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Tripterygium wilfordii Hook. f. (TWHF) is a traditional Chinese herbal medicine and widely

used to treat diabetic kidney disease in China. Emerging evidences have revealed

its ability to attenuate diabetic nephropathy (DN). Tripterygium wilfordii polyglycosides

(TWPs), triptolide (TP), and celastrol are predominantly active compounds isolated from

TWHF. The effects and molecular mechanisms of TWHF and its active compounds

have been investigated in recent years. Currently, it is becoming clearer that the effects

of TWHF and its active compounds involve in anti-inflammation, anti-oxidative stress,

anti-fibrosis, regulating autophagy, apoptosis, and protecting podocytes effect. This

review presents an overview of the current findings related to the effects andmechanisms

of TWHF and its active compounds in therapies of DN, thus providing a systematic

understanding of the mechanisms and therapeutic targets by which TWHF and its active

compounds affect cells and tissues in vitro and in vivo.

Keywords: diabetic nephropathy, Tripterygium wilfordii Hook f., tripterygium wilfordii polyglycosides, triptolide,

celastrol

INTRODUCTION

Diabetic nephropathy (DN) is defined as decreased renal function with persistent clinically
detectable proteinuria (1). As a serious microvascular complication of types 1 or 2 diabetes mellitus
(DM), DN occurs in∼25–40% of patients with DM, and has become the leading cause of end-stage
renal disease (ESRD) in China (2, 3). Approximately 463million people suffers fromDMworldwide
in 2019, and are expected to raise up to 700 million untill 2045 (4).

Proteinuria, an independent risk factor of disease progression, is the most important clinical
characteristic of DN. The presence of microalbuminuria can increase all-cause mortality in
patients with diabetes mellitus (DM) (5). Without early intervention, ∼50% of DM patients with
microalbuminuria will progress to macroalbuminuria (6, 7). Although several recent studies have
confirmed that angiotensin-converting enzyme inhibitors (ACEIs)/angiotensin receptor blockers
(ARBs) can reduce DN proteinuria and delay disease progression (8, 9), these have been shown to
be ineffective in DN patients with normal blood pressure (10).
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FIGURE 1 | The chemical structure of triptolide and celastrol.

Various traditional Chinese herbal medicine (CHM) has been
shown to be effective in the treatment of proteinuria (11, 12).
Tripterygium wilfordii Hook. f. (TWHF), also known as Lei
Gong Teng, is a traditional CHM which is widely used in the
treatment of the inflammation and autoimmune disorders (13–
15). Based on its diverse pharmacological activities, TWHF has
been used to treat different diseases, such as cancer, rheumatoid
arthritis, and Crohn’s disease (16–18). Recent experimental and
clinical studies have demonstrated that TWHF could significantly
reduce proteinuria, protect renal function, and attenuate kidney
injury (19–21).

Several randomized controlled clinical trials have found that
TWHF possibly imparts nephroprotective effects by decreasing
proteinuria, serum creatinine (Scr) levels, and blood urea
nitrogen (BUN) levels (22–24). A network pharmacology
research showed that TWHF may play a role in treating DN
through AGE-RAGE signaling pathway, TNF signaling pathway,
IL-17 signaling pathway, insulin resistance, and calcium signaling
pathway (25). However, the underlying mechanisms by which
TWHF and its active compounds attenuate proteinuria in DN
remain unclear. This review discusses the molecular mechanisms
of TWHF therapies in proteinuria in DN.

MAIN ACTIVE COMPOUNDS OF TWHF

TWHF belongs to genus Tripterygium of family celastraceous,
and its main bioactive ingredients include terpenoids,
tripterygium wilfordii polyglycosides (TWPs), lignans,
glycosides, and alkaloids. The terpenoids of TWHF are
constituted by sesquiterpenes, diterpenes (triptonide, tripdiolide,
and triptolide), triterpenes (wilforlide A, pristimerin, and
celastrol) (26, 27).

