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Abstract: Extracting metabolic features from liquid chromatography-mass spectrometry (LC-MS) data
has been a long-standing bioinformatic challenge in untargeted metabolomics. Conventional feature
extraction algorithms fail to recognize features with low signal intensities, poor chromatographic peak
shapes, or those that do not fit the parameter settings. This problem also poses a challenge for MS-
based exposome studies, as low-abundant metabolic or exposomic features cannot be automatically
recognized from raw data. To address this data processing challenge, we developed an R package, JPA
(short for Joint Metabolomic Data Processing and Annotation), to comprehensively extract metabolic
features from raw LC-MS data. JPA performs feature extraction by combining a conventional peak
picking algorithm and strategies for (1) recognizing features with bad peak shapes but that have
tandem mass spectra (MS2) and (2) picking up features from a user-defined targeted list. The
performance of JPA in global metabolomics was demonstrated using serial diluted urine samples,
in which JPA was able to rescue an average of 25% of metabolic features that were missed by the
conventional peak picking algorithm due to dilution. More importantly, the chromatographic peak
shapes, analytical accuracy, and precision of the rescued metabolic features were all evaluated.
Furthermore, owing to its sensitive feature extraction, JPA was able to achieve a limit of detection
(LOD) that was up to thousands of folds lower when automatically processing metabolomics data
of a serial diluted metabolite standard mixture analyzed in HILIC(−) and RP(+) modes. Finally,
the performance of JPA in exposome research was validated using a mixture of 250 drugs and
255 pesticides at environmentally relevant levels. JPA detected an average of 2.3-fold more exposure
compounds than conventional peak picking only.

Keywords: untargeted metabolomics; exposomics; feature extraction; data processing; metabolite
annotation

1. Introduction

Liquid chromatography-mass spectrometry (LC-MS) is a high-throughput analyti-
cal platform that enables the unbiased detection and quantification of small molecules
in biological samples. It has emerged as a powerful tool for metabolomics to identify
key biomarkers for disease prediction and decipher the molecular basis behind biological
phenomena [1–3]. LC-MS-based metabolomics has also become a critical analysis strategy
for studying the exposome, defined as the totality of environmental exposures that drive
human health and disease [4–6]. In particular, MS operated in data-dependent acquisition
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(DDA) mode offers autonomous collection of both MS1 and MS2 spectra, allowing for
simultaneous quantitative comparison and metabolite annotation [7–9]. State-of-the-art
LC-MS systems are very sensitive and can generate a large amount of metabolic infor-
mation, including thousands of MS1 scans that contain tens of thousands of unique m/z
values. While it is possible to manually recognize metabolic features from the raw LC-MS
data, omics-scale metabolic feature extraction has to rely on feature extraction programs as
manual checking is tedious and time consuming. Over the past decade, various algorithms,
including centWave [10], GridMass [11], and others [12,13], have been proposed to automat-
ically recognize the Gaussian-shaped extracted ion chromatograms (EICs) that represent
real metabolic features in LC-MS data. Unfortunately, given their diverse concentrations
and chemical properties, many metabolites do not present nice Gaussian-shaped EICs and
thus cannot be recognized automatically, especially those at low concentrations. For these
metabolites, conventional peak picking algorithms are not efficient. As a consequence,
important biological information in these low-quality metabolic features might be buried
in raw LC-MS data. Thus, there is a great demand to develop novel bioinformatic solutions
to recognize and extract these low-quality metabolic features in order to fully unleash the
analytical power of the LC-MS platform.

To achieve comprehensive feature extraction from raw LC-MS data, our philosophy is
to combine feature extraction strategies that have complementary mechanisms. Conven-
tional algorithms recognize features with good EIC peak shapes, while features with poor
EICs remain obscured. To further extract these low-quality metabolic features, we imple-
ment an extraction strategy based on their MS2 spectral information [14]. Furthermore, we
believe that a list of targeted metabolic features can be used to guide automatic extraction
in raw LC-MS data. This is because, in many metabolomics applications, there are always
some general expectations. For instance, when studying the altered cell metabolism under
drug/chemical treatment, the detection of key metabolites involved in energy metabolism
might be of high priority 6. In these cases, targeted extraction of metabolic features can be
very useful and well addresses the demands of some researchers [15].

