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Abstract

A major challenge in systems biology is to develop a detailed dynamic understanding of the functions and behaviors in a
particular cellular system, which depends on the elements and their inter-relationships in a specific network. Computational
modeling plays an integral part in the study of network dynamics and uncovering the underlying mechanisms. Here we
proposed a systematic approach that incorporates discrete dynamic modeling and experimental data to reconstruct a
phenotype-specific network of cell signaling. A dynamic analysis of the insulin signaling system in liver cells provides a
proof-of-concept application of the proposed methodology. Our group recently identified that double-stranded RNA-
dependent protein kinase (PKR) plays an important role in the insulin signaling network. The dynamic behavior of the
insulin signaling network is tuned by a variety of feedback pathways, many of which have the potential to cross talk with
PKR. Given the complexity of insulin signaling, it is inefficient to experimentally test all possible interactions in the network
to determine which pathways are functioning in our cell system. Our discrete dynamic model provides an in silico model
framework that integrates potential interactions and assesses the contributions of the various interactions on the dynamic
behavior of the signaling network. Simulations with the model generated testable hypothesis on the response of the
network upon perturbation, which were experimentally evaluated to identify the pathways that function in our particular
liver cell system. The modeling in combination with the experimental results enhanced our understanding of the insulin
signaling dynamics and aided in generating a context-specific signaling network.
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Introduction

A major challenge in current molecular biology is to understand

the dynamic behavior of biological systems. Biological processes

consist of many interacting components, exceeding the human

capacity to systematically analyze them, thus requiring methods to

reduce the complexity and thereby enhance their accessibility [1].

Thus, a central idea in systems biology is to construct models to help

reveal the design principles of biological systems [2]. Over the past

decade researchers have successfully identified genes and proteins

involved in many different signaling processes and assembled them

into pathways and networks. However, to use these interaction

maps to develop a detailed dynamic understanding of the functions

and behaviors that are specific to a biological system has yet to be

realized. Typically the pathways, networks and interaction maps in

the literature or databases are obtained from different cellular

systems and conditions, and may not be applicable to all systems

and under all conditions. Therefore it is unclear which pathways are

relevant to a particular system that is under investigation.

Here we proposed a systematic, dynamic analysis approach that

reconstructs a phenotype-specific network of cell signaling. As an

example, insulin signaling, a well-studied and complicated

signaling network, in mammalian cells is composed of branched

downstream signaling pathways and various feedback mecha-

nisms, which could benefit from modeling. In a separate study, our

group identified the involvement of a novel player, PKR, in the

insulin signaling network of HepG2 cells [3]. Previously known as

an immune response protein, PKR was found to be affected by

insulin, and more importantly, PKR modulated the upstream

mediators of insulin signaling, creating a feedback loop [3].

Considering the complexity of this insulin-PKR signaling network,

we applied modeling to unravel a context-specific, insulin-PKR-

signaling network, relevant to HepG2 cells, to obtain a better

understanding of the role of PKR in this complex signaling

network, and further to aid hypothesis-driven research on the

system dynamics.

A dynamic model that can efficiently integrate the literature

knowledge and experimental data [4] could provide valuable

working hypothesis to guide the experimental investigation [5,6].

Discrepancies arising between the simulation and experiment

could indicate potential missing or erroneous links that may lead to

new discoveries. In general, the approaches used to model the
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dynamics of a biochemical reaction may be broadly classified into

three categories, stochastic, kinetic, and discrete modeling.

Stochastic modeling captures the detailed reacting process of each

molecule in the system [7], kinetic modeling focuses on the

concentration change of the species [2], while discrete modeling

describes the general profile of a process evolving rather than the

time course of the molecules or species concentration. A major

advantage of discrete dynamic models, unlike detailed kinetic or

stochastic models, is that they do not require a complete set of

explicit biochemical or kinetic parameters in order to capture the

system dynamics [8]. This information is difficult to obtain for

most biological signaling processes [9], primarily because of the

diversity and complexity of the signaling network, the incomplete

knowledge of the regulatory mechanisms, and the lack of

quantitative time-series data [10]. Thus, discrete dynamic

modeling provides an alternative modeling approach, to test or

perturb a hypothetical regulatory network, in silico, to assess for

consistencies in the information accumulated on a particular

system by different experimenters under different conditions. [8].

Discrete Dynamic Modeling in Molecular Biology
Discrete dynamic or Boolean network modeling applies Boolean

algebra to obtain a qualitative, discrete representation of the

biological system [11]. A discrete model may associate logical

variables with gene expression or protein activity levels, and logical

functions with their biological relationships, such as transcription

regulation, protein-protein interactions, or biochemical reactions,

to characterize the system [9]. With the advent of genome-scale

maps of protein-protein interactions and transcription factor-DNA

binding data, available from different groups and through

databases, such as TRANSPATH (http://www.biobase.de),

BioCarta (www.biocarta.com), and STKE (www.stke.org), discrete

dynamic models can capitalize upon these resources to derive the

network architecture.