TWPs, triptolide (TP) and celastrol, predominantly active
natural products isolated from TWHF, are mainly used to treat
DN (Figure 1). As the fat-soluble mixture extracted from the root
of TWHF, TWPs are the first CHM studied and used in anti-
inflammatory and immune regulation (28). In 1972, Kupchan et
al. first isolated and characterized TP from TWHF (26). Celastrol
was first isolated from TWHF for the activator of the mammalian
heat shock transcription factor 1 (29). The pharmacological
activities and mechanisms of TWHF and its active compounds
have been extensively investigated inmany kidney diseasemodels
(Table 1, Figures 2, 3).

EFFECTS, MECHANISMS, AND
THERAPEUTIC TARGETS OF TWPS
AGAINST PROTEINURIA AND KIDNEY
INJURY IN DN

Anti-inflammatory Effects
Chronic systemic inflammation is associated with kidney
injury, and animal and human studies have established
that inflammation is a cornerstone in the development and
progression of DN (68, 69). Inflammation can alter or interfere
with the regulation and perfusion distribution can induce kidney
injury, thereby enhancing the DN progression. Overproduction
of Advanced glycation end products (AGEs)or damage from
degradationmay activate inflammation, which, in turn, promotes
DN (70). Thus, the regulation of inflammation is key to the
development of treatment schemes for kidney disease.

TWPs exhibit anti-inflammation activity in DN rats. TWPs
improve renal inflammatory injury in DN rats by reducing
the levels of inflammatory cytokines, such as IL-1, IL-17 and
interferon- γ (IFN-γ) (30). TWPs downregulate TNF-α, whereas
it upregulated IL-4 (anti-inflammatory T-helper cell type 2
cytokine) in renal tissues (31). The JAK2/STAT3 signaling
pathway regulates a broad range of biological effects such as
cell proliferation, differentiation, inflammation, and apoptosis
(71). Inhibiting JAK2/STAT3 activation, which contributes to the
pathogenesis of DN, has been shown to be a novel therapeutic
scheme for the treatment of this disease (72). In DN rats, TWPs
reduce the levels of BUN, Scr and improve kidney function, and
also effectively blank the inflammatory response by inhibiting
the activity of JAK/STAT pathway (32). Treatment with TWPs
also inhibit inflammation via regulating the signal pathway of
MAPK/NF-κB in renal tissues (33).

In bovine serum albumin induced chronic glomerulonephritis
rat model, TWPs inhibit the inflammatory factor (TNF-α, IL-
1β) expressions, and improve the renal pathological damage via
regulating MAPK signaling pathway (34). In immunoglobulin A
nephropathy (IgAN) rats, TWPs decrease the levels of serum IL-
1β, IL-6, and reduce the pathological damage of renal tissue (35)
(Table 1, Figures 2, 3).

Antioxidative Stress Effects of TWPs
Oxidative stress is associated with inflammation in DN
progression. The presence and severity of systemic inflammation
contribute to kidney injury-related oxidative stress (73).
Oxidative stress caused by the overaccumulation of reactive
oxygen species (ROS) induces protein and nucleic acid
damage, thereby leading to impaired cellular damage and
tissue pathology (74). The mitochondria are the major sources
of ROS as well as the main targets of ROS (75). The
damaged mitochondria with impaired respiration block the
transfer of electrons along the respiratory chain, which then
react with O2 in upstream respiratory chain components to
form superoxide free radicals and ROS (76). In response
to the excessive production of ROS, mammalian cells have
evolved various peroxidases that catalyze the conversion of
intracellular hydrogen peroxide to water. These include catalase,
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TABLE 1 | Pharmacological activities of Tripterygium wilfordii Hook. f. and active compounds against proteinuria and kidney injury in DN.

