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On the flexible needle insertion 
into the human liver
Veturia Chiroiu1*, Nicoleta Nedelcu1, Doina Pisla2, Ligia Munteanu1 & Cristian Rugină1

In the present research, the navigation of a flexible needle into the human liver in the context of 
the robotic-assisted intraoperative treatment of the liver tumors, is reported. Cosserat (micropolar) 
elasticity is applied to describe the interaction between the needle and the human liver. The theory 
incorporates the local rotation of points and the couple stress (a torque per unit area) as well as the 
force stress (force per unit area) representing the chiral features of the human liver. To predict the 
deformation of the needle and the liver, the elastic properties of the human liver have been evaluated. 
Outcomes reveal that considering smaller deformations of the needle and the liver results in better 
needle navigation mechanism. The needle geometry can enhance the penetration.

By suggesting the flexible bee needles as useful tools to transport drugs into the liver tumors, the needle naviga-
tion performance  enhances1,2. We refer to the insertion trajectory of the needle which should avoid the ribs, 
blood vessels, and other organs to protect the  liver3–6 (Fig. 1a). The bee needle has the advantage to reduce the 
insertion forces and to ensure small tissue deformations. The literature reports a number of interesting papers 
on the surgical needle navigation into the  liver7–9. The bee needle is displayed in Fig. 1b. The front angle has 157°, 
the back angle, 110°, the height h is 0.5 mm, and the tip thickness b is 0.15 mm.

Another topic refers to the collision free trajectory of the needle to the target. This topic requires experience 
in imaging the tumor location, in the liver structure and in the microstructural interaction between the needle 
and the liver. Elastic properties of the liver, minimum execution time, minimum energy of the needle navigation, 
load carrying capacity are some topics of interest.

The needle flexibility is essential for a good precision in the handling. Important concentration in strain and 
stress and the topological changes of the liver are not to be neglected during the needle navigation towards the 
 tumor10–13. Details of the forces during needle insertion into the liver are find  in14, the real time collision detec-
tion for virtual surgery  in15 and the minimal hierarchical collision detection  in16. Optimization is required to 
modify the needle trajectory in order to protect the  liver17,18, to manage the tumor  risk19, and to change the robot 
 architecture20–22. The inverse sonification problem for capturing hardly detectable details in a medical image is 
treated  in23, and the control  in24–27.

Microscopic investigation of the human liver offers details of its microanatomy with emphases to the granular, 
fibrillar components and irregular solid–fluid  interfaces28–30. The basic functional unit of the liver is the hepatic 
lobule which comprises a hexagonal and a portal triad-portal vein, hepatic artery, bile  duct31,32. Lobuli form a 
two layers membrane with internal space of 100 A and the cellular elements with twisted, spiraling fibers braided 
into the helical and screw-shaped gaps (pores) of 40–100 µm in  size33–36 (Fig. 2).

A straight line for the needle trajectory is typically used in the treatment of the liver tumors. But avoiding 
the obstacles and reaching the regions currently inaccessible using straight line trajectory require the motion 
planning algorithm for flexible needle insertion with integrative models of human  liver37 with knowledge of the 
interaction forces raised during needle  insertion38. The feedback force from the needle can be formulated as the 
gradient of the potential energy of the soft tissue based on particle  constraint39. The trajectories inside the liver 
must be recorded by a camera to compare with the simulation trajectories in order to reduce the errors between 
the experimental and simulation trajectories less than 0.8  mm40.

Development of a robotic system and control algorithms is discussed  in41 with different topics related to 
needle steering. Mechanics-based models are adapted from beam  theories42–44. In these models, the fact that the 
needle deflection and tissue deformation are coupled is considered. 3D-needle shape reconstruction with an 
array of fiber brag grating sensors is developed  in45 and inventions were reported for guiding devices for needle 
placement and performing the percutaneous computed tomography-guided surgical  activity46–48.

