converting these into changes in

concentration levels of [O2Hb] and [HHb]. A subject-specific

differential pathlength factor (DPF) was used for this conversion

based on the age of each subject [50] and this allowed

measurement of the concentration changes of [O2Hb] and

[HHb] in mM [51]. The emitter-detector distance was set to

3.5 cm. In the present study, the measurements were performed

using seven channels over the regions of interest. Three were

positioned over the frontopolar part of the left, the right and the

medial prefrontal cortex (lPFC, rPFC and mPFC, respectively),

and four over the right parietal area. The probes were placed

according to the modified international EEG 10–10 system [52]

and mounted on a custom-made cap fixated by several bands

surrounding the head of the subject. According to the EEG 10-10

system, the locations of the centers of the channels over the lPFC,

rPFC and mPFC corresponded to the Fp1, Fp2 and Fpz points,

respectively. The centers of the 4 channels set in a square template

over the right parietal area corresponded to the P6 point. A

representation of the channel locations can be seen in Figure 2.

During the probe placement, the Oxysoft software (V6.0, Artinis,

The Netherlands) allowed real time assessment of the quality of the

NIRS signals for each of the seven channels based on the light

source power level and the receiver gain. Once an acceptable

signal-to-noise ratio was obtained according to the signal quality

assessment, a zero baseline was set and the protocol was executed.

Data Analyses
Behavioral data. The RT data was processed through the

Acknowledge software associated with the Biopac system (Ac-

knowledge 3.8.1, Biopac Systems, Santa Barbara, CA, USA). The

RT was measured as the time between the flash stimulus (target

stimulus) and the beginning of force production. Responses were

considered correct if the dynamometer was engaged between 150

and 600 ms after stimulus onset. All other responses were

considered incorrect. Such a cut-off time window has been

exploited in other RT studies (e.g., [53]) and facilitates the

exclusion of outlying RT values in the dataset. We calculated RTs

of the first ten and last ten minutes of the task and then computed

averages of the RTs obtained for these two periods.

Near-Infrared spectroscopy. Signal preprocessing: The

oxy-and deoxy-hemoglobin signals acquired from the NIRS

instrumentation were initially filtered using a fourth order digital

low-pass Butterworth filter with a cut-off frequency of 0.1 Hz in

order to remove the heart rate and respiratory components [54].

Next, movement artifacts were removed on specific, visually

identified channels by using moving standard deviation and spline

interpolation routines in Matlab (Mathworks, Natick, MA). This

method has been validated using simulated, as well as real NIRS

signals and has been shown to improve the detection of evoked

hemodynamic responses (see [55], for details). Finally, given that

the datasets contained information regarding cortical hemody-

namic changes over several regions of the brains and from many

different subjects, a z-normalization of the signals was performed.

From the resulting signals, a supervised classification procedure

was performed by means of a linear support vector machine

(SVM) algorithm.

NIRS data classification using support vector machines: SVM

can be considered as one of the most powerful classification

algorithms as it is able to learn linear decision boundaries as well as

more complex ones with relatively low complexity and few user-

defined hyper parameters [56]. Nonlinear decision boundaries are

learned using the ‘‘kernel-trick’’ which consists of mapping the

data into a higher-dimensional space using a kernel function and

finding a linear separation in that space. An example of kernel

function is the Radial Basis Function (RBF) defined as follows:

K(x,y)~ exp (
{ x{y 2

�
�

�
�

2s2
)

Where x and y are two data points and s is the width of the

RBF.