Natural product Underlying mechanisms Model Experimental detail Underlying targets References

TWPs Anti-inflammatory STZ-induced DN male SD rats 9 and 18 mg/kg by gavage

for 8 weeks

Reducing serum IL-1, IL-17,

IFN-γ levels

(30)

High-sugar and high-fat diet and

STZ-induced DN male SD rats

6, 12, and 24 mg/kg by

gavage for 4 weeks

Reducing renal TNF-α

expressions, increasing

renal IL-4 expressions

(31)

High-sugar and high-fat diet and

STZ-induced DN male SD rats

8 mg/kg by gavage for 8

weeks

Inhibiting the activity of

JAK/STAT pathway

(32)

STZ-induced DN male SD rats 8 mg/kg by gavage for 4

weeks

Inhibiting the activity of

MAPK/NF-κB pathway

(33)

Fetal Bovine serum albumin

induced chronic

glomerulonephritis Wistar rats

15 mg/kg by gavage for 4

weeks

Inhibiting the activity of

p38MAPK pathway

(34)

Fetal bovine serum albumin to

stimulate activated macrophages

induced IgAN Wistar rats

20 mg/kg by gavage for 4

weeks

Reducing serum IL-1β, IL-6

levels

(35)

Antioxidative stress STZ-induced DN male SD rats 4.5, 9, and 18 mg/kg by

gavage for 8 weeks

Reducing renal MDA

expressions, increasing

renal GPxs expressions

(36)

Anti- fibrosis High-sugar and high-fat diet and

STZ-induced DN male SD rats

50 mg/kg by gavage for 16

weeks

Reducing renal TGF-β1 and

gremlin expressions,

increasing renal BMP-7

expressions

(37)

Male db/db mice 25, 50, and 100 mg/kg by

gavage for 8 weeks

Promoting AKT/mTOR

pathway

(38)

STZ-induced DN male SD rats 50 mg/kg by gavage for 8

weeks

Inhibiting renal RhoA and

Rock1 expressions

(39)

Unilateral ureteral obstruction SD

rats

10 mg/kg by gavage for 14

days

Inhibiting renal miR-192 and

collagen I expressions

(40)

Anti- podocyte apoptosis High-sugar and high-fat diet and

STZ-induced DN male SD rats

1, 3, and 6 mg/kg by

gavage for 8 weeks

Reducing renal VEGF

expressions, increasing

renal nephrin and podocin

expressions

(41)

Adriamycin- induced

nephropathy male SD rats

50 mg/kg by gavage for 8

weeks

Increasing renal nephrin and

CD2AP expressions

(42)

Sunitinib-induced podocytes 40 ng/ml for 48 h Increasing celluer nephrin

and CD2AP expressions

(43)

TP Anti-inflammatory High-sugar and high-fat diet and

STZ-induced DN male Wistar

rats

100 µg/kg by gavage for 8

weeks

Inhibiting of inflammation

and macrophage infiltration

(44)

Cationic bovine serum albumin

induced MN male SD rats

200 µg/kg by gavage for 4

weeks

Inhibiting NF-κB Signaling

Pathway

(20)

Fetal bovine serum albumin to

stimulate activated macrophages

induced IgAN male Wistar rats

200 µg/kg by gavage for 16

weeks

Reducing serum TNF-α,

IL-17A, IFN-γ, and IL-4

levels, inhibiting renal

NLRP3, and TLR4

expressions

(45)

Bovine gamma globulin induced

IgAN male SD rats

100 and 200 µg/kg by

gavage for 8 weeks

Reducing serum IL-1β and

IL-18 levels, inhibiting renal

IL-1β, Case-1, IL-18, and

NLRP3 expressions

(46)

Female MRL/lpr lupus mice 125 µg/kg by gavage for 9

weeks

Inhibiting renal JAK1/STAT1

Pathway

(47)

LLDT-8 (a TP

derivative)

Female MRL/lpr lupus mice 125 µg/kg/2 d by gavage

for 9 weeks

Reducing renal IFN-γ, IL-17,

IL-6, and TNF-α expressions

(48)