Combining these three strategies, we developed JPA (short for Joint Metabolomics
Data Processing and Annotation), an R package that offers comprehensive and streamlined
metabolic feature extraction and annotation. It is important to note that JPA is a versatile
program that not only directly extracts metabolic features from raw LC-MS data, but also
takes the results of metabolic features generated from other data processing software (e.g.,
XCMS, MS-DIAL, MZmine 2) and performs further feature extraction. JPA can be adapted
to both targeted and untargeted metabolomics workflows. It has been comprehensively
evaluated using metabolomics data generated from chemical standards and real biological
samples under different LC-MS conditions. We believe that this joint strategy can be
particularly useful for LC-MS-based exposome research, in which diverse EIC peak shapes
occur in the LC-MS data. JPA is freely available on GitHub (https://github.com/HuanLab/
JPA (accessed date: 15 January 2022)).

2. Results and Discussion
2.1. JPA Algorithms of Feature Extraction, Alignment, and Metabolite Annotation

JPA is programmed using R in version 4.0.4. Figure 1 shows the schematic workflow
of JPA. JPA accepts metabolomics data in mzData, mzML, and mzXML formats, which can
be converted from vendor file formats using MS-Convert [16]. Metabolic feature extraction
in JPA is composed of three functions. First, JPA performs conventional peak picking based
on the Gaussian-shaped chromatographic peaks of metabolic features using the centWave
function adapted from XCMS [10,17]. This step is termed JPA-peak picking (JPA-PP). The
current version of JPA-PP only contains centWave, and further development is ongoing to
implement more peak picking algorithms for complementary metabolic feature extraction.
Alternatively, users can first generate a metabolic feature table using other data processing
software, such as XCMS Online, MZmine 2, or MS-DIAL [18–20]. Then, JPA will recognize
additional metabolic features from the LC-MS data for comprehensive feature extraction.

https://github.com/HuanLab/JPA
https://github.com/HuanLab/JPA
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Figure 1. Schematic workflow of JPA (The numbers stand for the three methods of feature extraction
used in JPA. The green check means the metabolic feature can be detected by using the method. The
stop sign means the metabolic feature cannot be detected by using the method).

Second, JPA extracts metabolic features with MS2 spectra of unique precursor ions.
This step is termed JPA-MS2 recognition (JPA-MR). The idea of extracting missing features
with MS2 spectra has been previously reported by our research group 14. However,
significant changes have been made in JPA-MR to improve the quantitative precision of
the extracted features. The detailed algorithm is presented in Figure 2. In brief, after
all MS2 precursors within a certain m/z (default: 0.01) and retention time (RT) (default:
30 s) window are extracted from the raw LC-MS data, only the precursor with the highest
intensity is kept. The unique precursors are then compared against the metabolic features
extracted in JPA-PP to ensure that they have not been previously extracted. Next, if the
unique precursor is not at the chromatographic peak apex, JPA will automatically search
for the MS1 scan that is at the chromatographic peak apex and replace the intensity and RT
of the precursor with the values from the peak apex. The precursor with replaced intensity
and RT is then identified as a putative JPA-MR feature. Finally, to confirm the putative
feature as a valid JPA-MR feature, its MS intensity should be higher than the local noise
level by a certain threshold (default: 3-fold). The JPA-MR feature should also be found in at
least 4 consecutive MS1 scans. We provided an R code (thresholdEstimate.R) for users to
automatically determine the local noise threshold. It is available on GitHub (https://github.
com/HuanLab/JPA/blob/main/thresholdEstimate.R (accessed date: 15 January 2022)).