Discrete modeling has uncovered many important dynamic

features in biological systems. The dynamic model developed by Li

et al [12] captured the steady states corresponding to the different

biological cell-cycle phases in budding yeast. Further, discrete

modeling uncovered robust stationary states corresponding to real

biological events in the cell cycle of fission yeast [13], flower

morphogenesis [14] and floral cell-fate determination [8] in

Arabidopsis, and the segmentation pathways in Drosophila

development [15,16]. Despite these successes in revealing the

robust design of biological systems, discrete dynamic simulation is

still in its infancy with respect to generating predictions from

perturbation experiments. A recent discrete model of Arabidopsis

[17] predicted patterns of abscisic acid signal transduction and

identified key regulatory components. Here we applied a novel

discrete dynamic modeling approach using three-state logic

variables, taking into account cell-to-cell variations on the protein

activities and reaction rates, and allowing for simulated population

effects. As a proof-of-concept application of the discrete dynamic

model, we applied the methodology to insulin-PKR signaling in

liver cells. The model also provided testable hypothesis that were

experimentally validated.

Insulin Signaling Transduction in Liver Cells
Insulin is one of the major hormones controlling the complex

hepatic metabolic responses. Insulin binds to the insulin receptor

tyrosine kinase (IR), which recruits and phosphorylates the insulin

receptor substrate (IRS) proteins at tyrosine residues [18,19].

Upon tyrosine phosphorylation, the IRS proteins initiate, through

different binding mechanisms [20], various downstream signal

transduction cascades, including c-Jun N-terminal kinase (JNK)

[21,22] and phosphoinositide 3-kinase (PI3K) [23], which in turn

catalyze the formation of the lipid second messenger phosphati-

dylinositol-3,4,5-triphosphoate (PIP3). PIP3 may initiate the

downstream Akt/protein kinase B (Akt/PKB) [24], and atypical

protein kinase C (aPKC) [25]. In addition, IR can also

phosphorylate the SH2 domain of Shp2 protein, a tyrosine

phosphatase, and the SH3 domain of its adaptor molecule Grb2.

Activated Grb2 recruits Sos1 which, in turn, activates the MAPK

pathway mediated by the Ras protein.

Insulin signaling is tuned at the IRS level, by a large number of

regulators [26,27]. The activity of IRS is largely regulated by its

phosphorylation at the different residues. Tyrosine phosphoryla-

tion of IRS facilitates the recruitment of IRS substrates and

promotes insulin signaling [22], while the serine phosphorylations

generally suppress the activities of IRS by blocking the interaction

between IRS and IR [28], inhibiting the tyrosine phosphorylation

of IRS [29], or inducing the degradation of IRS [30]. A number of

serine residues have been identified to negatively regulate the

activity of IRS1, in particular, Ser307 (equivalent to Ser312 in

human IRS1). A number of signaling molecules, such as IkB

kinase (IKK) [31], mammalian target of rapamycin (mTOR) [32],

PKCf [33], S6 Kinase 1 (S6K1) [34], ERK [35] and JNK [36,37]

have been shown to function as IRS serine kinases that induce

insulin resistance by promoting the inhibitory phosphorylation of

IRS (reviewed in [26,38]). Research in our group has shown that

as one of the downstream target of insulin signaling, PKR is

intricately involved in regulating the insulin signaling process

through a feedback mechanism. The phosphorylaton of PKR is

down-regulated by insulin through the IRS-PI3K-AKT-PP1

pathway, and PKR inhibits insulin signaling by promoting the

phosphorylation of IRS at Ser312, through IRS serine kinases

such as IKK and JNK [3].

Given the complexity of insulin signaling, it is inefficient to

experimentally test all possible interactions in the network to

confirm their functionality. Thus, we proposed a novel discrete

dynamic network model that integrates potential interactions and

components of insulin signaling and its feedbacks in HepG2 cells.

Our simulations provided patterns of dynamic activation of each

component and generated testable hypothesis on the response of

the network upon perturbation, which were used to direct the

experiments.

Methods

Assumptions of Discrete Dynamic Model
1. Network architecture defines the major dynamic

characteristics. The dynamic behaviors are determined

primarily by the network architecture. This assumption is based

on the observation that biological systems tend to maintain their

functionality despite environmental and intrinsic noise that cause

fluctuations in their protein/RNA levels or reaction rates [39].

Many kinetic models based on differential equations show stable

patterns under a wide range of kinetic parameters, thus, we

hypothesize that the higher level abstraction of coarse-grained

discrete models can also successfully recover the major patterns of

the system. For example, a network of segment polarity regulation

in Drosophila development modeled by kinetic gene interactions

[40], was subsequently also successfully modeled using a Boolean

network model [15]. The Boolean model indeed was able to

reproduce the major patterns captured with a numerical method

approach, and correctly predicted some of the ectopic patterns

from the perturbation data (i.e., over-expression and mutant

studies). Similarly, differential equation- [41] and logic-based [42]

methods successfully modeled mammalian cell cycle progression

Dynamics of IRS-PKR Signaling
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with a network consisting of the same central components. The

logic model was able to capture the dynamic features of the

system. These examples suggest that in many cases the dynamic

behavior of biological systems rely strongly on the network

architecture and more subtly on the kinetic parameters.

2. Discrete variables can represent the activity level of the

network components. In Boolean networks, the binary on/off

representations of mRNA or protein level, and the logical functions

for the interactions can be directly derived from qualitative

experimental data of activating/inhibitory role of the various

elements in the network. Since the switching behavior (i.e.,

activation/inhibition) is quick in many signal transduction

processes, it is reasonable to approximate the actual continuous

process of the state of the network components with discrete levels [9].

