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PURPOSE. We determine the feasibility and accuracy of a computer-assisted diagnostic (CAD)
system to diagnose and grade nonproliferative diabetic retinopathy (NPDR) from optical
coherence tomography (OCT) images.

METHODS. A cross-sectional, single-center study was done of type II diabetics who presented
for routine screening and/or monitoring exams. Inclusion criteria were age 18 or older,
diagnosis of diabetes mellitus type II, and clear media allowing for OCT imaging. Exclusion
criteria were inability to image the macula, posterior staphylomas, proliferative diabetic
retinopathy, and concurrent retinovascular disease. All patients underwent a full dilated eye
exam and spectral-domain OCT of a 6 3 6 mm area of the macula in both eyes. These images
then were analyzed by a novel CAD system that segments the retina into 12 layers; quantifies
the reflectivity, curvature, and thickness of each layer; and ultimately uses this information to
train a neural network that classifies images as either normal or having NPDR, and then
further grades the level of retinopathy. A first dataset was tested by ‘‘leave-one-subject-out’’
(LOSO) methods and by 2- and 4-fold cross-validation. The system then was tested on a
second, independent dataset.

RESULTS. Using LOSO experiments on a dataset of images from 80 patients, the proposed CAD
system distinguished normal from NPDR subjects with 93.8% accuracy (sensitivity ¼ 92.5%,
specificity ¼ 95%) and achieved 97.4% correct classification between subclinical and mild/
moderate DR. When tested on an independent dataset of 40 patients, the proposed system
distinguished between normal and NPDR subjects with 92.5% accuracy and between
subclinical and mild/moderate NPDR with 95% accuracy.

CONCLUSIONS. A CAD system for automated diagnosis of NPDR based on macular OCT images
from type II diabetics is feasible, reliable, and accurate.

Keywords: diabetic retinopathy, machine learning, OCT, deep fusion classification networks,
neural networks, NPDR, DFCN, SNCAE

Diabetes is a chronic, systemic disease with an estimated
prevalence of 29 million in the United States and over 400

million worldwide.1,2 Its microvascular complications are well
known, including diabetic retinopathy (DR), from which an
estimated 38% of diabetics suffer worldwide.3 Early detection
and treatment of the disease are mainstays of management, and
this principle drives the American Academy of Ophthalmology
and American Diabetes Society guidelines for annual dilated
fundus exams for all type 2 diabetics at diagnosis and type 1
diabetics 5 years after diagnosis.4,5 The growing epidemic of
diabetes in the United States poses the particular public health
challenge of screening an ever growing number of diabetics.
Telescreening has been valuable in this regard, but suffers from
variable image quality and subjective interpretations.6

Traditionally, diagnosis of DR has been clinical with
adjunctive testing, such as fluorescein angiography (FA) and
optical coherence tomography (OCT), used to confirm or
quantify clinical suspicion of structural complications, such as
neovascularization and macular edema. Except for common

metrics, such as central macular thickness or macular volume,
the interpretation of OCTs in diabetics has been predominantly
subjective. To the best of our knowledge, an accurate,
automated screening system for DR based on OCT does not
exist. Such a system would fulfill the dual goals of reducing the
burden of diabetic screening for clinicians and reducing the
subjectivity of OCT interpretation. For nonproliferative diabetic
retinopathy (NPDR) screening, we aimed to create a computer-
assisted diagnostic (CAD) system to automatically differentiate
between normal retinas and those with mild or moderate
NPDR. A second goal was to determine if there were subclinical
OCT changes in diabetic patients without overt NPDR on exam,
a condition we called subclinical DR. With the recent
improvement in artificial intelligence and its myriad applica-
tions to medical imaging, we sought to apply machine learning
techniques to this endeavor. Machine learning is a branch of
computer science that enables machines to learn to perform a
task, such as diagnosing and grading OCTs for DR, without
having been explicitly programmed for such an end. These
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techniques are well suited to image analysis, as they potentially
can make diagnoses based solely on complex images, such as
computed tomography (CT) and magnetic resonance imaging
(MRI) scans or OCTs. While the initial medical applications
naturally started in radiology, ophthalmologists recently have
begun to apply these powerful tools to our field, which is
replete with imaging. Fundus photographs, of which there are
several large, public collections of data, were the first to be
subject to machine learning techniques on a large scale. Several
diagnostic systems have shown excellent accuracy in classify-
ing images with DR, age-related macular degeneration (AMD),
and glaucoma.7–11 More recently, these techniques have been
extended to OCTs, a nearly ubiquitous technology in retina
practices, and this study continues in this vein.