Third, JPA can optionally perform a targeted extraction of metabolic features from a
user-provided targeted list. This step is termed JPA-targeted list (JPA-TL). In this step, the
metabolic features in the targeted list are first compared with the results of JPA-PP and
JPA-MR to identify the unextracted targeted features. The unextracted targeted features
are then directly searched for in the raw LC-MS files and extracted as JPA-TL features. If
the MS signal intensity of the extracted feature is below the local noise level by a certain
threshold (default: 3-fold) or any JPA-MR feature was extracted within four consecutive
MS1 scans, it will not be considered as a valid JPA-TL feature.

https://github.com/HuanLab/JPA/blob/main/thresholdEstimate.R
https://github.com/HuanLab/JPA/blob/main/thresholdEstimate.R
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Figure 2. Mechanistic explanation of JPA-MS2 recognition (JPA-MR) in extracting metabolic features.

Variations of the JPA workflow can be applied to process untargeted metabolomics
data. Users can use either JPA-PP or other data processing software to obtain the initial
feature list, depending on their peak picking algorithm preference. The format of the feature
table generated by other software has to follow the template given in the user manual (part
2.2). Users can perform JPA-TL after performing JPA-MR if they have a targeted list of
metabolites with known m/z and RT. The detailed format of the targeted list is provided in
the user manual (part 4). Users can also perform JPA-TL alone if they are only interested in
extracting the metabolic features from their targeted list. Sample code is available in the
“Example” folder on GitHub.

After all features are extracted from each file, isotopes, adducts, and clustering groups
will be recognized and annotated using CAMERA [21]. Following that, feature alignment is
performed using the XCMS grouping function, groupChromPeaks(). Retention time correc-
tion is performed using adjustRtime(), and gap filling is performed using fillChromPeaks().
In the final alignment table, the isotope and adduct percentages and grouping information
are also provided. These percentages provide the likelihood of a feature to be an isotope and
adduct. JPA can also be used to perform metabolite annotation. To prepare for metabolite
annotation, users can directly download publicly accessible MS2 spectral libraries (e.g.,
MassBank) in .msp format or follow the provided instructions for using convertMSP.R to
customize an in-house MS2 spectral library to fit their research purposes. The detailed MS2

spectral similarity algorithm in dot product is presented in Text S1. Example outputs of
each abovementioned step are also given in the user manual.

It is important to note that although JPA is primarily designed to process DDA data,
it can also be used to process full-scan and data-independent acquisition (DIA) data. In
these cases, features generated by JPA-MR are not available, but targeted features can still
be extracted from raw LC-MS data.

2.2. JPA Rescues Low-Abundant Metabolic Features

To demonstrate the improved performance of feature extraction by JPA-MR, we pre-
pared a urine metabolomics sample and serial dilutions at six concentrations (dilution
factors of 1, 2, 4, 6, 8, and 10). We then ran LC-MS analyses of the serial diluted urine



Metabolites 2022, 12, 212 5 of 13

samples in both RP(+) and HILIC(−) modes and performed feature extraction on the raw
LC-MS data using JPA-PP and JPA-MR. The extracted features from both modes were
combined together for the following analyses. Given that the type of metabolic feature (i.e.,
how the feature was extracted) is labeled in the metabolite-intensity table (PP for JPA-peak
picking, MR for JPA-MS2 recognition, TL for JPA-targeted list), we can directly plot the
number of features extracted by each of the different strategies. As shown in Figure 3A, a
significant portion (25% upon averaging all six concentrations) of the metabolic features
were detected using JPA-MR, but not JPA-PP. This shows that a conventional peak picking
strategy is insufficient for extracting metabolic features of diverse peak shapes. An illus-
trative example of a rescued feature from the standard mixture is presented in Figure S1
to show the distortion of peak shape negatively impacting feature extraction by the con-
ventional algorithm. Furthermore, the total number of metabolic features decreased by
52% ((100% (original concentration) − 48% (10-fold dilution))/100% = 52%) as the dilution
factor increased towards 10-fold. This decrease makes sense as the more dilute the samples
are, the lower the overall metabolic concentrations, thus making low-concentration metabo-
lites difficult to detect by LC-MS or recognize by conventional peak picking algorithms.
Interestingly, despite the decreased number of metabolic features, a substantial portion
of features can be rescued by JPA using its MS2 recognition approach, as indicated by the
grey arrows in Figure 3A. On average, around 5% of the metabolic features (the fraction
of features in the grey rectangle) missed by JPA-PP are rescued by JPA-MR from the more
dilute urine sample. Although the total number of features detected by both JPA-PP and
-MR decreased by 52%, it is less than the decrease in features detected by JPA-PP only,
which is about 59% ((82% (original concentration) − 34% (10-fold dilution))/82% = 59%).
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The confidence of the rescued metabolic features is always a concern. While it is
possible to manually inspect each individual feature, this process would be tedious and time
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consuming. To investigate the quality of rescued features, we used a recently developed
artificial intelligence-based feature fidelity check software, EVA, to differentiate between
features with good chromatographic peak shapes and background noise. EVA was trained
using 25095 EIC plots collected from 22 LC-MS-based metabolomics projects of various
sample types, LC, and MS conditions and can achieve over 90% classification accuracy 21. A
fidelity rate is calculated as the number of true positive features determined in EVA divided
by the total number of features. As shown in Figure 3B, the fidelity rate of the metabolic
features recognized by JPA-MR is slightly higher than that of the features extracted by JPA-
PP, indicating the high confidence of JPA-MR and proper choice of processing parameters
for JPA-MR.

