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Abstract: The catalytic reduction of carbon dioxide (CO2) is
considered a major pillar of future sustainable energy systems
and chemical industries based on renewable energy and raw
materials. Typically, catalysts and catalytic systems are trans-
forming CO2 preferentially or even exclusively to one of the
possible reduction levels and are then optimized for this
specific product. Here, we report a cobalt-based catalytic
system that enables the adaptive and highly selective trans-
formation of carbon dioxide individually to either the formic
acid, the formaldehyde, or the methanol level, demonstrating
the possibility of molecular control over the desired product
platform.

Introduction

The catalytic reduction of carbon dioxide (CO2) is
considered central to the future of sustainable energy systems
and chemical industries based on renewable energy and raw
materials.[1] In attempts to “defossilize” the chemical value
chain, CO2 utilization techniques have attracted considerable
interest. In particular, the transition metal complex catalyzed
reduction of CO2 can lead to products on the formal oxidation
levels of formic acid (HCO2H),[2] formaldehyde (H2CO),[3]

and methanol (H3COH),[4] thus providing access to a broad
range of valuable chemicals and energy carriers. Research
efforts worldwide are focusing on catalytic methods to enable
such transformations. Hydroelementation reactions of CO2

provide in situ generated intermediates of the three product
platforms that can be further hydrolysed or trapped by adding
nucleophiles (e.g., amines or alcohols) to generate the
corresponding amides or esters, thus creating the opportunity
for further functionalization.[5] Catalytic hydrosilylation of
CO2 was used, for example, to activate the notoriously
unreactive molecule en route to challenging N-methylation of
amines.[5e, 6a,b]

Typically, catalysts and catalytic systems are amenable to
transform CO2 preferentially or even exclusively to one of the
possible reduction levels and are subsequently optimized to
provide the corresponding specific product.[2–4] Following
these lines, only very few 3d metal complexes are capable of
reducing CO2 beyond the formate level.[3d, 4g,7] Selected
examples of first-row transition metals catalysts for CO2

hydrosilylation are depicted in Scheme 1.[3c,7, 8] Each of these
catalysts leads selectively to one product platform. Interest-
ingly, as reported by Kirchner, Gonsalvi, et al. , a manganese
complex even allows selective reduction either at the formate
level or at the methoxide level, depending on the reaction
conditions.[7b]

Alternatively, one might envisage a single catalyst that is
comprehensively controlled by fine adjustments of reaction
conditions to arrive at any of the different formal oxidation
levels of CO2 reduction with high selectivity.[7b, 9a–c] Efforts
towards designing such catalytic systems will contribute to an
increased understanding of the fundamental requirements
needed for the development of adaptive and highly efficient
catalytic systems for CO2 reduction.

Here, we present a catalytic system that enables the fully
controllable and highly selective transformation of carbon
dioxide individually to either the formic acid, the formalde-
hyde, or to the methanol level, demonstrating the possibility
of molecular control over the desired product platform
(Scheme 2). The catalyst is based on a coordination com-
pound of the earth-abundant 3d transition metal cobalt,
bearing a triazine-core embedded pincer ligand framework.

Results and Discussion

Motivated by recent examples of organometallic catalysts
of 3d metals comprising PNP pincer type ligands for catalytic
CO2 reduction,[2i, 4a,10] we set out to explore the catalytic
system based on a cobalt complex bearing the triazine ligand 2
(NMePNP) (NMePNP = 2,6-Bis((1,3-diisopropyl-1,3,2-diaza-
phospholidin)-N-methylamino)-4-phenyltriazine). Cobalt
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has been identified as active 3d metal in formic acid[11] and
CO2 reduction[2f, 3e, 4f, 5d, 7a, 12a,b] previously. Ligand 2 was chosen
due to the combination of different electronic effects. The 1,3-
diisopropyl-1,3,2-diazaphospholidine moieties are expected
to lower the p-back bonding abilities significantly, making the
phosphortriamidite groups weaker p-acceptor ligands than
phosphines and ultimately leading to higher electron density
at the metal center. In contrast, the vertical plane has
electron-withdrawing capabilities via the triazine core.[13]

Together with the meridional coordination geometry, the
ligand provides a well-defined structural and electronic
framework around the metal center (Scheme 3).