METHODS

This was a cross-sectional study of type II diabetics who
presented to the University of Louisville for routine screening
and/or monitoring exams in 2014, 2015, and 2018. Inclusion
criteria were age 18 or older, diagnosis of diabetes mellitus type
II, and clear media allowing for OCT imaging. Exclusion
criteria were inability to image the macula, posterior staphy-
lomas (because of confounding effects on OCT images),
proliferative diabetic retinopathy (PDR), and concurrent
retinovascular disease that might confound diagnosis. A full
dilated eye exam was conducted by an attending retina
specialist. All patients were diagnosed clinically as having no
DR or DR based on dilated fundus exam, with DR further
subdivided into the typical clinical categories of mild,
moderate, or severe. OCT scans (Zeiss Cirrus HD-OCT 5000;
Carl Zeiss Meditec, Inc., Dublin, CA, USA) of a 6 3 6 mm area of
the macula of both eyes were performed. Fluorescein
angiography was performed only in an ad hoc fashion per
the discretion of the attending physician and was not a
standard part of the study protocol. This study was approved
by the institutional review board of the University of Louisville,

and was conducted in accordance with the tenets of the
Declaration of Helsinki.

The CAD System

A novel noninvasive framework for early diagnosis of DR using
OCT images then was developed (Fig. 1) in which three steps
are performed sequentially. First, 12 distinct retinal layers are
segmented using previously described methods.12 In this
method, a joint model that integrates morphologic, spatial,
and intensity information is adopted. Second, three global
features are measured based on curvature, reflectivity, and
thickness of the segmented retinal layers. Finally, a two-stage,
deep network is used to classify the test subject as normal, or
having subclinical or mild/moderate DR. Subclinical DR was
defined as when the clinical fundus exam was negative for DR
but the OCT demonstrated features intermediate between
those of normal and DR cases. The details of the CAD system
are summarized.

In brief, the segmentation algorithm is based on a joint
model that integrates shape, intensity, and spatial information.
First, a set of 12 normal OCTs (from six males and six females)
was used as the template for automated segmentation. Second,
OCTs from 200 normal patients, aged 18 to 75, were
segmented by four different retinal specialists and used as a
gold standard, or ‘‘ground truth,’’ for normal OCT images
(Supplementary Fig. S1). This was the shape model. Third, the
automated segmentation algorithm was applied to the 200
manually segmented normals to ensure accuracy. The intensity
model was built using a linear combination of discrete
Gaussians (LCDG) model. To account for noise and inhomo-
geneities, the spatial information is modeled using a second-
order Markov Gibbs random field (MGRF).13 This approach
generates region maps that are close to the gold standard
validated by retinal specialists.

Three distinct retinal features quantifying reflectivity,
curvature, and thickness were extracted from each segmented
OCT image (Fig. 1). Reflectivity was obtained from two regions
per scan, comprising the thickest portions of the retina on the

FIGURE 1. The framework of the proposed approach illustrating the main steps of the system.

FIGURE 2. Reflectivity (a), curvature (b), and thickness (c) features are illustrated. (a) The red and blue rectangles illustrate the reflectivity feature
obtained from two regions per scan, comprising the thickest portions of the retina on the nasal and temporal sides of the foveal peak. (b) The color

map demonstrates how curvature values range from low, colored blue, meaning closest to a straight line, to high, colored red. (c) The yellow bars

depict thickness as the distance between two corresponding points at upper and lower boundaries of a given retinal layer.
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nasal and temporal sides of the foveal peak (Fig. 2a). The
vitreous, which was clear in all patients, was defined as having
a reflectivity of 0 and the hyperreflective RPE layer was defined
arbitrarily as having a reflectivity of 1000. All other points had a
reflectivity between that of the clear vitreous and the
hyperreflective RPE and, thus, could be quantified on this
1000-point scale. After smoothing of the image, the curvature
of each retinal layer (Fig. 2b) was calculated for each point
across the layer. Thickness of the retinal layers was determined
by the distances between corresponding points on the lower
and upper boundaries of each layer, as is customary (Fig. 2c).