3. Modularity. Given that modularity is a design principle of

biological systems [43], isolated or individual modules of the

system should be able to provide insight into the mechanisms that

govern the systems behavior or to mechanistically explain a

particular dynamic behavior of a system [14]. Therefore, we

assume that we do not need the entire network to gain mechanistic

insights. To investigate the role of PKR in insulin signaling of liver

cells, we include pathways mediated by IKK, JNK and ERK

because they have the potential, according to the literature or our

experiments, to mediate the interaction between PKR and IRS

(insulin signaling). We do not consider many of the other factors or

pathways involved in insulin signal, which may be regulated by

IKK, JNK or ERK but do not interact with PKR or feedback to

IRS. The same holds for the other intermediates (i.e., Raf, ShGS,

etc.). Our results show that this network module is able to provide

insight into the mechanisms that govern the system dynamics.

4. The building of the signaling network. The signaling

network can be formalized in terms of an oriented graph, where

the vertices represent the elementary components involved in the

process and the arcs describe the regulatory interactions between

those components. In the signaling network, each directed arc

reflects the direction of information flow from the source vertex to

its target in the signal transduction, and is labeled with a positive

or negative sign which defines activation or inhibition,

respectively. The network in Figure 1 was drawn with the

JDesigner in the SBW toolbox (www.systembiology.org).

5. The definition of the variables and initial states. We

represent the cell variation by the fluctuations in their initial

protein activity levels, which we assume to be a normal

distribution around a control state for each protein. We

associate each vertex in the signaling network with a discrete

variable, which has three states representing the activity of the

protein----0: lower than control, 1: the control state, 2: higher than

control. Thus by definition every component starts at the

‘‘control’’ state in the absence of insulin stimulation. We use a

discrete model with variables and transition rules (see below) to

represent the dynamic profile of a cell and we sample a large

population of cells. We choose an initial state for each regulatory

component from a distribution centered at the ‘‘control’’ state,

which reflects the cell-to-cell variation in the protein levels or

activities. The variation captured by the distribution represents the

degree of stochastic noise in the protein activities.

6. The definition of perturbation and noise. Constraints

are assigned to components to mimic the perturbations on the

network. If a protein is constantly inhibited (in an experiment), we

restrain the state of its corresponding variable in the model to be

always in either 0 (lower than control) or 1 (control state). Since we

apply a distribution on the initial states of the protein activity for

describing the cell-to-cell variation, we can use the variation over

the distribution of initial states to describe the degree of noise that

causes the cell-to-cell variation in the protein activities. Variation

in the cellular protein activity can lead to cell-to-cell variation [44]

that contributes, in part, to the noise in the system. Thus, the

model without any noise will start at the ‘‘control state’’ for every

protein and for each cell, whereas large amount of noise or

variation in the protein activity would manifest in many of the

proteins not being at their ‘‘control state’’ and varying from cell to

cell.

7. The specification of the state transition. We define

transition rules based on the activation/inhibition attributes on the

arcs in the signaling network. Two operations: shift up and shift

down adapted from the triple logic are applied in the model (see

Table 1). If an activator is in a state ‘‘higher than control’’, (e.g. the

kinase phosphorylation is increased), the state of its target will be

shifted upwards. In contrast, if the state of an inhibitor is higher

than control, its target will be shifted downwards in the next

updating event. For some components, there may be multiple

regulators that are active in one updating event and the

combinatory effect is determined by comparing the number of

activating to inhibitory factors. The target is shift-up if there are

Figure 1. Signaling network of insulin signaling and its
feedbacks. Each arc is assigned an attribute—either activation or
inhibition.
doi:10.1371/journal.pone.0008040.g001

Table 1. Shift up and shift down operations.

Shift up Shift down

Current-State Updated-State Current-State Updated-State

0 1 0 0

1 2 1 0

2 2 2 1

doi:10.1371/journal.pone.0008040.t001
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more activating factors, and vice versa [12,13]. If the number of

activating and inhibiting factors equal, we assume the target

remains at the control or current state. Finally, the state of a

component will decay if its regulators can no longer maintained

their active state.

In the simulation each run starts with its own set of randomly

generated initial states and a simulation result represents the

dynamic profile of a single cell in the population. By assuming that

cells response independently to a signal, we can simulate a large

number of independent runs to mimic a population effect and

measure the average evolving profile for the population (see

Figure 2).

Time is modeled by regular intervals called time-steps. Since

most components in our network are kinases or phosphotases, and

most reactions are protein phosphorylation and dephosphoryla-

tion, we assume that the duration of the activation/inhibitions and

the decay processes in the signaling transduction are comparable

and approximated by one time-step. Since the reaction rates may

be different from cell to cell even for the same interaction, we

apply asynchronous updating of the state, which is realized

immediately, rather than renewing every variable simultaneously

at each time-step. Thus, the relative rates of the different reactions

can be specified by the ordering of the update, which implies that,

although the response may be similar, the rate of response varies

from cell to cell. The rules for an asynchronous algorithm can be

written as: Sn
i ~fi Sm1

j1
,Sm2

j2
, . . . ,Sml

jk

� �
,ml[ n{1,nf g where Sn

i is

the state of component i at time-step n, and fi is the transition

function associated with i and its regulators j1 to jk, and the time-

point corresponding to the last change of the regulators can be

either the last or current round of updates.

Since we embed the uncertainties in the signaling process by

applying random initial states and the asynchronous updating, we

need a population large enough to obtain a stable dynamic profile.