Ligand 2 and the corresponding complex 1 were prepared
by following modified reported procedures, the individual

steps as described in Scheme 4. The triazine ligand framework
was synthesized, starting from commercially available 2,4-
dichloro-6-phenyl-1,3,5-triazine 3. The addition of 2-chloro-
1,3-diisopropyl-1,3,2-diazaphospholidine to the lithiated or-
ganic backbone in toluene provided the ligand 2. The
subsequent overnight reaction at room temperature of 2 with
CoCl2 in tetrahydrofuran led to the precatalyst
[Co(NMePNP)Cl2] 1 in 97% yield.

The formation and structural identity of the products was
confirmed by spectroscopic methods in solution and by single
crystal X-ray analysis for complex 1. Single crystals suitable
for X-ray diffraction to determine the solid-state molecular
structures of 1 were obtained by slow diffusion of n-pentane
into a concentrated solution of 1 in a mixture of toluene and

Scheme 1. Selected examples of 3d transition metal catalysts used for CO2 hydrosilylation.

Scheme 2. Controlling the product platform of CO2 reduction: Adaptive hydrosilylation of CO2 using the cobalt catalyst 1.
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THF. In Figure 1, the molecular structure of 1 is shown with
thermal ellipsoids drawn at the 60% probability level,
hydrogen atoms were omitted for clarity. Detailed crystallo-
graphic information and a description of the molecular
structure of complex 1 are provided in the supporting
information (Table S6). All angles between the cis-coordi-
nated donors are close to the ideal value of 9088 (83.7–94.988).
The apical Co@Cl bond is slightly elongated by 0.17 c as
compared to the Co@Cl bond in the quadratic base. The
quadratic pyramidal geometry matches the expectations for
a Cobalt(II) complex with a d7 metal center and is in
agreement with structurally related complexes.[14]

The catalytic activity of the cobalt complex 1 was
examined for the hydrosilylation of carbon dioxide with
phenylsilane (PhSiH3) at 1 bar applied as a continuous CO2

stream by using 1 mol% of precatalyst and 4 mol% potas-
sium tert-butoxide (KOtBu; relative to the silane) in C6D6 at
80 88C for 4 h (Scheme 5). Following previous reports,[7a]

conversion and selectivity were determined by quantitative
13C{1H} NMR spectroscopy. Silyl formate units correspond to
signals at 155–165 ppm, bis(silyl)acetal units to signals at 80–
90 ppm, and methoxysilane units to signals at 50–60 ppm.[7a]

The cobalt complex 1 converted the CO2 to silylated products
with a total turnover number of 50 for CO2, generating silyl
formate, bis(silyl)acetal, and silyl ether units with 51%, 35%
and 14% selectivity (Table S1, entry 1). After hydrolysis of
the silylated products by adding 0.05 mL water to the reaction
mixture and heating at 80 88C for 12 h, formic acid and

Scheme 3. Electronic considerations in the design of catalyst 1.

Scheme 4. Reagents and conditions: a) 2-chloro-1,3-diisopropyl-1,3,2-diazaphospholidine, lithium bis(trimethylsilyl)amide, toluene, 25 88C, 16 h;
b) CoCl2, THF, 25 88C, 12 h.