2.3. Confidence of the Rescued Metabolic Features

Using the same urine samples, we further compared the performance of feature ex-
traction between JPA and conventional feature extraction strategies to demonstrate the
quality of features extracted by JPA. In this study, JPA-PP was used to mimic conventional
metabolic feature extraction. The comparison is aimed at recognizing the unique advan-
tages of JPA and performing a mechanistic interpretation of the performance difference.
The results of the original concentration urine dataset generated in RP(+) mode and pro-
cessed by the two approaches are summarized in Figure 4. Based on the results from
the original concentration urine sample shown in Figure 4A, JPA is able to detect more
metabolic features than conventional peak picking algorithms due to the rescue of 40%
more metabolic features by MS2 recognition, calculated based on the number of features in
the aligned feature table.
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Since the rescued metabolic features usually have non-Gaussian peak shapes, it is
also important to evaluate their data quality and assure that their quantitative precision
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is high enough for downstream statistical analysis. Figure 4B shows that the averaged
RSD% (relative standard deviation) values of all the features extracted by conventional
peak picking, JPA-MR, and JPA as a whole are below 15%. The RSD% of JPA-MR is
approximately 3% higher than that of JPA-PP as the low-abundant metabolic features have
poor peak shapes. Even though the peak shapes of the rescued metabolic features are not
always ideal, they are still sufficient for quantitative analysis.

Furthermore, the features extracted by JPA-PP only and JPA were both annotated using
the same MS2 spectral library. The annotated metabolites were then manually inspected for
endogenous metabolites associated with an HMDB or KEGG ID. Only the numbers of en-
dogenous metabolites are summarized in Figure 4C. The numbers of identified endogenous
metabolites agree very well with the numbers of metabolic features. JPA facilitates more
annotated metabolites than a conventional peak picking approach alone. The metabolites
uniquely annotated by JPA-MR are listed in Table S1.

We also tested the data processing speed of JPA using a desktop computer with an
Intel i9-9900k CPU @ 3.60 GHz with eight cores and 32 GB memory, Windows 10 64-bit
operation system, and 10 processing threads. As we can see from Figure 4D, due to the
extra time spent on JPA-MR, the overall processing time is slightly longer than the time
taken for carrying out peak picking only; yet, the difference is not dramatic.

In addition, we compared JPA against other well-established software, including
MZmine 2, XCMS, and MS-DIAL. The parameters used for each software have been pre-
optimized. The results shown in Figure S2 agree with those from Figure 4, demonstrating
that JPA has the highest sensitivity in terms of feature extraction and metabolite annotation.
However, it is important to note that each tool has its own uniqueness in extracting
metabolic features [22].