For each subject, these three features were described as a
whole with a cumulative distribution function (CDF) of the
extracted retinal layers. The CDFs were considered global
discriminatory characteristics, able to distinguish between
normal and DR cases. In our system, the CDFs for a training set
of the OCT images were used for deep learning of a multistage
classifier with autoencoders, which are a form of unsupervised
learning.

In the final step, after segmenting the 12 retinal layers and
extracting the three key features, the CAD system classified
normal and DR subjects. Since this data set was large, we used
a form of a neural network called a deep learning network that
had the ability to learn these features and fuse them together.
To learn characteristics of normal and DR subjects, CDFs were
calculated for each feature and fed into the proposed network.
To build the classification model, a deep neural network with
two stages of autoencoders was used.14 The first stage
consisted of several deep networks built with the encoders
for each input feature, one autoencoder for each of the three
features per each segmented layer for a total of 36 (12 3 3 ¼
36). In the second stage, detailed classification of subjects with
DR was performed to determine the grade of DR using the
deep fusion classification network.

Statistical Analysis

The sensitivity, specificity, accuracy, and area under the
receiver operating curve (AUC) were calculated for the CAD
system. Accuracy was defined as true-positives plus true-
negatives divided by the total number of cases. The attending
physician’s final diagnosis by clinical funduscopic exam was
considered the gold standard diagnosis and used to calculate
the efficacy of the proposed system. The system was tested
using a leave-one-subject-out (LOSO) method. This involves
training the system on images from n-1 eyes and then testing it
on the images of the sole eye left out, hence LOSO. This
process then is repeated n times. It also was tested by 2- and 4-
fold cross-validation. In 2-fold cross-validation, each fold
contained 40 subjects (20 normal, and 10 subclinical and 10
mild/moderate DR subjects). First, one fold was used for
training and one for validation. This operation was repeated
several times by changing the validation fold each time to
evaluate the accuracy. In 4-fold cross-validation, each fold
contained 20 subjects (10 normal, and five subclinical and five
mild/moderate DR subjects). First, three folds were used for
training and one fold for validation. This operation also was
repeated several times by changing the validation fold each
time to evaluate the accuracy. Then, 95% confidence intervals
(CI) were calculated using the bootstrapping technique.15 To
evaluate its accuracy, the proposed CAD system was compared
to three established systems, or classifiers, based on machine
learning. These are state-of-the-art classifiers available in the
public domain that can serve as a benchmark for other novel
classifiers, such as the system described herein. The three
systems used for comparison were from the Weka collection16

from the University of Waikato (New Zealand); K*, k-nearest
neighbor (kNN); and Random forest (RF). A Dice (Sørensen-

Dice) similarity coefficient, a measure of the similarity of two
sample sets, was used to compare the system’s segmentation
performance to expert segmentation.

RESULTS

To test and validate the proposed segmentation method, OCT
scans (Zeiss Cirrus HD-OCT 5000; Carl Zeiss Meditec, Inc.)
were collected prospectively from 160 eyes of 80 subjects (52
female, 26 male) 23 to 81 years old (mean, 60; interquartile
ratio [IQR], 53–68). All patients had type 2 diabetes mellitus,
ranging from <1 year to >30 years since diagnosis, and 33
(41.2%) had systemic hypertension on oral hypotensive agents.
Most recent hemoglobin A1c measurements and glomerular
filtration rates were not available. Of the 160 eyes, 120
clinically had no DR and 40 had mild or moderate NPDR. Of
the 120 without clinical DR, 40 (33%) had OCT changes
intermediate between normal retinas and those with mild
NPDR. We called this the ‘‘subclinical DR’’ group.

The proposed automated segmentation approach was
validated using a gold standard for normal subjects, which
was created by manual delineations of retinal layers with the
aid of retina specialists. Figure 3 shows different examples for
the segmentation of 12 distinct retinal layers. The Dice
similarity coefficient metric comparing segmentation results
with the gold standard had a mean value of 0.84, and mean
boundary error was 6.87 lm from the ground truth, averaged
across all 13 boundaries.