Two challenges persist until now: what kind of material the liver is made of, and which is the interaction 
between the needle and the liver. The present paper puts together results on the elastic properties of the human 
liver, deformation of the needle and the liver, respectively.
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Investigations on the human liver confirm a chiral (noncentrosymmetric) behavior providing evidence of 
isotropy with respect to the coordinate rotations but not with respect to inversions. The Cosserat (micropolar) 
elasticity is the appropriate theory that recognizes and describe the rotation of the cellular components as well 
as the translation, the couple per unit area as well as force per unit area of the hepatic membranes, the size effect 
in tension and bending, and the stress concentration near  discontinuities49–54. It should be added that these 
features cannot be described by conventional elastic theories. The chirality leads to a vibrational amplification 
of the displacements and stresses which can be explained by a suitable adaptation of the liver dynamics to the 
attractive and repulsive forces. The chirality-triggered oscillations suggest that the linearity is preserved at the 
microscopic level, while becoming strongly nonlinear to the macroscopic scale.

Deformation of the needle
In this research, the common focus of a serial surgical robot composed of a revolute joint and a flexible needle, 
was set to a reference Lagrange frame (X,Y ,Z) of base vectors (e1, e2, e3) and origin O in the entry point of the 
skin (Fig. 3). The Euler frame K(x, y, z) with origin in the joint and the base vectors (d1, d2, d3) is attached to the 
needle. The angle between the flexible arm and axis x is θ . Bending and torsion of the needle are described by 
the strain functions (u1, u2, u3) . The robot has f  degrees of freedom f = fr + fe , where fr = 1 is the generalized 
coordinate of the rigid system and fe = 3 are the degrees of freedom of the flexible needle.

Figure 1.  (a) The suggested trajectory towards the liver tumor; (b) Honeybee barbed needle inspired  from1,2.

Figure 2.  Representation of the hepatic lobule—basic functional unit of the liver.
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According to the previous studies of Munteanu and  Donescu55,56, the orientation of the Euler axes relative to 
the Lagrange axes are expressed by Euler angles υ,ψ and ϕ

Strain functions (u1, u2, u3) measure the bending and torsion of the needle as

where 
(

′
)

 means the partial differentiation with respect to s—the coordinate along the central line of the needle.
Especially to our problem, u1 and u2 measure the bending of the needle, and the function u3 measures the 

torsion of the needle. Therefore, u1 and u2 are components of the curvature of the central line denoted by κ cor-
responding to the planes (yz) and (xz)

while u3 is the torsion of the needle denoted by τ

In this way, the needle is rigid along the tangential direction and the total length of the needle l  is invariant, 
the ends being fixed by external forces.

The link between the position vector r = (x, y, z) and unit tangential vector d3 is obtained as r =
s
∫

0

d3ds , or

To write the equations which describe the needle deformation, we introduce the inertia of the needle char-
acterized by the functions

where ρ0 is the mass density per unit volume, A0 the area of the cross section, I1, I2 are geometrical moments 
of inertia around the axis, which is perpendicular to the central axis and respectively around the central axis.

The exact set of equations of the needle with the ends fixed by the force F = −� with � = (�1, �2, �3) becomes

(1)
d1 = (− sinψ sin ϕ + cosψ cosϕ cosυ)e1 + + (cosψ sin ϕ + sinψ cosϕ cosυ)e2 − sin υ cosϕ e3,

d2 = (− sinψ cosϕ − cosψ sin ϕ cosυ)e1 + +(cosψ cosϕ − sinψ sin ϕ cosυ)e2 + sin υ sin ϕe3,

d3 = sin υ cosψe1 + sin υ sinψe2 + cosυe3.

(2)

u1 =υ ′ sin ϕ − ψ ′ sin υ cosϕ,

u2 =υ ′ cosϕ + ψ ′ sin υ sin ϕ,

u3 =ϕ′ + ψ ′ cos υ ,

(3)κ2 = u21 + u22 = υ ′2 + ψ ′2 sin2 υ,

(4)u3 = τ = ϕ′ + ψ ′ cos υ.

(5)x(s) =

s
∫

0

cosψ sin υds, y(s) =

s
∫

0

sinψ sin υds, z(s) =

s
∫

0

cosυds.