2.4. Robustness

Furthermore, we tested the performance of JPA using metabolomics data generated
under different data acquisition rates. In particular, cycle time poses the greatest impact
on the spectral acquisition time allocated for MS1 and MS2, thus influencing the number
of metabolic features and annotated metabolites. Since JPA is a robust feature extraction
platform composed of multiple algorithms, it is able to rescue metabolic features and
generate higher quality metabolomics results even when the parameters are not optimized.
This is shown using DDA data generated with cycle times of 1, 2, and 3 s while keeping all
other parameters the same. The numbers of metabolic features and annotated metabolites
are plotted in Figure S3. Although the JPA-PP feature number decreases with increasing
cycle time, the number of JPA-MR features increases accordingly. Therefore, JPA can
consistently rescue metabolites, increase the overall annotation rate, and thus facilitate
higher metabolite coverage regardless of the experimental parameters.

Moreover, we tested more tolerant parameter thresholds by using a larger mass
tolerance and smaller S/N ratio (mass tolerance = 30 ppm and S/N ratio = 3) to process
the same data. The results generated from using the default and adjusted parameters are
plotted in Figure S4. As expected, due to less stringent processing parameters, the number
of features extracted by JPA-PP increases while the number of JPA-MR features decreases
slightly. However, there are still a large number of features that need to be rescued by JPA.
In addition, the fidelity rate (true positive rate) of the JPA-PP features drops by 10% on
average, while the JPA-MR features maintain a similar fidelity rate. Therefore, JPA has its
merits regardless of the data processing parameters used.

2.5. JPA Offers Higher Analytical Sensitivity

In analytical chemistry, sensitivity is usually determined by the performance of the
analytical instrumentation. In LC-MS-based metabolomics, metabolic feature signals are
automatically determined by feature extraction software. If the software is incapable
of recognizing a low-abundant feature, its analytical sensitivity is diminished. This is
an important concept often overlooked by researchers as many people believe that by
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simply using a better LC-MS system, they can achieve better analytical sensitivity for
detecting more metabolic features. As demonstrated in previous sections, the performance
of conventional metabolic feature extraction algorithms in recognizing low-abundant
metabolic features is limited, thus leading to lower sensitivity or higher LODs. It is
important to note that the poor performance of peak picking algorithms contribute to these
increased LODs, and they can be rescued if better peak picking strategies are used. From
that perspective, JPA meets the demand for better feature extraction. In principle, JPA
should also provide better sensitivity and lower LODs for LC-MS-based metabolomics.

To demonstrate the improved analytical sensitivity attributed to a better feature extrac-
tion strategy, we prepared serial diluted endogenous metabolite standards and analyzed
them in both RP(+) and HILIC(−) modes. From the raw LC-MS data, metabolic features
and their MS intensities were automatically extracted using JPA and JPA-PP only (to mimic
conventional metabolic feature extraction). The number of metabolites detected by each
of the three different feature extraction functions of JPA (PP, MR, and TL) is shown in
Figure 5A. The generated metabolic intensity tables are provided in Table S2 for HILIC(−)
mode and Table S3 for RP(+) mode. The extracted peak intensities were then used to
establish calibration curves, from which LOD was determined for each metabolite standard.
All the intensity values were manually inspected in the raw data to assure their accuracy.
Two LODs were calculated for each metabolite, by both JPA-PP only and JPA with MS2

recognition and targeted list, and the results are summarized in Table S4 for HILIC(−)
mode and Table S5 for RP(+) mode. To visualize the improved analytical sensitivity from
using JPA, we normalized the LOD values by the highest LOD of each metabolite standard
and plotted them in the circular bar plot (Figure 6). On average, the LOD values calculated
using JPA are up to 3425- and 15,074-fold lower than that calculated using JPA-PP only
in HILIC(−) and RP(+) modes, respectively. These results suggest that JPA consistently
delivers the lowest LOD for automated data processing. It also indicates that in addition to
sensitive instrumentation, the feature extraction program also plays a critical role in fully
revealing the analytical performance of state-of-the-art LC-MS platforms.
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2.6. JPA in Exposome Research

