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Abstract 9 

 10 

The remarkable ability of a single genome sequence to encode a diverse collection of distinct 11 

cell types, including the thousands of cell types found in the mammalian brain, is a key 12 

characteristic of multicellular life. While it has been observed that some cell types are far more 13 

evolutionarily conserved than others, the factors driving these differences in evolutionary rate 14 

remain unknown. Here, we hypothesized that highly abundant neuronal cell types may be under 15 

greater selective constraint than rarer neuronal types, leading to variation in their rates of 16 

evolution. To test this, we leveraged recently published cross-species single-nucleus RNA-17 

sequencing datasets from three distinct regions of the mammalian neocortex. We found a 18 

strikingly consistent relationship where more abundant neuronal subtypes show greater gene 19 

expression conservation between species, which replicated across three independent datasets 20 

covering >106 neurons from six species. Based on this principle, we discovered that the most 21 

abundant type of neocortical neurons—layer 2/3 intratelencephalic excitatory neurons—has 22 

evolved exceptionally quickly in the human lineage compared to other apes. Surprisingly, this 23 

accelerated evolution was accompanied by the dramatic down-regulation of autism-associated 24 

genes, which was likely driven by polygenic positive selection specific to the human lineage. In 25 

sum, we introduce a general principle governing neuronal evolution and suggest that the 26 
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exceptionally high prevalence of autism in humans may be a direct result of natural selection for 27 

lower expression of a suite of genes that conferred a fitness benefit to our ancestors while also 28 

rendering an abundant class of neurons more sensitive to perturbation.  29 

 30 

Introduction 31 

With the advent of single cell RNA-sequencing (scRNA-seq), it became possible to 32 

systematically delineate molecularly defined cell types across the brain1,2. As more large-scale 33 

datasets were published, it quickly became clear that the mammalian brain contains a 34 

staggering array of neuronal cell types, with recent whole-brain studies identifying nearly as 35 

many neuronal types as there are protein-coding genes in the genome1–3. In addition, cross-36 

species atlases in the neocortex revealed that most cortical neuronal types are highly conserved 37 

in primates and rodents, with very few neocortical neuronal types being specific to primates and 38 

none being entirely specific to humans4–8. This suggests that divergence involving homologous 39 

cell types—such as their patterns of gene expression, relative proportions, and connectivity—40 

may play a central role in establishing uniquely human cognition.  41 

Two decades before the generation of these cross-species cell type atlases, the first whole-42 

genome sequences of eukaryotes were published, enabling genome-wide studies of evolution 43 

for the first time9. One of the first questions to be addressed in the nascent field of evolutionary 44 

genomics was why some proteins are highly conserved throughout the tree of life, whereas 45 

others evolve so quickly as to be almost unrecognizable as orthologs even over relatively short 46 

divergence times10–13. A protein’s expression level emerged as the strongest and most universal 47 

predictor of its evolutionary rate, with highly expressed proteins accumulating fewer protein-48 

coding changes due to greater constraint10,14–16.  49 
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In contrast to tens of thousands of publications about the evolutionary rates of proteins17, the 50 

evolutionary rates of cell types, another key building block of multicellular life, have received 51 

relatively little attention18. Just as different proteins make up every cell, different cell types make 52 

up every multicellular organism. Furthermore, just as protein evolutionary rates are measured 53 

by the total rate of change of their amino acids, the evolutionary rates of cell types—which are 54 

typically defined by their patterns of gene expression—can be measured by divergence in 55 

genome-wide gene expression4–8. For example, it is well-established that gene expression in 56 

neurons is more conserved between humans and mice than gene expression in glial cell types 57 

such as astrocytes, oligodendrocytes, and microglia19. Previous analogies between genes and 58 

neural cell types have been fruitful for understanding the evolution of novel cell types6,20–23, 59 

providing an encouraging precedent for our analogy. 60 

One area that has been explored more thoroughly is the association of specific cell types with 61 

human diseases and disorders24. For example, integration of gene-trait associations with cell 62 

type-specific expression profiles has revealed that microglia likely play a central role in 63 