Murine anti-glomerular basement

membrane (GBM)

glomerulonephritis male NZW

parental mice

125 µg/kg/2 d by gavage

for 14 days

Promoting renal Fcγ

receptor signaling

(49)

(Continued)
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TABLE 1 | Continued

Natural product Underlying mechanisms Model Experimental detail Underlying targets References

TP Antioxidative stress High-sugar and high-fat diet and

STZ-induced DN male SD rats

200 µg/kg by gavage for 8

weeks

Reducing renal COX-2 and

iNOS expressions

(50)

STZ-induced DN male SD rats 200 µg/kg by gavage for 4

weeks and 8 weeks

Reducing renal NF-κB,

iNOS, eNOS, and VEGF

expressions

(51)

Puromycin

aminonucleoside-mediated PAN

male SD rats

200 µg/kg by gavage for 21

days

Promoting renal RhoA

signaling

(52)

Anti- fibrosis High-sugar and high-fat diet and

STZ-induced DN male SD rats

100 µg/kg by gavage for 12

weeks

Inhibiting renal

miR-137/Notch1 pathway

(19)

High-fat diet and STZ-induced

DN male SD rats

200 µg/kg by gavage for 12

weeks

Inhibiting renal

miR-141-3p/PTEN/AKT/

mTOR pathway

(53)

Activating autophagy STZ-induced DN male C57BL/6

mice

200 µg/kg by gavage for 12

weeks

Increasing renal Podocin,

Bax, and Caspase-3

expressions

(54)

Puromycin amino

nucleotide-cultured mouse

podocytes

100 ng/ml for 4 h Inhibiting renal mTOR

pathway

(55)

aIgA1 from IgAN patients

-cultured mouse podocytes

10 ng/ml for 24 h Inhibiting cellular mTOR

pathway

(56)

Anti- podocyte apoptosis Glucose and TGFβ1 -cultured

mouse podocytes

0.5, 1, and 3 ng/ml for 36 h Inhibiting phosphorylation of

GSK3β

(57)

Glucose cultured mouse

podocytes

8, 16, and 32 ng/ml for 24 h Increasing cellular nephrin

expressions

(58)

Glucose cultured mouse

podocytes

10 ng/ml for 48 h Increasing cellular

synaptopodin and desmin

expressions

(59)

Bovine serum albumin, carbon

tetrachloride, and

lipopolysaccharide induced IgAN

male SD rats

100, 200, and 400 µg/kg by

gavage for 4 weeks

Increasing renal nephrin and

podocin expressions

(60)

Celastrol Anti-inflammatory STZ-induced DN male SD rats 50, 100 µg/kg by gavage

for 4 weeks

Inhibiting the activity of

MAPK/NF-κB pathway

(33)

Male db/db mice 1 mg/kg by gavage for 8

weeks

Inhibiting the activity of

NF-κB pathway

(61)

Activating autophagy High-sugar and high-fat diet and

STZ-induced DN male SD rats

1.5 mg/kg by gavage for 4

weeks

Promoting renal PI3K/AKT

pathway

(62)

Glucose cultured mouse

podocytes

0.1, 0.2, 0.6, 1.0, 1.5, and

2µM for 48 h

Promoting cellular

HO-1-mediated autophagy

(63)

TWPs Improving renal hypoxia STZ-induced DN male SD rats 8, 16 mg/kg, by gavage for

8 weeks

Reducing renal HIF-1α and

endothelin-1

expressions

(64)

Improving renal glucose

transport

STZ-induced DN male SD rats 1.8 g/kg by gavage for 8

weeks

Reducing renal GLUT-1

expressions

(65)

TP Improving renal glucose

transport

STZ-induced DN male SD rats 1.8 g/kg by gavage for 8

weeks

Reducing renal GLUT-1

expressions, increasing

renal GLUT-4 expressions

(66)

TWHF Anti- fibrosis STZ-induced DN male SD rats 8 g/kg, and 16 g/kg by

gavage for 8 weeks

Inhibiting renal

Wnt-1/β-catenin pathway

(67)

peroxiredoxins, and glutathione peroxidases (GPxs) (77). There
is increasing evidence that oxidative stress contributes to DN
progression (78, 79). TWPs up-regulate the levels of catalase
in serum and GPxs in kidneys, and down-regulated the
levels of malondialdehyde (MDA) in kidneys in the DN (36)
(Table 1, Figures 2, 3).