As shown in the graph (Figure S1), in a small population the

dynamic profile varies in different simulations due to the

embedded randomness, but in a large population the profile is

stable. Such behavior has been observed in real biological systems

where a single cell exhibits randomness while a large colony shows

an inherent and specific dynamics [45,46].

The dynamic model was implemented by custom MATLAB

code, with a random-order asynchronous updating algorithm,

which updates each component, one by one, in a randomized order

at each time-step, in each cell. The order in which the components

are updated is randomly chosen from a uniform distribution over all

possible permutations, to achieve random timing for each

regulatory interaction. As an example, let us consider a single

interaction: component A activates component B. Suppose A and B

are both in 1, the control state, but at the next time-step a stimulus

activates A and shifts its state to 2. If applying synchronous

updating, the state of B at this ‘‘next time-step’’ is 1 (since it is based

on the current state of A, which is 1), so B will be activated in the

following step, thus the time required for the activation from A to B

is fixed to one time-step. In asynchronous updating, the state of B on

the next time-step is either 1 or 2 depending on whether the

updating of B is prior to the updating of A, which is randomly

chosen in a cell, thus the timing of the activation is variable. The

state-change process of this example is shown in Figure S2.

Experimental Materials and Methods
1. Cell culture and reagents. Human hepatoblastoma cells

(HepG2/C3A) were cultured in Dulbecco’s Modified Eagle

Medium (DMEM) (Invitrogen, Carlsbad, CA) with 10% fetal

bovine serum (FBS) (Biomeda Corp, Foster City, CA) and

penicillin-streptomycin (penicillin: 10,000 U/ml, streptomycin:

10,000 mg/ml) (Invitrogen, Carlsbad, CA). Freshly trypsinized

HepG2 cells were suspended at 56105 cells/ml in standard

HepG2 culture medium and seeded at a density of 106 cells per

well in standard six-well tissue culture plates. After seeding, the

cells were incubated at 37uC in a 90% air/10% CO2 atmosphere,

and two milliliter of fresh medium was supplied every other day to

the cultures after removal of the supernatant. The HepG2 cells

were cultured in standard medium for 5–6 days to achieve 90%

confluent before any treatment. Human insulin was purchased

from Sigma-Aldrich (St. Louis, MO), okadaic acid (OA), IKK

Figure 2. The simulation process of our discrete dynamic model.
doi:10.1371/journal.pone.0008040.g002
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inhibitor (SC-514), JNK inhibitor (SP600125), and ERK inhibitor

(PD 98059) from EMD Biosciences (San Diego, CA).

2. Insulin treatment. Human insulin was stocked in HEPES

buffer, which was therefore used in controls for all the experiments

with insulin treatment. We treated the cells with insulin at

concentrations lower than 1 nM to mimic the physiological

concentrations [47]. At 95% confluence, cells were deprived of

serum for 16 hours prior to each experiment and subjected to

insulin treatment for the indicated doses and times at 37uC in

serum-free medium.

3. Western blot analysis and immunoprecipitation.

HepG2 cells were lysed as described previously [48]. Total

protein levels were quantified by BCA assay kit from Pierce

Biotechnology Inc (Rockford, IL). 20–40 mg of total protein were

resolved by SDS-PAGE gels from Bio-Rad (Hercules, CA),

transferred to nitrocellulose membranes, and probed with primary

and secondary antibodies. Biotinylated protein ladders (Cell

Signaling, Beverly, MA) were loaded to one well of each SDS-

PAGE gel, and anti-biotin antibody was used to detect the protein

ladders on Western blots. Antibody detection was performed using

the enhanced chemiluminescence kit from Pierce Biotechnology

and imaged on the Molecular Imager ChemiDoc XRS System from

Bio-Rad. Immunoprecipitation was performed as described

previously [48]. The western blots were quantified using the

Quantity One software (Bio-Rad). Phospho site-specific anti-IRS1

(Tyr941), anti-Akt (Thr308), and anti-Akt were purchased from

Abcam (Cambridge, MA), phospho site-specific anti-IRS1 (Ser312),

PKR (Thr451), anti-IRS1, anti-PKR, and anti-beta actin antibodies

from Sigma-Aldrich. Secondary anti-rabbit and anti-mouse

antibodies were purchased from Pierce Biotechnology Inc.

Results

We collected and integrated the literature information on

insulin signaling with emphasis on the different feedback pathways

and crosstalk with PKR and built a consensus regulatory network

that contained all the components and potential interactions (see

Method 1 and Figure 1). We formularized the signaling process

based on the network architecture into a discrete dynamic model

(see Method). By combining model simulations and experimental

validations, we identified the essential components and pathways

that function in our specific cell system.

Each simulation represented a single cell and we simulated a

large population to obtain an average pattern of the dynamic

activation of each component in the network, with or without

insulin stimulation. We compared the simulated and the

experimental profiles of IRS tyrosine, IRS serine, and PKR

phosphorylation levels.

The simulation result suggests plausible dynamic profiles of the

interacting network upon insulin stimulation, and based upon the

components and interactions potentially involved in our particular

cell system (Figure 1, see Introduction: Insulin signaling transduc-

tion in liver cells). The IRS and PKR activity are maintained in a

stationary state (control state) prior to insulin stimulation. Upon

insulin stimulation, the amount of tyrosine phosphorylated IRS

protein increases, followed by a decrease in the level of PKR

phosphorylation and the accumulation of the serine phosphory-

lated IRS protein. After some time, tyrosine phosphorylated IRS

downregulates or returns to basal levels, while the serine

phosphorylation of IRS remains elevated (Figure 3A).