Following retinal layer segmentation, our system assessed
the grade of DR. A LOSO approach was applied to distinguish
first between normal and DR subjects, and then second
between subjects with subclinical and mild/moderate DR. The
Table presents the relative diagnostic accuracies of the three
publicly available classifiers and our proposed system in terms
of the number of correctly classified cases with respect to the
overall numbers of subjects. For the first stage (normal vs. DR),
the proposed CAD system showed a total diagnostic accuracy
of 93.8% (150/160 subjects), or, among the 80 total eyes, 74
were classified correctly as completely normal and 76 were
classified correctly as abnormal with either subclinical (40
eyes) or mild/moderate (40 eyes) DR. For the second stage,
which distinguished subclinical versus mild/moderate DR, total
diagnostic accuracy was 97.4%. The receiver operating
characteristics (ROC) analysis for the proposed system as well
as the three other systems also was calculated. The calculated
area under the ROC curve was highest for the proposed CAD
system and approached the maximum possible value of 1
(Table). By 4-fold cross-validation, the average accuracy across
all four folds was 92.5% for distinguishing normal from DR. For
distinguishing subclinical from mild/moderate DR, the average
diagnostic accuracy was 94.6%. The 95% CI ranged from 83%
to 96%. By 2-fold cross-validation, the average accuracy across
all four folds was 90%. For distinguishing between subclinical
and mild/moderate DR, the average diagnostic accuracy was
94.5%.

Finally, the system was tested on an independent set of OCT
images from 80 eyes of 40 patients (55% female; mean age, 54;
age range, 21–74; duration of diabetes, 1–21 years). Of these
patients, 60 had no DR on clinical exam and 20 had mild or
moderate NPDR. The system was trained on all 80 patients
from the original dataset before being tested on the de novo set
of 40 patients. The proposed CAD system showed a total
diagnostic accuracy of 92.5% (74/80 eyes), or 36 of 40 normal
eyes classified correctly as completely normal and 38 of 40
with mild/moderate NPDR (20 eyes) or subclinical DR (20
eyes) classified correctly as abnormal. For the second stage
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(subclinical vs. mild/moderate DR), the proposed CAD system
achieved a 95% total diagnostic accuracy.

DISCUSSION

OCT is a powerful modality for the noninvasive diagnosis of
several conditions, including glaucoma, macular edema,
choroidal neovascularization, and AMD, another common
retinal disease. With diabetic retinopathy, early diagnosis and
management are critical to prevent vision loss, but regular
screening of the ever-increasing diabetic population in the
United States and worldwide is a daunting public health
challenge. Automated early detection of diabetic retinopathy
can assist in this endeavor, but to date has not used OCT
images for diagnosing and grading NPDR. Our system was 94%
accurate in distinguishing between the presence or absence of
DR, and 97% accurate in distinguishing subclinical DR changes
from mild or moderate DR. These results are an encouraging
proof-of-concept for automated diagnostics and suggested that
the system is reliable and accurate.

Early work in this area has focused on detecting conven-
tional clinical lesions associated with DR.17–20 Few have
investigated using nonclinical features for DR detection.
Recently, an advanced machine learning technique, called
deep learning, has been used to classify fundus photographs of
DR. This technique involves a highly sophisticated form of
artificial intelligence, typically using neural networks, that can

learn to perform tasks with minimal input from human
programmers and little labeling of the data involved. The
power of this approach lies in its potential accuracy and ability
to make connections not readily apparent to human investiga-
tors. For instance, a recent multicenter study was able to
predict cardiovascular risk factors reliably, including age,
smoking status, blood pressure, and history of cardiac events,
simply from fundus photographs.21 The tradeoff is that it
requires enormous amounts of data, tens or hundreds of
thousands of images, to fully exploit this approach. The
aforementioned work for detecting DR has been performed
using fundus images. One of its fundamental drawbacks is that
it provides images in only two dimensions with no apprecia-
tion for depth, compared to OCT imaging which provides
quantifiable depth information; therefore, it is possible to
detect pathology with topological changes in vivo. To the best
of our knowledge, this is the first automated, early detection
grading system of NPDR using OCT images. Because there are
no analogous, public datasets of OCT images, applying a similar
type of deep learning to OCTs in DR is more challenging, but
attempts have been made for other retinal diseases.