Anti-fibrosis Effects
Renal fibrosis is a highly complex process involving a variety of
cell types including resident renal cells as well as infiltrating cells,
such as macrophages, fibrocytes, and lymphocytes. Intracellular
ROS generation in the context of diabetes initiates multiple
inflammatory and profibrotic responses (80). Renal fibrosis in
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FIGURE 2 | Mechanisms of Tripterygium wilfordii Hook. f. and active compounds against proteinuria and kidney injury in DN. TWPs, TP, and Celastrol are the effective

medicine against proteinuria and kidney injury in DN. Mechanisms of TWHF, TWPs, TP, and Celastrol are including anti-inflammation, antioxidation, anti-fibrosis,

activating autophagy, and anti- podocyte apoptosis, via several mechanisms.

DN is caused by the accumulation of extracellular matrix (ECM)
proteins, including predominantly various collagens, fibronectin,
and laminin (81). Thickening of the glomerular basement
membrane (GBM) is an early histopathological finding in DN
(82). Altered GBM remnants contribute to the expansion of the
mesangial matrix, but hyperglycemia also stimulates mesangial
cells to proliferate and producematrix by activating transforming
growth factor-β (TGF-β) and vascular endothelial growth factor
(VEGF), which directly induce the transcriptional activation of
matrix collagens (83). It is currently believed that renal fibrosis
develops in response to ECM accumulation due to epithelial-
mesenchymal transition (EMT), TGF-β signaling, oxidative stress
and proteinuria (84, 85).

TGF-β1/Smad signaling pathway plays a critical role
in prolonged glomerulosclerosis, which is an important
determinant during the progression in DN (86). Bone
morphogenetic protein-7 (BMP-7) is a critical developmental

and differentiation factor in the kidney, which can inhibit TGF-β
signaling to ameliorate renal inflammation, apoptosis, and
fibrosis after kidney injury (87, 88). In DN rats, TWPs ameliorate
renal fibrosis by down-regulating the expression of TGF-β1 and
gremlin (a BMP antagonist), and up-regulating the expression of
BMP-7 (37). In db/db mice, TWPs reduce the serum levels of TC,
TG, and LDL, glycated serum protein, BUN, Scr, and improve
the renal injury by regulating AKT/mTOR pathway (38). And
TWPs inhibit the expressions of RhoA and Rock1 to improve
renal fibrosis in STZ-induced rats (39).

MicroRNAs (miRNAs) are a class of small non-coding RNAs
that regulate gene expression by either downregulating mRNA
levels or directly repressing translation of genes. Many miRNAs
are corrected with renal injury in DN (89, 90). In unilateral
ureteral obstruction rats, TWPs could attenuate renal fibrosis
by inhibiting the expression of miR-192 and collagen I (40)
(Table 1, Figures 2, 3).
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FIGURE 3 | Pathways of TWPs, TP, and Celastrol against proteinuria and kidney injury in DN. TWPs and TP attenuate proteinuria in DN by regulating JAK/STAT

pathway, TGF-β1/Smad pathway and NF-κB pathway, and regulating the expressions of IL, VEGF, BMP-7, GLU-1, and GLU-4. Celastrol attenuates proteinuria in DN

by regulating PI3K/AKT/mTOR pathway and regulating the expressions of HO-1.