(6)(ρ0A0)(s), (ρ0I1)(s), (ρ0I2(s),

(7)−ρ r̈ − �
′ = 0,

(8)
k1(ψ̇

2
sin υ cos υ − ϋ)− k2(ϕ̇ + ψ̇ cos υ) ψ̇ sin υ − A(ψ

′2
sin υ cos υ − υ ′′)+ C(ϕ′ + ψ ′

cos υ)ψ ′
sin υ − �1 cos υ cosψ − �2 cos υ sinψ + �3 sin υ = 0,

(9)
−

∂

∂t
{k1ψ̇ sin2 υ+k2(ϕ̇+ψ̇ cosυ) cos υ}+

∂

∂s
{Aψ

′2 sin2 υ+C(ϕ′+ψ ′ cos υ) cos υ}+�1 sin υ sinψ−�2 sin υ cosψ = 0,

(10)−k2
∂

∂t
(ϕ̇ + ψ̇ cos υ)+ C

∂

∂s
(ϕ′ + ψ ′ cos υ) = 0,

Figure 3.  Schematic of the needle with the Lagrange coordinate system OXYZ and the Euler coordinate system 
oxyz attached.
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where A and C are the bending stiffness and respectively the torsional stiffness of the needle, related to the Lame 
constants � , µ by A = 1

4πa
4E, C = 1

2πa
4µ, where E =

µ(3�+2µ)

�+µ
 is the Young’s elastic modulus, and a is the 

radius of the cross section of the needle, and

The system of Eqs. (7)–(11) is exactly solved by the cnoidal method. As a result, the closed form solutions of 
the Euler angles θ ,ψ and ϕ are  derived55

with  m =
ζ2−ζ3
ζ1−ζ3

 and w =

√

|�3|
2A (ζ1 − ζ3),

where �(x, z,m) =
x
∫

0

dy

1−z sn2(y,m)
 is the normal elliptic integral of the third kind. Functions ζ1, ζ2, ζ3 are solutions 

of the equation

with

For the present study, our objective is to determine the functions which measure the bending of the needle 
( u1 and u2 ), and the function which measures the torsion of the needle ( u3 ). This can be done by (2). The strain 
profile of the needle is computed for two needle routes as considered in Fig. 4. For the first route, the tumor is 
red and the entry point is A and for the second route the tumor is blue with entry at point B.

(11)ρ = A0ρ0 = πa2ρ0 , k1 = I1ρ0 =
πa4

4
ρ0, k2 = I2ρ0 =

πa4

2
ρ0.

(12)cos υ = ζ = ζ2 − (ζ2 − ζ3)cn
2(

√

|�3|

2A
(ζ1 − ζ3)(ξ − ξ3),m) = ζ2 − (ζ2 − ζ3)cn

2[w(ξ − ξ3),m],

(13)

ψ =
1

4(A− k1v2)2w2
{−

β + (C − k2v
2)τ

1− ζ3
�[w(ξ−ξ3),

ζ2 − ζ3

1− u3
,m]−

β − (C − k2v
2)τ

1+ ζu3
�[w(ξ−ξ3),

ζ2 − ζ3

1+ u3
,m]},

(14)
ϕ =−

τ [C − A− (k2 + k1)v
2]

A− k1v2
ξ +

1

4(A− k1v2)2w2
{
β + (C − k2v

2)τ

1− ζ3

×�[w(ξ − ξ3),
ζ2 − ζ3

1− ζ3
,m] −

β − (C − k2v
2)τ

1+ ζ3
�(w(ξ − ξ3),

ζ2 − ζ3

1+ ζ3
,m)},

(15)
1

2
ζ ′2 = aζ 3 + bζ 2 − aζ + c,

(16)a = −
�3

A
�= 0, b =

1

2A

(

γ −
C2τ 2

A

)

, c = −
1

2A

(

γ −
β2

A

)

.

Figure 4.  Two needle routes: the first route with a red tumor and the entry point A, and the second route longer 
with a blue tumor and the entry point B.
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Figure 5 represents the bending functions u1 and u2 of the needle which depend on the coordinate along the 
central line of the needle s , and the time t  , for the route (a) and for the route (b), respectively. In a similar matter, 
Fig. 6 represents the torsion functions u3 of the needle.