In the current study, we used a linear SVM (i.e., using linear

kernel) as the decision boundary between the two brain states (i.e.,

full attention vs. attention decrement) appeared to be sufficiently

linear. The linear SVM has already been used in previous studies

on attention decrement detection based on EEG signals,

illustrating high classification accuracy results (e.g., [7]). Like

other linear classifiers (e.g., linear discriminant analysis, LDA), a

linear SVM uses a hyperplane to separate data points from each

class. Additionally, the linear SVM chooses the hyperplane with

the maximal distance from the nearest training points. This

distance is called the ‘‘margin’’ and the nearest training points to

the optimal hyperplane are called ‘‘support vectors’’. Figure 1.C.

shows an illustrative example of an optimal hyper-plane as

constructed by a linear SVM. Margin maximization increases

generalization ability of the classification algorithm. However,

such a learning scheme is sensitive to outliers and overtraining. For

this reason, a regularization parameter C is used to reduce data

over-fitting. Depending on C, the optimal margin will either

expand or diminish and more or less points will subsequently

become support vectors, respectively [56,57]. In the current study,

we used the default value of 1 for the regularization parameter C

with the software Weka (version 3.6.8, University of Waikato

Hamilton, New Zealand). We designed the SVM for two-class

classification (i.e., full attention versus attention decrement). The

NIRS signals from the first ten minutes of the task were considered

as characterizing the ‘full attention’ class, while the NIRS signals

from the last ten minutes of the task were considered as

characterizing the ‘attention decrement’ class (this assumption was

then supported by analyzing the RT values as described below; see

RT results, Figure 3). Classification analyses were performed over

data segmented and averaged over one second duration epochs.

NIRS to Detect Lapses in Attention
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Thus, for each subject, six hundred time points were obtained for

each class (i.e., sixty seconds6ten minutes) and constituted the

corresponding point clouds within the feature space. The signal

feature selected was the magnitude (i.e., averaged for each one

second duration epoch) of concentration values (in mM) of the

considered NIRS variable(s): [O2Hb], [HHb] or both [O2Hb] and

[HHb]. Also, classification was based on the NIRS signals from (i)

the PFC area exclusively, (ii) the right parietal area exclusively and

(iii) both the PFC and the right parietal areas. These distinct

feature vectors allowed us to investigate classification accuracy

over a range of NIRS variables and cortical area(s). By doing so,

the resultant feature pool was comprised of between three (i.e.,

using [O2Hb] or [HHb] from the three channels over the PFC)

and fourteen features (i.e., using both [O2Hb] and [HHb] from

the seven recorded channels). Data obtained from six of the seven

subjects were exploited as the training set. Once the training step

was realized, each class of the resulting feature space consisted of

three thousand six hundred points (i.e., six hundred points6six

subjects). The test data set consisted of the data of the remaining

subject. This process of leave-one-out cross-validation was

repeated to assess the classification accuracy across all subjects.

Classification accuracy was calculated as the percentage of

correctly classified epochs for each part of the data (i.e., first or

last minutes of task). All of the processing steps are presented in

Figure 1.

Statistical Analysis
Statistica software (version 7.0, Statsoft, Oklahoma, United-

States) was used for all analyses. All data were examined for

normality using skewness and kurtosis tests. The Student t-test was

used to test for any significant effect of time (i.e., first ten versus last

ten minutes of the task) on the changes in RT. Effect size was

calculated on the RT values using Cohen’s effect size d (d effects:

small $0.2, medium $0.5, large $0.8), defined as the mean

change score divided by the standard deviation of change [57].

The significance level was set at p,.05. Data are presented as

mean 6 standard deviation (SD).

Results

Behavioral Results
As expected, the RT results demonstrated that attention

decrement occurred towards the end of the task. The Student t-

test demonstrated that RT values were significantly higher in the

last ten than for the first ten minutes of the task (t6 = 3.1; p,.05).

The Cohen’s effect size d value for this difference was 0.7,

corresponding to a medium-to-large effect. These results are

presented in Figure 3. The RPE score after the experiment was

14.961.7, a value corresponding to ‘‘hard’’ according to the scale.

Classification Accuracy
All the classification accuracy results, including analyses

exploiting [O2Hb], [HHb] and both [O2Hb] and [HHb] as

features of interest from the PFC area exclusively, the right

parietal area exclusively and both the PFC and the right parietal

areas, are presented in Figure 4. The main results indicate that (i)

the highest classification accuracy results were obtained when

exploiting the oxyhemoglobin signals (i.e., from 77 to 89%,

depending on the cortical area considered) rather than the

deoxyhemoglobin signals (i.e., from 65 to 66%) and (ii) the

classification accuracy was increased to about 90% when using

signals from the right parietal area rather than from the prefrontal

cortex.