Figure 1. Molecular structure of 1. The hydrogen atoms are omitted for
clarity. Selected interatomic distances [b] and angles [88] for 1: Co1–N8
1.924(3), Co1–P1 2.2079(9), Co1–P10 2.2167(9), P1–N2 1.733(3), P10–
N9 1.740(3), Co1–Cl1 2.218(2), Co1–Cl2 2.3885(9), P1-Co1-P10 165.08-
(4), P1-Co1-N8 83.68(9), P10-Co1-N8 84.79(9)88, N8-Co1-Cl1 164.90(9),
Cl2-Co1-N8 87.27(9), Cl2-Co1-P1 94.00(3), Cl2-Co1-P10 94.89(3).[17]

Scheme 5. Screening conditions and possible products for the catalytic hydrosilylation of carbon dioxide using cobalt complex 1.
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methanol were detected by 1H NMR spectroscopy, while the
trimer of formaldehyde trioxane was observed by GC-MS
analysis. No formation of methane was observed in any of
these experiments, which is often an undesired side-product in
hydro-elementation reactions.[3d, 7a, 9a,c,15a–g]

Control experiments with 1 mol % CoCl2, with the com-
plex 1 in the absence of KOtBu, or with KOtBu alone resulted
in no product formation (Table S1, entries 2–3; Table S3
entry 1). Hydrosilylation with complex 1, however, could be
achieved even in the absence of KOtBu under more rigorous
conditions. Treating complex 1 (0.2 mol %) with PhSiH3 for
1 h at room temperature before pressurizing with 40 bar CO2

and prolonging the reaction time to 21 h resulted in the
formation of silyl formates with high selectivity of 91% and
a TON of 146 (Table S3, entry 2). The product mixture
obtained under the screening conditions revealed a remark-
able reactivity of complex 1, demonstrating that all three
reduction levels are accessible with this catalyst. Therefore,
we set out to explore the possibility of controlling the
reduction process to arrive at individual products selectively.

The influence of the reaction conditions on the reduction
pathway was studied systematically using cobalt catalyst
1 with a ratio of 1:4 with potassium tert-butoxide as co-catalyst
in a closed flask with an initial pressure of 1 bar 13CO2

(Table S2). After 4 h at 80 88C in C6D6, 97 % CO2 conversion
was observed, yielding silyl formate units, bis(silyl)acetal
units, and methoxysilane units in 55 %, 35%, and 11%
selectivity. Decreased catalyst loading of 0.2 mol% 1 and
0.8 mol% KOtBu resulted in only minor changes of 92%
13CO2 conversion and provided 63%, 27% and 10 % selec-
tivity for the silyl formate, bis(silyl)acetal and methoxysilane
units, respectively (Table S2, entries 1–2). Due to the nearly
full consumption of 13CO2, the turnover numbers of 63
relative to CO2 conversion and 93 relative to Si-H conver-
sions, define only a lower limit of the catalyst productivity.
These data indicate that the catalyst is able to convert CO2

even under very low partial pressures.

The catalyst loading of 0.2 mol% 1 and 0.8 mol% KOtBu
with 2.5 mmol silane was set as standard conditions in the
subsequent studies. In agreement with previous reports, the
choice of the solvent strongly influenced the selectivity of the
reaction (Table S2, entries 3–6).[16] As displayed in Figure 2,
the conversion of 13CO2 was further increased to 94% under
neat conditions while the selectivity changed from the silyl
formats as the main product (63% selectivity in C6D6) to the
bis(silyl)acetals (53% selectivity, neat). Using [D6]DMSO as
the solvent, the reduction reached almost exclusively to the
methanol level forming the methoxysilane units with excel-
lent selectivity of more than 99% with a 13CO2 conversion of
85%. Other polar solvents such as acetonitrile or THF,
proved less effective. Conversion of 13CO2 was still significant
when the weaker reductant diphenylsilane (Ph2SiH2) was
used as the silylating agent under the standard conditions
(Table S2, entries 7–8). The reduction was steered towards
the formate level, with the preferential formation of silyl
formates in high selectivity. 79 % selectivity and 70 % 13CO2

conversion were observed under neat conditions, 75%
selectivity and 57% 13CO2 conversion in C6D6.