Machine learning also has been applied recently to OCTs of
AMD patients with good success. Normal and age-related
macular degeneration images from the Heidelberg Spectralis
database (Heidelberg Engineering, Heidelberg, Germany) were
analyzed using machine learning, producing AUCs of 94% and
89%,22 comparable to our results for NPDR. However, the
aforementioned study distinguished only between the pres-

TABLE. Classification Accuracy, Sensitivity, Specificity, and the AUC for the CAD System Using the Initial Dataset of 80 Patients and for Three Other
Common Classifiers From the University of Waikato

Classifier

Stage 1: Normal vs. DR Stage 2: Early vs. Mild/Moderate

Accuracy Sensitivity Specificity AUC Accuracy

DFCN (proposed) 93.75% 92.50% 95% 0.97 97.37%

K-Star (K*) 75% 70% 80% 0.89 93%

k-Nearest-Neighbor (kNN) 79% 79% 79% 0.77 95%

Random forest 85% 85% 85% 0.89 92%

FIGURE 3. Examples of OCT images in row (A) for normal (1), subclinical DR (2), and mild-moderate DR (3) cases. Results of automated
segmentation are displayed in row (B) showing the detected 13 boundaries.
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ence and absence of AMD and did not grade the disease. A
similar study using the European Genetic Database successfully
graded AMD with similar accuracy to human graders.23

Of the 160 eyes in our first dataset, 40 (25%) had no clinical
DR but showed OCT changes in curvature, thickness, and/or
reflectivity that were intermediate between normal OCTs and
those seen in mild and moderate NPDR. This was called the
‘‘subclinical DR’’ group. Identifying such a group comes as
little surprise. It long has been established that diabetics
without clinical DR have electrophysiologic abnormalities.
Furthermore, they also show changes in thickness of different
retinal layers, including thinning of the retinal nerve fiber and
ganglion cell layers, and thickening of the inner nuclear and
outer plexiform layers.24–27 This is consistent with the
hypothesis that diabetic retinopathy is not purely a microvas-
cular disease, but also a retina-wide neuropathy.28

The principal limitation of our study is its limited number of
subjects, a common occurrence in single-center studies.
However, despite fewer than 200 patients, this system achieved
high levels of accuracy comparable to other CAD systems using
OCT to classify AMD and superior to some CAD systems using
fundus photographs to classify NPDR. The system’s novel
segmentation steps are integral to the system as a whole, and
our novel classifier also improves upon publicly available ones,
albeit modestly. A second limitation is the lack of higher grades
of DR, as there were no cases of severe NPDR. In the future, we
aim to broaden this approach to include PDR as well.

Recently, further light has been shed on the microvascular
changes in DR using OCT angiography (OCTA). Multiple new
insights have been gleaned from this emerging technology.
Several groups have established that capillary density in the
superficial capillary plexus and the deep capillary plexus
correlate inversely with the severity of DR.29,30 Others have
shown that visual acuity in diabetics correlates inversely with
the size of the foveal avascular zone.31,32 Further research is
needed to combine OCT information with that of OCTA to
increase the overall accuracy and robustness of future CAD
systems.

A final issue to address is the extent to which DR, a retina-
wide pathology, can be diagnosed solely with macular imaging.
Two points warrant mention. First, to some extent, the results
of this study lend credence to the claim that accurate diagnosis
can be made solely by OCT of the macula. Second, a litany of
studies using fundus photographs of just the posterior pole
taken by nonmydriatic fundus cameras have shown good
sensitivity, which represents further evidence to this ef-
fect.33,34 While peripheral DR lesions may carry a slightly
greater risk of DR progression over time,35 the vast majority of
them are posterior. The traditional Early Treatment of Diabetic
Retinopathy (ETDRS) seven-fields photography, long the
standard for documenting DR in clinical trials, captures only
the posterior 30% of the retinal area. Ultrawide field imaging
captures a much larger area and much more of the retinal
periphery, yet in one large study it detected the presence of DR
in only a further 3% of cases over standard ETDRS photography,
which speaks to the predominantly posterior location of the
disease.36

In summary, we proposed a novel CAD system for detection
and classification of DR using OCT images. The framework
includes a robust approach for segmentation of 12 distinct
retinal layers. A two-stage, deep fusion classification network is
used to classify subjects as normal, subclinical stage DR, or
mild/moderate DR based on three discriminant features,
namely curvature, reflectivity, and thickness, across all the
segmented retinal layers. This system achieved an average of
94% total diagnostic accuracy. In the future, it could be
combined with OCT angiographic data to improve accuracy
and ultimately generalize to PDR as well.
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