Discussion

This study aimed to investigate the potential of harnessing

NIRS-measured cortical activity for the detection of time-on-task

related changes in the level of attention during a sustained

Figure 1. Illustration of the experimental protocol and analysis procedure. A. Time course of the experimental protocol. RPE: Rate of
Perceived Exertion. B. NIRS signals preprocessing steps. Left: O2Hb signals. Right: HHb signals. C. NIRS signals classification based on SVM.
From top to bottom: Filtered, artifact-free, normalized signals are first exploited in the SVM learning step using six of the seven subjects. A model is
built, represented here by its feature space. Finally, a SVM test is performed using the signals of the single remaining subject and the percentage of
correctly classified epochs is computed. See Methods for further details.
doi:10.1371/journal.pone.0092045.g001

Figure 2. Placement of NIRS probes. Frontal (A) and dorsal (B)
views are represented. Crosses represent locations from the EEG 10-10
system. Empty circles - noted ‘‘S’’ - represent sources and black circles -
noted ‘‘D’’ - represent detector probes.
doi:10.1371/journal.pone.0092045.g002

Figure 3. Changes in mean reaction time from the first ten to
the last ten minutes of the task. A significant increase in RT
occurred at the end (last ten minutes) compared to the beginning (first
ten minutes) of the task. Cohen’s effect size d value for this difference is
specified above the centered arrow. *p,.05. Vertical bars represent SD.
doi:10.1371/journal.pone.0092045.g003
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attention task. Our experimental design produced a decrement in

the level of attention as revealed by the significant increase in RT

in the last ten compared to the first ten minutes of the task (p,.05;

d = 0.7). The results demonstrate that relatively good classification

accuracy can be obtained using NIRS variables (O2Hb and/or

HHb) to detect the changes in the attentional state observed at the

behavioral level. It is worth noting that the classification accuracy

was lowest when exploiting the HHb signals only (i.e., from 65 to

67% in average), regardless of the cortical area considered.

Moreover, the classification accuracy was increased to about 90%

when using signals from the right parietal area. These findings are

examined in detail next.

Methodological Considerations and Study Limitations
As already mentioned, the task studied here closely replicated

the characteristics of the psychomotor vigilance test (PVT)

developed by Dinges et al. [48] and an increase in RT has been

previously demonstrated for such a PVT, even for a task of twenty

Figure 4. Detailed classification accuracy results. The classification accuracy results using NIRS signals from the prefrontal (A), the right parietal
(B) and both the prefrontal and the right parietal areas (C) are provided. From left to right, the columns present (i) subject number, the classification
accuracy - in percentage of total classification trials - exploiting (ii) [O2Hb], (iii) [HHb] and (iv) both [O2Hb] and [HHb] as features of interest.
doi:10.1371/journal.pone.0092045.g004
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minutes duration [2]. As expected, a significant increase in RT

occurred during this simple RT task of thirty minutes duration. In

addition to the longer RT, relatively high RPE values were

reported by the subjects (i.e., 14.961.7 on a scale ranging from 6

to 20), which demonstrates the cognitive loading (sustaining of

attention) demanded with such a simple sustained attention task

[58]. Also, Lim et al. [2] have shown that the increase in RT

observed during their simple RT task of twenty minutes duration

was accompanied by high subjective fatigue ratings after the task -

subjective fatigue being well-known to affect sustained attention

abilities [59]. Taken together, these results support the conclusion

that the task exploited in the current study induced a time-on-task

related attention decrement.