The influence of temperature was evaluated under neat
conditions under 1 bar of 13CO2 (Table S2, entries 9–12). As
shown in Figure 3, the high CO2 conversion of 90–94 % was
achieved in a range from room temperature to 80 88C. At
higher temperatures, the conversion decreased down to only
47% at 120 88C. This may be due to catalyst deactivation or
non-productive silane dehydrogenation at higher temper-
atures. A clear trend for the product formation of CO2

reduction can be observed. The formate level is strongly
favored at low temperatures leading to maximum selectivity
of 79 % for the silyl formates at room temperature. The
reduction beyond the formate level becomes increasingly
pronounced at higher temperatures, with a strong preference
for the 53% selective acetal formation at 80 88C. With the
formaldehyde platform being the most difficult to reach
reduction level, the 53% selectivity obtained in this param-
eter study is already quite remarkable.

Figure 2. Influence of the solvent and the silane for the hydrosilylation of carbon dioxide. 1 bar 13CO2, 0.2% catalyst loading, 0.8% base loading,
80 88C, 4 h.

Angewandte
ChemieResearch Articles

15677Angew. Chem. Int. Ed. 2020, 59, 15674 – 15681 T 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org

http://www.angewandte.org


The CO2 pressure had only a small effect on the total CO2

consumption but strongly influenced the selectivity. As shown
in Figure 4, the selectivity towards the silyl formates increases
from 53 % at 1 bar with a constant gas flow to 83% at 40 bar
in a closed vessel. The turnover numbers (relative to the
product formation) for reduction to the formate level
correspond to turnover numbers of 355 at 1 bar and 468 and
508 at 20 and 40 bar (Table S1, entry 4; Table S3, entries 3,4).

Table 1 summarizes the influence of the control param-
eters on product formation. In a first approximation, they
correspond with the relative kinetic challenge for the
reduction levels.[1f, 5f,15d] Hydride transfer to reduce CO2 to
formate has a relatively low barrier, making this product
accessible at low temperatures and a low Si-H/CO2 ratio
corresponding to a weaker reductant and higher CO2

pressures. Highly polar aprotic solvents, as represented by
DMSO, are beneficial for the further hydride transfer.[16]

Additionally, low CO2 pressures (high Si-H/CO2 ratio) and
higher temperatures facilitate the reduction. Most challeng-
ing is the control on the formaldehyde level, which is
kinetically disfavored relative to both the formation as well
as the over-reduction.

While the exact nature of the catalytic active species
remains at present elusive, the deduced trends are consistent
with hydride transfer to the C=O units of the individual
products/substrates as the major mechanistic control factor.
Thus, rational optimization to maximize the yields for the
individual products becomes possible, as outlined below and
summarized in Figure 5.

Figure 3. Influence of the temperature on the hydrosilylation of carbon dioxide with complex 1 and phenylsilane. 1 bar 13CO2, 0.2 mol% catalyst
loading, 0.8 mol% base loading, neat, 4 h.

Figure 4. Influence of the CO2 pressure on the hydrosilylation of carbon dioxide using catalyst 1. Phenylsilane, 0.2% catalyst loading, 0.8% base
loading, neat, 80 88C, 4 h.
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Formate Level

To reach the formate level in high yields, a low Si-H:CO2

ratio with the use of diphenylsilane as silylating agent in the
absence of solvent was set as primary conditions (2.5 mmol
silane, 0.2 mol% Co, 1:KOtBu 1:4). Under 40 bar CO2

pressure, a catalyst solution based on complex 1 produced
1.2 mmol silyl formate units in 93% selectivity in 4 h. This
corresponds to a conversion of Si-H units of 26% and TON
relative to the Si-H transfer of 264. Carrying out the reaction
at 1 bar 13CO2 and 40 88C under neat conditions for 4 h, 76% of
the 13CO2 was converted to silyl formate units with high
selectivity of 96% (Figure 5, column 1 and 3).

Methanol Level

Highly selective reduction to the methanol level was
achieved in [D6]DMSO at 80 88C under a constant flow of CO2

at 1 bar for 4 h with PhSiH3 (2.5 mmol silane, 0.2 mol% Co,
1:KOtBu 1:4). The methoxysilane units were formed with
99% selectivity at 68 % conversion of silane in quantities
corresponding to a TON of 277 (Figure 5, column 5).