Anti-podocyte Apoptosis Effects
Podocyte injury is a pathological feature in DN. Podocytes
are highly specialized, terminally differentiated epithelial cells
in the glomerular filtration barrier with interdigitating foot
processes (FPs), and play a major role in preventing protein
leakage into the Bowman space (91). Structural podocyte injury
is central in the pathogenesis of most inherited and acquired
glomerular diseases, which are all associated with decreased
expression of slit diaphragm (SD) proteins, such as podocin,
nephrin, synaptopodin, and CD2-associated protein (CD2AP)
(92). These proteins are considered as critical components
of epithelial SD and FPs and help maintain the integrity of
podocytes in avoiding proteinuria (93). In addition, desmin is
a component of the cytoskeleton and considered as a sensitive
marker of injury in podocytes (94). DM induces podocytopathy,
which is characterized by cellular hypertrophy, foot process
effacement, and podocyte loss (6). Li et al. (41) showed
using STZ-induced DN rats that TWPs could upregulate the
expression of nephrin and podocin and suppress apoptosis
in podocytes.

TWPs have also been shown to significantly reduce
proteinuria and repair podocyte damage in rats with
adriamycin-induced nephropathy, as well as facilitate
mixing together of foot processes by upregulating
nephrin and CD2AP (42). In addition, TWPs upregulates
nephrin and CD2AP in sunitinib-induced podocytes (43)
(Table 1, Figures 2, 3).

EFFECTS, MECHANISMS, AND
THERAPEUTIC TARGETS OF TP AGAINST
PROTEINURIA AND KIDNEY INJURY IN DN

Anti-inflammatory Effects
Due to similar structures as hormones, TP can bind to nuclear
receptors (95). This unique feature is the reason that triptolide
is active to inflammation. Ma et al. (44) have shown that
TP markedly attenuated proteinuria and renal injury in DN
rats, which may have been correlated with the inhibition of
macrophage infiltration and inflammation in the kidneys.

Chronic inflammation is also a common characteristic of
membranous nephropathy (MN) and IgAN. Zhou et al. (20)
concluded that TP significantly reduces the production of
inflammatory cytokines (e.g., IL-1β, TNF-α, and monocyte
chemotactic protein 1), and inhibits the NF-κB signaling pathway
in MN rats. He et al. (45) declared that TP prevents IgAN
progression via by ameliorating of inflammasome-mediated
proinflammatory cytokine production by down-regulating Toll-
like receptor 4 (TLR4) and nod-like receptor family pyrin
domain-containing 3 (NLRP3) expression. In IgAN rats, TP
decrease the levels of TNF-α, IL-17A, IFN-γ, and IL-4 in serum,
reduce the expression of IL-1β, Caspase-1, IL-18, and NLRP3 in
renal tissues (46).

In MRL/lpr lupus mice, TP also inhibition of inflammatory
response, ameliorate renal damage, and the mediated by
JAK1/STAT1 pathway is a possible molecular mechanism (47).
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Zhang et al. (48) have shown that (5R)-5-hydroxytriptolide
(LLDT-8, a TP derivative) provides therapeutic benefits to
LN by suppressing chemokine expression and inhibiting
immune cell infiltration in the kidneys of MRL/lpr mice.
Moreover, LLDT-8 inhibits inflammation in the kidneys by
downregulating the cytokines IL-6, IL-17, TNF-α, and IFN-γ and
upregulating FcγRIIB in the kidneys of a murine anti-glomerular
basement membrane (GBM) glomerulonephritis model (49)
(Table 1, Figures 2, 3).

Antioxidative Stress Effects
TP effectively attenuates the levels of blood glucose, Scr and
proteinuria by reducing the expression of cyclooxygenase-2
(COX-2) and inducible nitric oxide synthase (iNOS) in renal
tissues of DN rats (50). NF-κB is a redox-sensitive transcription
factor that responds to ROS at various sites within the signaling
pathway such as by activating or inactivating the inhibitory κB
kinase complex, which, in turn, affects downstream targets or
activates NF-κB via alternative inhibitor κBα phosphorylation
(96). TP protects glomerular endotheliocytes of DN by inhibiting
the expression of NF-κB, iNOS, endothelial nitric oxide synthase
(eNOS), and VEGF (51).