As discussed by Shen et al. [7], one weakness of past studies

exploiting EEG to detect attention decrement was the lack of

subject-wise cross-validation in their performance evaluation (e.g.,

[60]). We therefore applied, as in [7], a ‘‘leave-one-out’’ scheme

(which is a conventional approach to evaluate the performance of

machine learning methods for small data sets) in order to evaluate

the subject-independent accuracy performance. Using this leave-

one-out cross-validation procedure, high classification accuracy

was confirmed with up to 90% scores achieved in classifying

attention state based on NIRS signals. The use of such a cross-

validation procedure was particularly appropriate in this study as

we had a relatively small number of subjects (n = 7), a small sample

size which may be considered a study limitation. It is worth adding

the caveat that leave-one-out schemes may induce, for small

sample sizes, a bias in the error estimation [61]. Using a larger

number of subjects would facilitate the exploitation of other

validation schemes such as k-fold cross-validation which may

afford less biased estimations of the model generalization error.

Another potential issue in the current study was the lack of

control for any skin flow contributions to the NIRS signals and

again, this may be regarded as a study limitation. Recent studies

have raised the issue of superficial - extra-cortical - contributions in

NIRS signals, specifically in the O2Hb signal [62]. The analysis of

the photon time-of-flight distribution in time-domain NIRS

[63,64] or the use of additional short emitter-detector separation

as regressors [65,66] have been proposed as methods to separate

cortical and extracortical contributions in NIRS signals. In the

study described here, the clear variability in attention decrement-

sensitivity across the cortical areas investigated does not support

the idea of a global systemic response biasing the feature space.

The observed increased activity from areas known to be involved

in attention suggest that the features identified reflect localized

cortical vascular dynamics. The use of the aforementioned

methods would have however helped identify the precise nature

of the contribution from cortical components in the optical signals

obtained.

The regional variation in the differential path-length factor

(DPF) identified in the literature [67] might also have affected the

measured regional changes in NIRS signals. We exploited a

subject-specific DPF based on the age of each subject as proposed

by Duncan et al. [50] and this allowed the measurement to be

converted into changes in concentration levels of [O2Hb] and

[HHb]. In order to eliminate the heterogeneous effect of regional

DPF variations across the full extent of the measurement area, the

signals were normalized through expression in terms of percentage

changes (Figure 1.B.). Future NIRS investigation might however

implement region-specific DPF in addition to subject-specific DPF.

Finally, our classification procedure specifically aimed at

classifying attention decrement-related lapses in attention, as they

occur during time-on-task activities. To do so, we exploited the

first and last ten minutes of the task to label our classes. An

alternative means to detect changes in the level of attention could

involve labeling the brain states of interest using moment-to-

moment variations in behavioral performance (e.g., RT). Doing so

would facilitate the detection of changes in the level of attention on

shorter time scales, as they occur momentarily, but such an

approach is beyond the scope of the current study.

Region of Interest: Right Parietal Area Versus PFC
This study aimed, in part, at testing the appropriateness of

focusing on the PFC to detect decrements in the level of attention.

The emphasis on the PFC which has characterized research to

date in this field [23–25,27–30] has probably been as a

consequence of an a priori knowledge-driven choice (i.e., the PFC

area has been identified as involved in a large number of cognitive

functioning studies) and because of technical advantages that

presents this hairless scalp area conveniently for NIRS investiga-

tion. In contrast, our experimental investigation has taken a data-

driven approach to deduce which of the attention-related cortical

areas offers the best classification accuracy when investigated using

NIRS. We hypothesized that, given its implication in sustained

attention tasks, the right parietal area would represent another

potentially relevant candidate area over which to discriminate

changes in the level of attention.

For both analyses, based on the PFC or on the right parietal

area signals, relatively good classification results were obtained,

however performance was on average much better when

exploiting NIRS signals recorded over the right parietal area

(see Figure 4.B). This finding is not surprising when one considers

the aforementioned, crucial role of this area in sustained attention

tasks [39–42]. This result raises design dilemmas for NIRS-based

cognitive-state tracking technology: would it be preferable to focus

on the right parietal area – which yields better discrimination and

reduces then the possibility of false positives in the detection of

attention decrement? Or rather, would it be better to continue to

focus on the PFC which offers undeniable technical advantages for

NIRS investigation, but offers poorer sensitivity to attention

decrement? Although the presence of hair over the parietal area

did not impact the classification accuracy results of our study, it

was technically more complex, and hence took more time to set up

than when measuring over the PFC. The problem of obtaining

qualitatively good NIRS signals over hair-covered scalp areas is

well-known from NIRS investigators and has been identified as an

issue in motor area-based brain-computer interface design [16].