It is noteworthy that Figs. 5 and 6 show that the deformation of the needle depends on the needle trajectory. 
For both cases, the deformation of the needle is small and finite without any tendency to grow towards chaos. 
The strains operate in a solitonic regime in which the localized waves propagate for a long time without changes. 
The soliton is a localized wave with an infinite number of degrees of freedom that conserve their properties even 
after interaction among them, and then act somewhat like  particles55. The basic idea is that the Eqs. (7)–(11) have 
unique properties that are locally preserved such as an infinite number of exact solutions expressed in terms of 
the Jacobi elliptic functions or the hyperbolic functions, and the simple formulae for nonlinear superposition 
of explicit solutions.

Degree of deformation of the honeybee barbed needle during insertion into the liver is caused by the flex-
ibility of the needle. The main parameters that determine the flexibility of the needle are the height h and the tip 
thickness of the needle b (see Fig. 1b).

For study the effect of the needle parameters h and b on the stress change during the insertion, simulations are 
carried out under different values for these parameters, as h = 0.5, 0.55, 0.6 and b = 0.15, 0.2, 0.25. The simula-
tion results are shown in Fig. 7 for b ; a) h = 0.5 and b = 0.15; b) h = 0.55 and b = 0.2; c) h = 0.6 and b = 0.25.

We can see from the Fig. 7 that if the parameters h  and b of the needle increase, the deformation of the needle 
in the tissue also increases. The stress order of magnitude for h = 0.5 and b = 0.15 is 0.01, for h = 0.55 and b = 
0.2 is about 0.1, while for h = 0.6 and b = 0.25 is about 0.17. We conclude that the larger parameters h  and b of 
the needle, the greater is the stress distribution.

Figure 5.  Functions u1 and u2 for (a) the first route and (b) the second route.

Figure 6.  Function u3 for (a) the first route and (b) the second route.
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Elastic constants of the liver
Cosserat theory makes our work distinct from previous studies describing the elasticity of the human liver. In 
spite of the fact that the liver was usually modeled as an elastic medium, we noted a rich dynamic behavior of 
the human liver involving nonlinearity and chirality. Our findings show that the effect of the chirality leads to 
a vibrational amplification of the elastic response of the liver due to the needle penetration, explained by the 
adaptation of the liver dynamics to the attractive and repulsive forces (inter-atomic bonds). The human liver is 
viewed as a spatial overlap of mesoscopic subsystems in which interferences overlap or are lost, as such it natu-
rally vibrates through overlapping the oscillations—and this result is a natural effect of chirality. Therefore, the 
human liver can be regarded as an elastic chiral Cosserat material (noncentrosymmetric) characterized by the 
fourth rank elastic  constant49–56

where V = U
�

 is the potential energy of deformation per unit volume (elastic potential) of the hepatic lobule, U 
is the total energy of the liver, � is the volume of the hepatic lobule, and εij is the Lagrangian strain tensor, and

with Xi the material or Lagrangian coordinates and xi the Eulerian coordinates.
After that, the potential  theory45 is defined by four terms: the free-electron energy Ufe , then electrostatic Cou-

lomb energy Ues which is often called the Mandelung energy, the band-structure energy Ubs and the Born–Mayer 
ion-core repulsive energy Ur

57–62

Jankowski and  Tsakalakos59 advanced that Ur

is the predominant term for the evaluation of the elastic constants. The sum is extended to all nearest neighbors 
points of coordinates (X,Y ,Z) located at distances R(n) , R =

√

X2 + Y2 + Z2 with respect to the green atom 
from Fig. 7, R(n) , α̃ is the parameter of the repulsive energy and β̃ is the repulsive range  parameter57. The α̃ is 
measured in Ryd (Rydberg) 1 Ryd = 13.6 eV = 2.092 × 10 −21 J, and  β̃ in atomic units [ua]. These parameters 
are evaluated from a genetic algorithm that use the experimental value of the elastic modulus of the liver E = 
5.9359 Pa and Poisson’s ratio ν = 0.49 available  in58.