RhoA, a redox sensitive master regulator protein, regulates
numerous biological functions (97). Due to lipid peroxidation
is a major form of oxidative stress in diabetes, restoring normal
RhoA activity levels prevents podocyte loss and consequent
proteinuria in DN (98). Zheng et al. (52)concluded that TP
ameliorated puromycin amino nucleoside-mediated podocyte
injury by suppressing ROS generation and p38mitogen-activated
protein kinase activation while restoring RhoA signaling activity
in vivo and in vitro (Table 1, Figures 2, 3).

Anti-fibrosis Effects
The Notch1 signaling plays a core role in the formation of
mesangial cells during kidney development, and exacerbates
renal tubulointerstitial fibrosis in DN (99). Han et al.
(19) declared that TP has anti-glomerulosclerosis effects
by suppressing miR-137/Notch1 pathway in DN rats. In
addition, renal fibrosis can be regulated through autophagy, a
biological regulatory program that maintains homeostasis (100).
Phosphatase and tensin homolog deleted on chromosome ten
(PTEN) plays an essential role in regulating of AKT/ mammalian
target of rapamycin (mTOR) signaling (101). Li et al. (53)
found that TP alleviates renal fibrosis by restoring autophagy
through the miR-141-3p/PTEN/AKT/mTOR pathway in DN
rats (Table 1, Figures 2, 3).

Autophagy Regulatory Effects
Autophagy is a highly conserved and lysosome-dependent
bulk degradative pathway that participates in the clearance of
damaged organelles and proteins, as well as in maintaining
homeostasis in tubules and glomeruli (102). Deficiency in
autophagy aggravates DN in rodent models. STZ-induced
autophagy-deficient mice develop severe microalbuminuria,
endothelial lesions, and podocyte damage (103). High-fat
diet-induced podocyte-specific autophagy-deficient mice
develop hyperglycemia with proteinuria and podocyte damage.

Autophagy contributes to the degradation of AGEs and
suppresses inflammation in the kidneys (104). Moreover,
increased ROS enhances autophagy by controlling the activity of
Atg4, a family of cysteine proteases that is essential for autophagy
formation (105). ROS promotes autophagy through the
activation of AMP-activated protein kinase (AMPK), likely via
suppression of mTOR (106). Experimental evidence has shown
that autophagy acts as a double-edged sword with regard to cell
death and survival because it is accompanied by other forms of
cell death such as apoptosis (107). The ratio of LC3 I to LC3 II is
closely correlated with the extent of autophagosome formation;
therefore, LC3 II could be a marker of autophagic activity (108).
In STZ-induced rats, TP decrease the expression of LC3 II,
inhibite autophagy by upregulating PI3K/Akt/mTOR pathway
(54). In puromycin amino nucleotide-cultured podocytes, TP
reduces podocyte injury via the mTOR-autophagy pathway to
increase autophagy levels and facilitates podocyte recovery from
injury (55). Autophagy may be regulated by mTOR complex 1
(mTORC1) (109). Haploinsufficiency of mTORC1 in podocytes
or administration of rapamycin (a mTORC1 inhibitor), resulting
in the activation of autophagy, has been shown to prevent
progressive DN (106). Conversely, the activation of mTORC1
in podocytes, which results in the inhibition of autophagy, leads
to accelerated DN (110). Furthermore, Liang et al. found that
TP protects podocyte autophagy by suppressing the mTOR and
AKT pathways in IgAN (56) (Table 1, Figures 2, 3).