Interestingly, increasing the pressure to 40 bar under other-
wise identical conditions led to a drastic change in selectivity
towards the formate units with excellent selectivity of 98%
and a turnover number of 262 (Figure 5, column 2). This
suggests that for hydrosilylation in [D6]DMSO, the Si-H:CO2

ratio is the predominant control parameter making this
reaction highly pressure tunable under these conditions.[9c]

Formaldehyde Level

For the most challenging formaldehyde level, the selec-
tivity was optimized by compromising between formation and
over-reduction. In the optimization sequence, the best
selectivity of 53 % and a TON of 56 were already obtained
in the initially used solvent-free standard conditions
(2.5 mmol silane, 0.2 mol % Co, 1:KOtBu 1:4, 80 88C, 1 bar,
4 h) and with phenylsilane as the silylating agent. Increasing
the 1:KOtBu ratio to 1:7 under otherwise identical conditions
gave a similar selectivity of 62% and a TON of 40, although
the CO2 conversion was lower (82% compared to 94%). The
highest selectivity of bis(silyl)acetals with 71 % was achieved
under neat conditions and at 1 bar 13CO2 by slightly modifying

the standard conditions to 0.3% 1, 0.9% potassium
tert-butoxide and 8 h reaction time (Figure 5, column
4). While reduction of the formate was nearly
complete (6%), the over reduction to the methoxy-
silyl units could not be fully suppressed and account-
ed for 23% of products.

Table 1: Control parameters for selective product formation.

Reduction level/
Parameter

Formic acid
[Si]-O2CH

Formaldehyde
[Si]-OCH2O-[Si]

Methanol
[Si]-OCH3

Solvent Broad range Neat Dipolar aprotic
Silane Broad range PhSiH3 PhSiH3

Temperature Low Medium High
CO2 supply High pressure

or continuous
Low pressure,

static
Low pressure,

static or continuous
Si-H/CO2 Low Medium High

Figure 5. Conversion and product selectivity under optimized reaction conditions for the hydrosilylation of carbon dioxide. Column 1: 0.2% 1,
0.8% KOtBu, H2SiPh2, 40 bar, neat, 80 88C, 4 h; Column 2: 0.2% 1, 0.8% KOtBu, H3SiPh, 40 bar, [D6]DMSO, 80 88C, 4 h; Column 3: 0.2% 1, 0.8%
KOtBu, 1 bar 13CO2, neat, H2SiPh2, 40 88C, 4 h; Column 4: 0.3% 1, 0.9% KOtBu, H3SiPh, 1 bar 13CO2, neat, 80 88C, 8 h; Column 5: 0.2% 1, 0.8%
KOtBu, H3SiPh, 1 bar (continuous gas stream), [D6]DMSO, 80 88C, 4 h.
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Conclusion

In conclusion, we have developed an efficient catalyst,
which demonstrates remarkable selectivity in CO2 reduction
towards attaining individually the product platforms of formic
acid (HCO2H), formaldehyde (H2CO), and methanol
(H3COH). The cobalt-based catalyst bearing a PNP pincer-
type triazine ligand can operate at low catalyst loadings
(0.2 mol%), short reaction times (4 h), and moderate temper-
atures (r.t. to 80 88C) to convert CO2 even at ambient pressures.
The formate level can be adjusted at 96 % selectivity via
hydrosilylation using diphenylsilane under solvent-free con-
ditions at 40 88C for 4 h, while the methanol level is reachable
in DMSO at 80 88C for 4 h in 99% selectivity by using
phenylsilane. The formaldehyde level is accessible in 71%
selectivity by using phenylsilane under neat conditions for 8 h
at 80 88C. These results demonstrate the adaptivity of the
catalytic system under varying reaction conditions for the
development of catalytic protocols to selectively access
different reduction levels of CO2 Further studies to elucidate
the nature of the active species are currently underway to
fully comprehend the underlying control mechanisms on
a molecular basis. Meanwhile, extending the concept of multi-
level CO2 reduction to other reducing agents, including
hydrogen or electrons and protons, seems highly attractive.
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