Owing to its high throughput and sensitivity, LC-MS-based metabolomics has now
been widely used in exposome research to study the totality of chemical exposures and
their contribution to health and disease [23–25]. Exposure molecules usually present in low
abundance, making extraction by conventional peak picking algorithms even more diffi-
cult [26,27]. As such, JPA can be a critical bioinformatic tool to detect exposure compounds
for exposome research. To demonstrate the performance of JPA in exposome research, we
prepared an exposome standard mixture of 250 drugs (concentration of 1 µM) and 255 pes-
ticide standards (concentration of 1 µg/mL). The stock mixture solution was then diluted
to five concentrations with a dilution factor of 5. The exposome mixtures were analyzed in
RP(+) mode. The collected raw LC-MS data were then processed by JPA-PP only and JPA.
The intensity results from JPA-PP only and JPA are provided in Table S6. The number of
detected metabolites of different concentrations and software are presented in Figure 5B.
Specifically, the three fractions in the column of JPA results represent different feature
extraction strategies. The results demonstrate that JPA is able to rescue more (8.3-fold) expo-
some chemicals and achieve better performance than JPA-PP only. The results of the lower
concentrations show even clearer advantages of JPA in detecting low-abundant features.
The number of metabolites detected by JPA in the most concentrated standard mixture is
2.05 times more than that detected by JPA-PP, while the number of metabolites detected by
JPA in the lowest concentration is 2.95 times more than that by JPA-PP. These results agree
with the conclusion drawn from the analyses of urine and endogenous metabolites, that
JPA can dramatically increase analytical sensitivity in exposome research.
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3. Materials and Methods
3.1. Metabolomics Experiments

The performance of JPA was comprehensively evaluated using LC-MS data of en-
dogenous metabolite standards, real biological samples, and exposure drug compounds.
Representative human urine samples were first used to validate the performance of JPA.
The original human urine sample was acquired from a healthy male volunteer. Serial
dilution was performed to prepare urine samples of different metabolite concentrations.
LC separation of the urine samples was performed using a Waters ACQUITY UPLC BEH
C18 Column (130 Å, 1.7 µm, 1.0 mm × 100 mm). The detailed sample preparation and
LC-MS settings can be found in Texts S2–S4. Furthermore, to determine improved analytical
sensitivity using JPA-based data processing, 134 endogenous metabolite standards were
used to prepare a final stock standard mixture at 8.3 µg/mL for LC-MS analysis. Reversed
phase (RP) and hydrophilic interaction (HILIC) LC separations were performed using the
same Waters ACQUITY UPLC BEH C18 Column and a ZIC-pHILIC column (200 Å, 5 µm,
2.1 mm × 150 mm) (Millipore Sigma, Oakville, ON, Canada), respectively. The detailed
parameter settings for RP and HILIC analyses of the standard mixtures are given in Text
S5. Both urine samples and metabolite standards were analyzed on a Bruker Impact II
UHR-QqTOF (ultra-high-resolution Qq-time-of-flight) mass spectrometer coupled with an
Agilent 1290 Infinity II ultrahigh-performance liquid chromatography (UHPLC) system.

The study of exposome compounds was performed using the DiscoveryProbeTM FDA-
approved drug library containing 1971 FDA-approved drugs purchased from APEXBIO
Technology. The exposome standard mixture was prepared by mixing 250 drugs (con-
centration of 1 µM) and 255 pesticide standards (concentration of 1 µg/mL). Five con-
centration levels were prepared by diluting the above-mentioned mixture four times
with a dilution factor of 5. Exposure drug compounds were analyzed using an Agilent
1200 UHPLC system coupled to an Agilent 6550-quadrupole time-of-flight (qToF) mass
spectrometer (Agilent Technologies, Singapore) [28,29]. Detailed LC-MS settings can be
found in Text S6. All raw data files are publicly available in the MetaboLights repository
(www.ebi.ac.uk/metabolights/MTBLS2631 (accessed date: 15 January 2022)).

3.2. Data Analysis

The data processing parameters used in JPA are described as follows. Peak picking
parameters: ppm = 10, minimum peak width = 5 in RP(+) and 10 in HILIC(−), maximum
peak width = 20 in RP(+) and 60 in HILIC(−), S/N threshold = 3, mzdiff = 0.01, integration
method = 1, prefilter peaks = 3, prefilter intensity = 100, noise filter = 100. MS2 based
feature extraction parameters: mz.tol for finding potential features = 10 ppm, mass.tol and
rt.tol for confirming the features in raw data = 0.01 Da and 60 s. Targeted feature extraction
parameters: mass.tol and rt.tol for confirming the target features in raw data = 0.01 Da
and 30 s. Alignment parameters: bw = 5, minfrac = 0.5, mzwid = 0.015, minsamp = 1,
max = 100.