Identification of Essential Pathways
Breakdown of the Akt-PKR loop: PP2A-Akt positive

feedback may not be involved. We designed several western

blot experiments to measure the changes in IRS tyrosine, IRS

serine, and PKR phosphorylation levels in response to insulin in

liver cells. The experimental results (Figure 3B) show an initial

increase in the IRS tyrosine phosphorylation upon insulin

stimulation, which is subsequently followed by an increase in

IRS serine phosphorylation accompanied with a decrease in IRS

tyrosine phosphorylation, likely due to the negative feedback

within the signaling network. This agrees with the predictions by

the dynamic model.

However, from the experiments, we observed that the PKR

phosphorylation decreases with the IRS tyrosine phosphorylation,

but rather than remaining at a constant, low level as predicted by our

model, PKR phosphorylation actually increases 15 minutes after

insulin stimulation (Figure 3B). Such discrepancy indicates poten-

tially incorrect connections in the network. Since the network is built

upon the current information obtained from different experimental

conditions and different groups, certain interactions may not

necessary be involved in or contribute to the dynamics of our system.

We then examined the contribution of each regulatory

interaction through in silico knockout experiments (Figure 4A

and Figure S3). Biologically ‘‘knockout’’ means removing or

mutating a particular gene in the genome to shut down its

expression, and thus one can investigate the outcomes to identify

the functional role of the gene that is knocked out. Here we

borrow the concept of ‘‘knockout’’ to describe our in silico

experiments of deleting a certain interaction to access its

contribution on the dynamics of the system. Thus, in our model,

by removing the interaction, we are suggesting that the pathway is

not active in our system. Further, it is not always necessary to

knockout the activity of a target to assess its role in a pathway;

reducing the activity can be sufficient to access the functional

contribution of an interaction and to experimentally evaluate

whether or not a prediction is valid. It appears that by either

deleting the PP2A-AKT or PKR-PP2A pathway, the PKR

phosphorylation profile then agrees with the experimental

observation. Further investigation into the literature on the

network architecture identified a local positive feedback module

involving AKT-PP1-PKR-PP2A (Figure S4) [3,49–52]. The

existence of such a local module would help to maintain a

continuous (persistent) activation of AKT, once stimulated, which

would lead to a continuous inhibition of the PKR signal.

Therefore, for the model to match the experimental results, this

positive feedback loop should not be active in the system. From the

literature, PKR is known to phosphorylate B56a, the regulatory

subunit of protein phosphatase 2A (PP2A), which then activates

the catalytic subunit of PP2A [51]. Indeed, previously we showed

that PKR induces the phosphatase activity of PP2A in HepG2 cells

[3]. Therefore the PKR-PP2A pathway should be present in the

network and the PP2A-Akt pathway should be excluded in order

to match the experimental dynamic profile of the PKR

phosphorylation in response to insulin.

It has been shown in different systems, but not in HepG2 cells,

that PP2A can induce the dephosphorylation of Akt at amino acid

residue Thr308, and thereby suppress the activity of Akt [53–55].

Therefore, we tested whether PP2A exploits any regulation on Akt

phosphorylation in HepG2 cells. Okadaic acid (OA) [56], a

specific PP2A inhibitor, with or without the simulation of insulin,

did not affect the phosphorylation of Akt at Thr 308 (Figure 4B).

This indicates that in our cell system, HepG2 cells, in response to

1 nM insulin, PP2A does not dephosphorylate Akt. Therefore, the

feedback from PP2A to Akt does not play a role in the signaling

network of HepG2 cells, which confirms the model prediction.

ERK feedback does not play a significant role. The in

silico knock-out results (Figure S3) show that many of the

Dynamics of IRS-PKR Signaling
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interactions, especially the feedbacks through the IRS serine

phosphorylation, such as mTOR-IRSS, S6K-IRSS, IKK-IRSS,

JNK-IRSS, ERK-IRS, if deleted, have no significant affect on the

dynamics of IRS tyrosine/serine and PKR phosphorylation levels.

This suggests these feedbacks may be redundant in the system.

Since we are trying to elucidate the regulatory role of our novel

component, PKR, in the insulin signaling network, we focused on

the IKK, JNK, and ERK mediated feedbacks, which directly

interact with PKR.

In order to elucidate the contribution of the different feedback

pathways, we evaluated topologies that contained only two of the

three pathways, JNK+IKK, ERK+JNK, and ERK+IKK, in

addition to the original topology containing all the ERK, JNK,

and IKK feedbacks (Figure 5A–D) to better assess which of these

kinases plays a role, and hence is non-redundant in our cell system.

We performed in silico perturbation studies on these 4 different

network architectures upon inhibition of JNK, IKK, or ERK, and

obtained the dynamic profiles of the IRS tyrosine/serine and PKR

phosphorylation levels, which was compared with the experimen-

tal results upon inhibition of IKK, JNK, or ERK (Figure 5E).