Anti-podocyte Apoptosis Effects
In glucose and TGFβ1-cultured mouse podocytes, TP protected
podocytes against diabetic milieu-elicited injury, mitigated
cytoskeleton derangement, and preserved podocyte filtration
barrier function via inhibiting phosphorylation of GSK3β
(57). In glucose-cultured mouse podocytes, TP increases renal
synaptopodin, desmin, and nephrin expressions to ameliorate
podocyte injury (58, 59). Similarly, TP could significantly
decrease proteinuria and upregulate nephrin and podocinmRNA
and protein expression in rats with IgAN, suggesting that TP
could reduce podocyte injury and repair glomerular filtration
membrane barrier damage (60) (Table 1, Figures 2, 3).

EFFECTS, MECHANISMS, AND
THERAPEUTIC TARGETS OF CELASTROL
AGAINST PROTEINURIA AND KIDNEY
INJURY IN DN

Anti-inflammatory Effects
As one of triterpenes in TWHF, Celastrol reduces levels of
Scr, BUN and proteinuria, inhibits inflammation by regulating
MAPK/NF-κB pathway in STZ-induced rats (33). In db/db
mice, Celastrol improves insulin resistance and attenuates renal
injury by inhibiting the NF-κB-mediated inflammatory (61)
(Table 1, Figures 2, 3).

Autophagy Regulatory Effects
The PI3K/AKT pathway is one of the most important signaling
pathways that regulate autophagy, and phosphorylated AKT can
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promote the formation of p-mTOR to inhibit cell autophagy
(111). In STZ-induced rats, Celastrol attenuates renal injury by
promoting the PI3K/AKT pathway to activate autophagy (62).
As a proverbial cytoprotective enzyme, heme oxygenase-1 (HO-
1) ameliorates cell injury and inflammation in podocytes via
activating autophagy pathway. Celastrol protects against high
glucose-induced podocyte injury by restoring HO-1-mediated
autophagy pathway (63) (Table 1, Figures 2, 3).

OTHER EFFECTS OF TWHF AND ITS MAIN
BIOACTIVE INGREDIENTS

Glomerular hypertension and tubulointerstitial hypoxia occur
following DN, causing loss of glomerular integrity and tubular
damage (112). Hypoxia inducible factor 1 α (HIF-1α) plays
a regulatory role in cellular response to renal hypoxia.
Chen et al. (64) drew a conclusion that TWPs decreased
levels of Scr, BUN, 24-h UAlb, mean glomerular area and
mean glomerular volume; improved renal histopathology; and
down-regulated the expression of HIF-1α and endothelin-1
mRNA and protein in the kidneys of diabetic rats. HIF-
1α activation under hypoxia could upregulate downstream
glucose transporter 1 (GLUT-1) gene (113). TWPs and
TP significantly reduce proteinuria and GLUT-1 levels in
glomerular mesangial and epithelial cells of DN rats (65,
66).

Wnt/β-catenin signaling is an evolutionary conserved
signaling pathway, which plays a core role in modulating
kidney injury and repair (114). In DN rats, Chang et al.
drew a conclusion that TWHF mitigates hyperglycemia-
induced upregulated Wnt-1 and β-catenin expression in
kidney tissues and ameliorates kidney injury (67) (Table 1,
Figures 2, 3).

CONCLUSIONS

In this review, we have summarized currently available
information on the effects of TWHF on DN. Experimental
studies have demonstrated that TWHF interacts with a wide
range of cellular processes such as inflammation, oxidative
stress, fibrosis, apoptosis, autophagy, and podocytes, indicating
that these mechanisms are involved in a variety of cellular
signals. Although several genes and proteins involved in the
effect of TWHF on cells and tissues have been identified,
many of the targets and exact mechanisms participating in
these events remain unknown. Further studies regarding the
mechanism of DN with TWHF treatment are thus warranted.
Its narrow therapeutic window and severe side effects restrict
its clinical applications (26, 27). Therefore, hepatotoxicity and
sexual inhibition may occur among patients who have used
TWHF long term, thus requiring regular monitoring, and if
necessary, a reduction in dose or possibly termination of its use.
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