The aim of the inverse problem is to use the difference between the experimental and theoretical values of the 
Young’s modulus and the Poisson’ratio to provide a procedure that leads to the least disaccord between predic-
tions and experimental observations. We consider that  α̃ and β̃ are approximated by polynomials of five degree 
Pi(b6i−5, . . . , b6i) , i = 1, 2, . . . , 7 , characterized by coefficients bj , j = 1, 2, . . . , 42 . To calculate Pi , i = 1, 2, ...7 
from experimental data, an objective function ℑ is chosen to measure the agreement between theoretical and 
experimental data

(17)Cijkl =
dxm

dxi

dxn

dxj

dxo

dxk

dxp

dxl
Cmnop = (−1)4Cijkl = Cijkl =

∂2V

∂εij∂εkl
, i, j, k, l = 1, 2, 3,

(18)
∂

∂εij
=

1

2

(

Xi
∂

∂xj
+ Xj

∂

∂xi

)

,

(19)U = Ufe + Ues + Ubs + Ur .

(20)Ur =
1

2
α̃
∑

n

exp(−β̃R(n)),

Figure 7.  Insertion simulation results for different values of h  and b ; (a) h = 0.5 and b = 0.15; (b) h = 0.55 and 
b = 0.2; (c) h = 0.6 and b = 0.25.
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where zi(bj) , i = 1, 2 are the predicted values of α̃ and β̃ , and zexpi  , i = 1, 2 , are the experimental values of α̃ and 
β̃ . The functions Pi , i = 1, 2, . . . , 7 , are estimated by a genetic algorithm. This algorithm assures an iteration 
scheme that guarantees a closer correspondence of predicted and experimental values of  α̃ and β̃ at each itera-
tion. A binary vector with 42 genes representing the real values of the parameters bj , j = 1, 2 . . . 42 , is used. The 
length of the vector is six places after the decimal point. The domain of parameters bj ∈[−aj , aj] with length 2aj 
is divided into a least 15,000 equal size ranges. That means that each parameter bj , j = 1, 2 . . . 42 , is represented 
by a gene (string) of 22 bits 221 < 3000000 ≤ 222 . One individual consists of the row of 42 genes, that is, a binary 
vector with 22 × 42 components given by b(1)21 b

(1)
20 . . . b

(1)
0 b

(2)
21 b

(2)
20 . . . b

(2)
0 . . . b

(42)
21 b

(42)
20 . . . b

(42)
0  . From one genera-

tion to the next the genetic algorithm usually decreases the objective function of the best model. The starting 
population is usually randomly generated. Then, new descendant populations are iteratively created with the 
goal of an overall objective function decrease from generation to generation. Each new generation is created 
from the current one by the main operations: selection, crossover and reproduction, mutation and fluctuation. 
The alternation of generations is stopped when convergence is detected. If no convergence the iteration process 
continues until the specified maximum number of generations is reached.

We report here the results of the genetic algorithm. The unknown α̃ and β̃ are obtained after 31 iterations. 
The results of the genetic algorithm are  α̃ × 106 = 0.19 Ryd and β̃ = 10.22 ua.

Describe the constitutive equations for the isotropic centrosymmetric Cosserat solids as  follows49–53

where σkl is the Cauchy stress tensor, mkl is the couple stress tensor, ekl = 1
2 (uk.l + ul,k) is the macrostrain strain 

tensor, u is the displacement vector and εklm is the Levi–Civita permutation tensor. Further, the microrotation vec-
tor ϕk is distinct from the macrorotation vector rk = 1

2εklmum,l , i.e. ϕk refers to the rotation of points themselves, 
while rk refers to the rotation associated with movement of nearby points. The comma denotes differentiation 
with respect to spatial coordinates and a superposed dot indicates the time rate.

Involved elastic constants are the Lame elastic constants � , and µ , the Cosserat rotation modulus κ , and the 
first, second and third microrotation constants α,β , γ.

For a healthy liver without tumors, the estimates of the elastic constants �,µ, κ ,α,β and γ are shown in 
Table 1.