The experimental result shows the JNK inhibitor significantly

down-regulated the IRS serine phosphorylation and up-regulated

the IRS tyrosine phosphorylation, as compared with the normal,

unperturbed insulin stimulated network. Therefore, the model

Figure 4. Breakdown of the Akt-PKR loop. A) In silico knock-out.
For each subgraph, an interaction is deleted from the model and the
simulation is performed on the knock-out model. The interaction being
knocked out is labeled at the top of each subgraph in the form of ‘‘no’’-
regulator-target. Red line: IRS serine phosphorylation, green line: IRS
tyrosine phosphorylation, blue line: PKR phosphorylation. B) Western
blot: effect of PP2A inhibitor (OA, 2 nM [56]) on the phosphorylation of
Akt at Thr308. OA: Okadaic Acid.
doi:10.1371/journal.pone.0008040.g004

Figure 3. The simulated and experimental results of the PKR and IRS phosphorylation. A) Model simulations with or without insulin
stimulation. The simulation is on the initial model including the potential interactions and components from the literature and our experiments. The
interactions emphasized are the level of IRS serine phosphorylation (IRSS), IRS tyrosine phosphorylation (IRST), and the PKR phosphorylation. B) Time
series of the PKR and IRS phosphorylation upon insulin stimulation at time 0. HepG2 cells were exposed to 1 nM of insulin for 5, 10, 15, 30, or 60
minutes. After treatment, the cells were harvested, and western blot analysis was performed to detect the total and phosphorylated levels of PKR and
IRS1 [3]. The phosphorylation levels of PKR (blue) and IRS1 (red for p-IRS1 at Ser312 and green for p-IRS1 at Tyr941) were quantified and normalized to
the total protein levels of PKR and IRS1, respectively, and are expressed as the average of four samples6SD from four independent experiments.
doi:10.1371/journal.pone.0008040.g003
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without the JNK feedback (Figure 5D) is incorrect. However, the

IKK or ERK inhibitor does not have a significant effect on the

phosphorylations of IRS (Figure 5E). This is inconsistent with the

IRS phosphorylation profiles under JNK, IKK and ERK

inhibition predicted by the model containing all three pathways,

where the JNK and ERK inhibition have similar profiles

(Figure 5A). Therefore, we hypothesize that all three feedbacks

are not essential in the regulation of the IRS-PKR system.

Figure 5. Identification of essential feedback pathways through in silico perturbation study. Each column represents a different
architecture containing. A) Original ERK+JNK+IKK feedback pathways, B) Only with IKK+JNK feedback pathways, C) Only with ERK+JNK feedback
pathways, and D) Only with ERK+IKK feedback pathways. Row 1 the model simulation is performed without any perturbations. Row 2 the model
simulation is performed on IKK inhibition. Row 3 the model simulation is performed on JNK inhibition. Row 4 the model simulation is performed on
ERK inhibition. E) Western blot: effects of JNK, IKK and ERK inhibitors on the phosphorylation of IRS1 upon simulation with 1 nM insulin for 15 mins.
doi:10.1371/journal.pone.0008040.g005
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Among the three single-elimination models, removing the ERK

pathway (JNK+IKK) provided the most significant change in the

dynamic profiles of IRS phosphorylation upon JNK inhibition as

compared with that of the IKK inhibition (Figure 5B), as suggested

by the experimental results (Figure 5E, JNK vs. IKK inhibition).

Thus we hypothesize that the ERK feedback should not be

included in our insulin signaling network, which we confirmed

experimentally (Figure 5E, ERK inhibition). Although the

experimental results suggest that the IKK inhibition does not

affect the phosphorylation of IRS1 (Figure 5E), the simulation

suggests that removing the IKK feedback from the network would

give similar results upon JNK and ERK inhibition (Figure 5C),

which does not match the experimental results (Figure 5E). Thus,

we performed further perturbations to assess whether the IKK is

an essential pathway in the network.

Application of the simulation model in PKR over-

expression. To further evaluate which pathways are essential

in the dynamic model, we simulated the case of PKR over-

expression with the network topology model without the ERK

feedback to serine phosphorylation of IRS. Figure 6A shows that

PKR over-expression increased the Ser phosphorylation and

decreased the Tyr phosphorylation of IRS1, which is supported by

the experiments (Figure 6B comparing lanes 1 and 2). Next we

simulated the inhibition of IKK or JNK upon PKR-over-

expression in the model, and found that in both cases, the Ser

phosphorylation of IRS1 is decreased while the Tyr

phosphorylation was increased (Figure 6A). These model

predictions matched the experimental observations (Figure 6B).

As expected, inhibition (Figure 5) or silencing of ERK (Figure S5)

does not have any effect on the Ser and Tyr phosphorylations of

IRS1. Taken together, these results confirm the model predictions

and support the ability of the discrete dynamic model to predict

and guide experimental analyses. Interestingly, by comparing the

IKK inhibition (in the model and experiments) in the PKR over-

expression case, we found that IKK mediates the effects of PKR

on IRS1 phosphorylation, however, the basal level of IKK, if not

activated, does not play a significant role in regulating IRS1

phosphorylation. Therefore, the essential pathways involving IRS-

PKR signaling in our cell system is shown in Figure 7.

Robustness of the Signaling Network
We used the distribution of initial states to describe the cell-to-

cell variation of protein activity levels due to environmental or

endogenous noise. The variation over the distribution of initial

states represents the degree of noise. Multiple simulations were run

on the architecture consisting of the essential pathways, under

varying levels of noise, with and without insulin stimulation. The

simulation results (Figure 8) suggest the dynamics of insulin

signaling are very stable against the noise associated with variation

in the distribution of initial states or cell-to-cell variation. Such

robustness may arise from the multiple negative feedbacks within

the network, that help maintain a very stable, stationary state in

the absence of stimulation, and ensure specific signaling patterns

despite the uncertainties involved.