The challenge for future NIRS technological developments is to

provide a NIRS optode mounting system which can resolve this

problem of hair-related photon absorption. In such conditions,

focusing on the right parietal area for detecting attention

decrement in a real world context could become more convenient.

It is worth commenting too that the positioning of probes over the

parietal cortices is likely to be much more acceptable to users given

that it is aesthetically less intrusive than the alternative which

would require the mounting of a set of optodes and sensing

technology on the face (i.e., the forehead).

Finally, it is worth commenting on the finding that combining

signals from both the PFC and the right parietal areas did not

improve classification performance accuracy over the use of

features from the right parietal area only in our classification

analyses. This result potentially indicates that, rather than being

additive or even multiplicative, information extracted from neural

signatures of attention decrement over the PFC and right parietal

areas may be redundant. In the purpose of developing practical,

ambulatory cognitive-state tracking technologies, we previously

mentioned that the number of measurement channels required at

the scalp level should be minimized. Thus, the right parietal area
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may, on its own, represent an appropriate measurement area for

NIRS-based detection of attention decrement.

Variable of Interest: O2Hb versus HHb
The second objective of this study was to determine which

NIRS variable(s) should be exploited for the purpose of

distinguishing changes in the level of attention. As mentioned in

the introduction, some authors failed to find any changes in HHb

in response to time-on-task, even during a sustained attention task

of 3 hours duration [28]. The classification results here support the

results of Li et al. [28], and provide further evidence that the HHb

variable has poor sensitivity to time-on-task related changes in the

level of attention. This result can be explained by the existence of

smaller changes in HHb compared to that in O2Hb during

neurovascular coupling - a phenomenon well ‘‘represented’’ by the

balloon model [68]. Also, changes in O2Hb have been described

to more directly reflect cortical activation than HHb due to its

superior contrast-to-noise ratio [69], and previous NIRS studies

have even proposed that researchers should focus on O2Hb -

rather than HHb - as the variable of interest to determine changes

in cortical activity [26,70].

The combination of both O2Hb and HHb variables in our

classification analysis, in some cases improves performance. This

increase is minor when measured over the right parietal area

(about 1%) and the combination of variables in that example is of

minimal utility. As one problem in developing useful cognitive-

state tracking technologies is that of reducing its computational

requirements [6] here again, a choice has to be made between two

alternatives, that is: either (i) exploiting both the O2Hb and the

HHb variables as features of interest in order to marginally

improve performance at the cost of increased computational

overhead (i.e., by doubling the dimension of the feature space) or

(ii) focusing on the O2Hb to reduce the computational cost with a

minor loss in classification performance. In our opinion, the latter

alternative appears to be the more appropriate choice for the

purpose of future real-time applications although it depends on the

precise use-case envisaged.

Conclusion and Perspectives
To the best of our knowledge, the present study is the first to

describe an approach to detect changes in the level of attention

through monitoring hemodynamic signals and the results may

serve as a further step towards the development of a NIRS-based

cognitive state tracking system. Our data-driven approach leads to

the conclusion that (i) the right parietal area represents a better

choice for the positioning of optodes as it is less intrusive and more

sensitive than the PFC and (ii) the O2Hb variable appears to be

sufficiently sensitive for characterization of attention decrements as

they occur in cortical areas. The results also demonstrate that

optical neuroimaging constitutes a relevant method of significant

potential for cognitive state monitoring. We feel the method may

have most benefit through integration within a hybrid system

context where a combination of complementary modalities (e.g.,

EEG and NIRS) may provide more robust performance over each

modality used in isolation.
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