Metabolite annotation for urine metabolomics was performed by searching the experi-
mental MS2 spectra against MS-DIAL positive mode spectral library (version 11, down-
loaded from http://prime.psc.riken.jp/compms/msdial/main.html#MSP (accessed on
1 September 2021), containing 290,915 MS2 spectra for 13,303 unique compounds). Overlap
checking between the metabolic features extracted by JPA-PP only and JPA was performed
using thresholds of RT difference (default: 30 s) and accurate mass difference (default:
0.01 Da).

The limits of detection (LODs) of metabolite standards were determined by first
establishing linear regression curves using the MS intensities of the serial diluted standard
solutions. The intensity values used for constructing the calibration curve were manually
inspected to ensure the intensity values were not mistakenly recorded from adjacent peaks.
Using the intensity of the lowest concentration that was recognizable by the peak picking
algorithms, the MS intensity value at 3 times the signal-to-noise (S/N) ratio was estimated
and fitted into the linear regression curve to estimate the concentration LOD.

www.ebi.ac.uk/metabolights/MTBLS2631
http://prime.psc.riken.jp/compms/msdial/main.html#MSP
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The extracted ion chromatograms (EICs) of all the metabolites and exposome stan-
dards were plotted using PlotEIC.R (available on https://github.com/HuanLab/JPA/
blob/main/PlotEIC.r, accessed on 1 September 2021). Representative EICs of metabolic
features from both the metabolite and exposome standards generated by JPA-PP, JPA-MR,
and JPA-TL are presented in Figure S5. Feature fidelity was evaluated using EVA, a deep
learning model trained with over 25,000 manually inspected EICs [30].

4. Conclusions

In this work, we developed JPA, a robust and versatile metabolomics data process-
ing tool that inclusively extracts different types of small molecule features regardless of
their chromatographic peak shapes. JPA is a one-of-a-kind tool that confidently extracts
more metabolic or exposomic features to empower the broad metabolome coverage of
LC-MS-based metabolomics. Unlike other conventional data processing software, which
only annotate the extracted metabolic features by their selected peak picking algorithm,
JPA is able to maximize the metabolic information for metabolite annotation by including
peak picking, MS2 recognition, and a targeted list. We believe that this novel integrated
peak picking solution will bring metabolomics research to the next level, facilitating more
comprehensive biological applications. In addition, we believe that the concept of joint fea-
ture extraction should be incorporated into existing metabolic feature extraction programs
for more comprehensive and sensitive metabolic feature extraction.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12030212/s1, Figure S1: Representative example of bad
chromatographic peak shape extracted from the standard mixture by only JPA-MS2 recognition and
not JPA-peak picking, Figure S2: Comparison of feature extraction performance of different data
processing software, Figure S3: Tested JPA on urine metabolomics data generated in RP(+) with
different cycle times, Figure S4: Tested JPA using different data processing parameters, Figure S5:
Example EICs of metabolite and exposome standards generated by JPA-PP, JPA-MR, and JPA-TL; Text
S1: Detailed dot product algorithm of metabolite annotation in JPA, Text S2: Chemicals and solvents,
Text S3: Urine sample preparation protocol, Text S4: LC-MS settings for urine metabolomics, Text S5:
LC-MS settings for endogenous metabolite standards analysis, Text S6: LC-MS settings for exposome
standards analysis; Table S1. The metabolites uniquely annotated by JPA-MR from urine in RP(+)
mode, Table S2. Intensity table of detected endogenous metabolites from different dilution factors in
HILIC(−) mode, Table S3. Intensity table of detected endogenous metabolites from different dilution
factors in RP(+) mode, Table S4. The LODs of endogenous metabolites calculated by JPA in HILIC(−)
mode, Table S5. The LODs of endogenous metabolites calculated by JPA in RP(+) mode, Table S6.
Intensity table of detected exposome metabolites from different dilution factors in RP(+) mode.
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