We further simulated the perturbation models under a different

noise level (e.g., uniform distributed initial states) and found the

dynamic profiles to be robust (Figure S6) and almost identical to

the previous simulation results where most (70%) of the cells

initiated from the control state. Thus, it is not likely that the

dynamic features discovered are artifacts of the modeling methods.

The robustness of the signaling network suggests the dynamics are

encoded in the architecture of the insulin-signaling network within

the cell system, and such robustness in the dynamics ensures a

robust transduction of insulin signaling.

Discussion

We enhanced the discrete modeling approach by extending the

on/off logic of traditional discrete Boolean models to a three-level

logic model with ‘‘high, control, low’’. Also, rather than assigning

ad-hoc absolute values as initial states, for each component we

defined its state prior to stimulation by a distribution centered on

the ‘‘control state’’ and compared the effect of the perturbation

with the control state, and thereby avoiding the problem of

defining the initial state in traditional Boolean network models.

In contrast to the traditional Boolean models that apply one

model to describe the whole process, we apply an individual model

to every single cell with each cell having a distinct initial state from

a distribution centered on the control state. The simulation

produces a response by obtaining the average effect of a large

group of cells. This modeling approach takes into account the

population effect and cell-to-cell variation, such that the resultant

model can capture the deviations or alterations from the control

state that is conceptually consistent with the western blot

experiments.

Limitations in Discrete Modeling
Lack of exact timing. Discrete dynamic models do not

represent or capture the exact timing, but the resultant dynamic

patterns provide a dynamic profile evolving with ‘‘time-steps’’,

which may contain artifacts due to the network reconstruction and

the updating rules at each time step. Previous biological Boolean

network models were simulated in such a way that all the

components changed their states simultaneously by one unit of

time, based on the assumption that every reaction in the network

takes exactly one unit of time in the signaling process. However, in

a real biological system, the reactions are not homogenous,

different reactions may have different rates, thus ‘‘synchronous’’

updating may not be appropriate. Klemm et al. [57] evaluated the

stability of attractors in Boolean networks and found that many

attractors disappear with slight perturbation in the time-steps,

suggesting that they may be artifacts due to the synchronous

updating.

Asynchronous updating has been suggested to reduce the

artifacts due to the assumption of uniformity in all the reactions

arising from synchronous updating [42,58]. In asynchronous

clocking, we update the state of each component one by one at

each time-step, and any state update is realized immediately and

will affect the other components’ state change, even within the

same time-step. In this way, some of the cells realize the updated

state immediately while other cells take longer to respond and

therefore do not update at the same time, thus leading to variable

reaction times/rates for each cell. We implemented asynchronous

updating in the modeling method (see Method) by randomly

generating the reaction order for each time step and in each

simulation. This allows us to take into account the uncertainty of

the reaction rates in different cells.

Even with asynchronous updating, there still may be artifacts

that arise due to the discrete timing, such as small fluctuations. For

example, a simple regulatory network with only three components

is shown in the Figure S7, where the simulation of a qualitative

model is compared with the result of a kinetic model. Figure S7

also shows that the artifacts in the synchronous updating would

significantly affect the correct prediction of the system dynamics.

Loss of subtle dynamics. Discrete models are based solely

on the qualitative relationships of the network elements, and thus

may lose certain subtle dynamics. It has been shown that in some

cases certain kinetic parameters are essential for a system’s

behavior (e.g., the reaction constants of phosphatases determine
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the response time and duration under weak stimulation in the

MAPK kinase cascade model in [59]), which cannot be captured

in qualitative models. The discrete models are essentially

simplifications of the kinetic equations in that the reaction laws

are reduced to a non-parametric form [60]. For example, the

actual reaction ‘‘ARB with kinetic constant k’’ may be considered

in the qualitative representation as ‘‘if A is high, B could be up-

regulated’’, but the effect of parameter ‘‘k’’ is neglected. Thus the

Figure 6. Application of the simulation model in PKR over-expression. A) In silico perturbation. Simulation of PKR over-expression and IKK or
JNK inhibition with PKR over-expressed. Simulations are based upon the model including the JNK and IKK pathways but without the ERK feedback. B)
Western blot results of the tyrosine and serine phosphorylation of IRS1 and the phosphorylation of PKR, after 15 mins of 1 nM insulin treatment,
when PKR is over-expressed in HepG2 cells, with or without the IKK/JNK inhibition. IKK and JNK restores Tyr and reduces Ser phosphorylation of IRS1
(red box), as compared to the control with PKR over-expressed (blue box).
doi:10.1371/journal.pone.0008040.g006
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series of bifurcations (or switch-like behavior) that depend on the

parameters may (or may not) be captured as patterns of state-

change in discrete models, the latter provides only a rough

approximation of the real reaction system [10].

Since our insulin signaling network is somewhat homogenous

with only protein phosphorylations/dephosphorylations, our

model treats every interaction and feedback the same, and does

not take into account the different strength or time scale of the

interactions and feedbacks, which are possible in real systems,

especially in heterogeneous networks with both protein interac-

tions and transcription regulations. Nevertheless, as long as the

quantitative experimental data are available that captures such

differences, we can further adjust the model to integrate such

information, by increasing the discrete levels and applying more

subtle rules. For example, one can apply longer updating time for

transcription regulations than for protein interactions.