It is interesting to see from the Table 1 that the elastic constants of liver reduces all the way when the strain 
increases from negative (compression) to zero and then to positive(extension) values. This is explained by the 

ℑ(P) = 42−1
42
∑

j=1

4−1
2

∑

i=1

[zi(bj)− z
exp
i (bj)]

2,

(21)σkl = �errδkl + (2µ+ κ)ekl + κεklm(rm − ϕm),

(22)mkl = αϕr,rδkl + βϕk,l + γϕl,k ,

Table 1.  Estimates for elastic constants in the ( X,Y ,Z ) coordinates as a function of strain.

Strain �[Pa] µ[Pa] κ[Pa] ×10
2 α [N] ×10

4 β[N] ×10
4 γ[N] ×10

4

 − 0.040 97.7806 2.1033 459 2.0976 12.0833 2.0865

 − 0.036 97.7703 2.0876 432 2.0878 12.0775 2.0814

 − 0.032 97.7657 2.0456 401 2.0502 12.0656 2.0800

 − 0.028 97.7587 1.9981 396 2.0481 11.9961 1.9976

 − 0.024 97.7498 1.9978 388 1.9934 11.9908 1.9974

 − 0.020 97.7480 1.9964 387 1.9914 11.9904 1.9969

 − 0.016 97.7398 1.9956 381 1.9897 11.9895 1.9958

 − 0.012 97,7341 1.9933 374 1.9883 11.9891 1.9913

 − 0.008 97.7034 1.9928 371 1.9878 11.9792 1.9900

 − 0.004 97.6351 1.9925 366 1.9865 11.9725 1.9895

0.000 97.6037 1.9919 354 1.9849 11.9719 1.9819

0.004 97.5939 1.9909 351 1.9839 11.9709 1.9809

0.008 97.5744 1.9874 342 1.9814 11.9704 1.9776

0.012 97.3901 1.9832 340 1.9802 11.9695 1.9772

0.016 96.8372 1.9802 339 1.9782 11.9692 1.9707

0.020 96.6333 1.9745 336 1.9735 11.9655 1.9705

0.024 96.4403 1.9698 332 1.9718 11.9598 1.9688

0.028 96.3012 1.9453 329 1.9653 11.9553 1.9552

0.032 95.7854 1.9245 324 1.9625 11.9545 1.9265

0.036 95.7840 1.9203 322 1.9603 11.9409 1.9213

0.040 97.7737 1.9189 321 1.9518 1.9408 1.9177
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dependency of the liver elasticity on the size of the inhomogeneities and the surface/interface stress at the 
micro-scale.

Finally, the results show that even small strains can affect the values of the elastic constants. The increase in 
the strain reduces the value of the elastic constants.

Deformation of the liver during the needle insertion
The deformation of the needle is coupled with the deformation of the liver. To evaluate the liver deformation, 
the connection between the needle and the liver is modeled as a spring layer with a very small  thickness63–65. The 
tractions are continuous but displacements can be discontinuous across the layer.

The evaluation of the liver deformation is simplified by discretization of the interface between the needle and 
the liver, into tiny homogeneous  cells65. Across this grid of points, a network of springs is introduced to ensure 
that the behaviour inside each component is elastic and, in the case of perfect contact interfaces, a perfect contact 
among different components.

Figure 9 represents a 2D spring model with a generic point O the tip of the needle. The nearest neighbours in 
the liver are labelled from 1 to 8. It is thus possible to obtain the iteration equations for the deformation of the 
liver starting from the deformation of the needle.

A Cartesian coordinates system (x, y, z) is attached to the human liver. The needle moves in the direc-
tion of the z-axis, in the origin of the cartesian coordinate. The concentrated needle force has a magnitude 
F = F0δ(x)δ(y)δ(t) . For simplicity without loss of generality we consider that τ1 = τ2 = · · · = τ8 = F0 . Also, 
we assume the particular case in which all quantities depend only on x  and z.

To this end, the constitutive relations (21) and (22) are completed with the kinematic description which 
includes the microrotations ϕk , k = 1, 2, 3 , as independent degrees of freedom in addition to the usual displace-
ments ui , i = 1, 2, 3 . The transfer of loading between points in the liver is achieved through the couple stresses 
mij , i, j = 1, 2, 3 and the classical Cauchy stresses σij , i, j = 1, 2, 3.

The equilibrium equations are in the absence of body forces and body couples

Define the kinematic variables as the strain tensor

and the strain gradient tensor

As we said before, the basic functional unit of the liver is the hexagonal hepatic lobule which comprises the 
portal triad-portal vein, hepatic artery, bile duct.

The solutions in displacements u1, u2 and u3 of the Eqs. (23)–(26) are taken under the form

where the first term zlin represents a linear superposition of cnoidal functions and the second term znonlin , a 
nonlinear superposition of the cnoidal  functions55

The analytic expressions of U1 =
u1
F0

 , U2 =
u2
F0

 and U3 =
u3
F0

 are available once the displacements u1, u2 and 
u3 are specified. Variation of displacements U1,U2 and U3 with respect to x for the human liver is presented in 
Fig. 8. Variations of the normal stresses T13 =

σ13
F0

,T31 =
σ31
F0

,T32 =
σ32
F0

 and T33 =
σ33
F0

 with respect to x are pre-
sented in Fig. 9

Graphs from Figs. 10 and 11 illustrate an oscillatory behavior. After 1.5 s the graphs do not change signifi-
cantly, this means that the soliton functions with which these solutions are expressed are stabilized as form and 
identity. The oscillatory phenomenon is a result of the emission of acoustic signals rich in ultrasound components 
through which the liver atoms communicate between them to balance the liver state. The role of vibrations in 
the strain and the stress fields depends on the ability of the liver to respond to loading conditions by making 

(23)σji,j = 0,

(24)mji,j + εjkσjk = 0, i, j, k = 1, 2, 3.

(25)εij =
1

2
(uj,i + ui,j), i, j = 1, 2, 3,

(26)ηijk = εjk,i = ηikj , i, j, k = 1, 2, 3.

(27)u(x, t) = zlin(x, t)+ znonlin(x, t),

(28)zcn(x, t) = 2

n
∑

m=1

αmcn
2(kmjxj − Cmt), j = 1, 2, 3,

(29)zint(x, t) =

n
∑

m=1

γmcn
2(kmjxj − Cmt)

1+
n
∑

m=1

�mcn2(kmjxj − Cmt)

, j = 1, 2, 3.
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use of the vibratory communication between tissue and the needle. This communication is made by means of 
excitation signals rather that the response signals alone. To our knowledge, this vibratory communication of the 
human liver with the needle has not previously been recorded.

Snapshots at various time of the amplitude of the stress in the tip of the needle are shown in Fig. 12.
The deformation of the needle at t = 400, 600, 800 and 1000 s. are represented in Fig. 13.

Conclusions
As mentioned in the introduction, the purpose of the present study is to investigate the navigation of a flexible 
needle into the human liver. In our analysis, we adopted the Cosserat elasticity to describe the interaction between 
the needle and the human liver. The theory incorporates the local rotation of points and the couple stress as well 
as the force stress representing the chiral properties of the human liver. However, since the liver is a deformable 
body that needs to be mechanically characterized, its elastic properties and deformation are evaluated. Estimates 
of the elastic constants have been made for a healthy liver in the absence of tumors. Computations result from 
the pseudopotential energy by retaining only the predominant terms in the evaluation of the elastic constants.

Figure 8.  Representation of the twelve nearest neighbors of the green atom.

Figure 9.  2D spring model for the interface between the tip of the needle and the  liver65.
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Figure 10.  Plots of U1,U2 and U3 with respect to x.
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Figure 11.  Plots of T13,T23 and T33 with respect to x.



12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:10251  | https://doi.org/10.1038/s41598-021-89479-8

www.nature.com/scientificreports/

Figure 12.  Snapshots at various time of the amplitude of the stress in the tip of the needle.

Figure 13.  The deformation of the needle at t = 400, 600, 800 and 1000 s.
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