Advantages of Discrete Modeling
The advantage of discrete modeling is that only qualitative

information is required. Kinetic modeling (and stochastic

modeling) requires detailed kinetic parameters and initial concen-

trations for each component in the network, which is usually not

available for all the components in the network. Without the need

for kinetic parameters, the discrete modeling approach can model

and simulate larger networks, given the abundant qualitative

interaction maps of biological systems that are available.

Discrete dynamic modeling represents a higher abstraction of

biological network as compared with kinetic modeling, and

perturbations on the structure of the network are more easily

simulated with the discrete models. Kinetic approaches usually

perturb parameters of a system rather than the structure, because

a different set of kinetic parameters (and even different equations)

may be required if the network structure is changed. Therefore, it

is very difficult to obtain those parameters for the perturbed

system, despite the availability of experimental data.

As a simplified qualitative model, discrete dynamic model has

finite system-states, thus one can analyze the design principle of

the network structure by exploring all the possible states to find the

stationary ones [12]. Similar analysis is usually very difficult with

kinetic or stochastic models because the parameter space is too

large to sample thoroughly.

In conclusion, our novel modeling approach provides a

systematic description of the biological process, which enables

testable predictions that can serve as working hypothesis for

experimental evaluation. By combing modeling and experiments,

we can develop a hypothesis-driven framework that can be

iteratively refined to enhance our understanding of the insulin

signaling network dynamics in the context of a particular cell

system. Such a framework that relies solely on the network

architecture can be easily extended to other dynamic network

systems and serves as a basis to guide model-based experiments

and potentially more detailed inquiry into the regulatory

mechanisms of biological networks.

Supporting Information

Figure S1 With a small population the dynamic profile varies

significantly in the different simulations due to the embedded

randomness, whereas in a large population the profile is stable.

Found at: doi:10.1371/journal.pone.0008040.s001 (0.38 MB TIF)

Figure S2 An example of the implementation of synchronous

and asynchronous updating for a cell.

Found at: doi:10.1371/journal.pone.0008040.s002 (0.16 MB TIF)

Figure S3 In silico knock-out. For each subgraph, an interaction

is deleted from the model and the simulation is performed on the

knock-out model. The interactions being knocked out is labeled at

the top of each subgraph in the form of ‘‘no’’-regulator-target. Red

line: IRS serine phosphorylation, green line: IRS tyrosine

phosphorylation, blue line: PKR phosphorylation.

Found at: doi:10.1371/journal.pone.0008040.s003 (0.44 MB TIF)

Figure S4 A local positive feedback module from AKT to PP2A

Found at: doi:10.1371/journal.pone.0008040.s004 (0.07 MB TIF)

Figure S5 The effects of ERK silencing or inhibition on the

phosphorylation of IRS1 in PKR over-expressed cells. (A)

Reverse transfection of suspended HepG2 cells were performed

with scrambled siRNA (NC) or siRNAs of ERK1 and ERK2

together for 24 hours and the transfected cells were cultured in

regular media for another 24 hours. Next, the forward transfec-

tion of empty vector pCMV6-XL5 (pCMV6) or plasmid

containing PKR cDNA sequence (pCMV6-hPKR) was per-

formed, followed by the treatment of insulin (0.5 nM) for 15

minutes. After treatments, cells were then harvested and western

blot analysis was performed to detect the protein level of ERK,

and total and phosphorylated levels of PKR and IRS1. (B) In

HepG2 cells, the forward transfection of empty vector pCMV6-

XL5 (pCMV6) or plasmid containing PKR cDNA sequence

(pCMV6-hPKR) was performed and the cells were then treated

with the pharmaceutical inhibitor of ERK, PD98059 (PD98059,

50 uM) or DMSO, vehicle of PD98059, for 1 hour, followed by

the treatment of insulin (0.5 nM) for 15 minutes. After

treatments, cells were then harvested and western blot analysis

was performed to detect the total and phosphorylated levels of

IRS1 and PKR.

Figure 7. Essential signaling network of insulin signaling and
its feedbacks. The direct interaction between PP2A and AKT is
removed. The ERK feedback is removed, together with the downstream
factors in the ERK pathway that do not have an effect on the regulation
of insulin signaling.
doi:10.1371/journal.pone.0008040.g007
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Found at: doi:10.1371/journal.pone.0008040.s005 (0.40 MB TIF)

Figure S6 Robust dynamics against noise. The noise is

represented by the variation in the distribution of initial states

for each component. Colors on the distribution: light grey: control

state (1), dark grey: higher than control (2), black: lower than

control (0). Perturbations and simulations are based upon the

essential pathway model that excludes the ERK pathway, with

uniform distributed initial state for each component.

Found at: doi:10.1371/journal.pone.0008040.s006 (0.29 MB TIF)

Figure S7 A small regulatory network with catalytic activation/

inhibition. S is the stimulator (input) of the system. Upon

stimulation of S, A activates B. There is a negative feedback from

B to A. Simulation results of a kinetic model, a qualitative

(Boolean) model with asynchronous or synchronous updating are

shown.

Found at: doi:10.1371/journal.pone.0008040.s007 (0.23 MB TIF)
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