Alzheimer’s disease25,26. Similar analyses have also revealed that layer 2/3 intratelencephalic 64 

excitatory (L2/3 IT neurons)—which enable communication between neocortical areas27 and are 65 

thought to be important for uniquely human cognitive abilities27,28—likely play a particularly 66 

important role in autism spectrum disorder (ASD) and schizophrenia (SCZ)29–36, together with 67 

deep layer IT neurons36–38. ASD and SCZ are neurodevelopmental disorders with different but 68 

overlapping characteristics, including major effects on social behavior39–41. Interestingly, 69 

individuals with ASD are more likely to be diagnosed with SCZ than individuals without an ASD 70 

diagnosis39,42–44. Furthermore, there is a strong overlap in the genes that have been implicated 71 

in both disorders36,39. 72 

From an evolutionary perspective, it has been proposed that ASD and SCZ may be unique to 73 

humans45–47. This is primarily based on two main lines of reasoning. First, ASD- and SCZ-74 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2024. ; https://doi.org/10.1101/2024.08.02.606407doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.02.606407
http://creativecommons.org/licenses/by-nc/4.0/


associated behaviors that could reasonably be observed in non-human primates (e.g. SCZ-75 

associated psychosis) have been observed either infrequently or not at all in non-human 76 

primates46. However, ASD-like behavior has been observed in non-human primates48 and the 77 

difficulties inherent to cross-species behavioral comparisons combined with relatively low 78 

sample sizes make it difficult to compare the prevalence of these behaviors in human and non-79 

human primate populations. Second, core ASD- and SCZ-associated behavioral differences 80 

involve cognitive traits that are either unique to or greatly expanded in humans (e.g. speech 81 

production and comprehension or theory of mind)49–53. As a result, certain aspects of ASD and 82 

SCZ are inherently unique to humans. 83 

While comparing interindividual behavioral differences across species remains challenging, 84 

recent molecular and connectomic evidence lend credence to the idea that the incidence of 85 

ASD and SCZ increased during human evolution. For example, large-scale sequencing studies 86 

in both ASD and SCZ cohorts have identified an excess of genetic variants in human 87 

accelerated regions (HARs)—genomic elements that were largely conserved throughout 88 

mammalian evolution but evolved rapidly in the human lineage54–56. Furthermore, transcriptomic 89 

studies have identified a human-specific shift in the expression of some synaptic genes during 90 

development that is disrupted in ASD57. In addition, connectomic studies have shown that 91 

human-chimpanzee divergence in brain connectivity overlaps strongly with differences between 92 

humans with and without SCZ58. Overall, evidence suggests that ASD and SCZ may be 93 

particularly prevalent in humans, but the factors underlying this increased prevalence remain 94 

unknown. Positive selection—also known as adaptive evolution—of brain-related traits in the 95 

human lineage has been proposed to underlie this increase45–47,59,60. Although this idea is 96 

supported by the links between HARs (many of which are thought to have been positively 97 

selected56) and ASD and SCZ, there is no direct evidence for positive selection on the 98 

expression of genes linked to ASD and SCZ.  99 
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Here, we set out to test whether the inverse relationship between abundance and evolutionary 100 

rates—which has been well-established for proteins10,14–16—might also hold for cell types. We 101 

found a robust negative correlation between cell type proportion and evolutionary divergence in 102 

the neocortex, suggesting that this relationship holds at multiple levels of biological organization. 103 

Based on this, we identify unexpectedly rapid evolution of L2/3 IT neurons and strong evidence 104 

for polygenic positive selection for reduced expression of ASD-linked genes in the human 105 

lineage, suggesting that positive selection may have increased the prevalence of ASD in 106 

modern humans. 107 

 108 

Results 109 

 110 

Cell type proportion as a general factor governing the rate of neuronal evolution  111 

 112 

Based on the gene-cell type analogy outlined above, we hypothesized that a change in gene 113 

expression in a more abundant cell type may tend to have more negative fitness effects than the 114 

same change in a less abundant cell type (Figure 1A). If this were the case, this would lead to 115 

greater selective constraint, and thus slower divergence, of global gene expression in more 116 

abundant cell types.  117 

 118 

Testing this hypothesis requires comparing two quantities: cell type proportions and the 119 

evolutionary divergence in genome-wide gene expression levels between orthologous cell types 120 

across species. Importantly, both quantities can be estimated from the same single-nucleus 121 

RNA-seq (snRNA-seq) data, facilitating comparison between them. To ensure sufficient 122 

statistical power, we searched the literature for published snRNA-seq data sets that fulfilled a 123 

stringent pair of criteria. First, they must have multiple species profiled in the same study using 124 
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the same snRNA-seq protocols for each species within a study. Second, they must contain at 125 

least 10 orthologous cell types having 250 or more cells per species (not including immune 126 

cells, as these do not have stable cell type proportions). We identified three studies fulfilling 127 

these criteria, focused on three distinct regions of the mammalian neocortex: medial temporal 128 

gyrus (MTG), dorsolateral prefrontal cortex (DLPFC), and primary motor cortex (M1)5,7,8. All 129 

three studies included samples from 3-5 species, including human and marmoset, with 300,000 130 

– 500,000 neuronal nuclei profiled per study5,7,8. These nuclei were clustered into between 12 – 131 

17 neuronal subclasses (with at least 250 cells per species) in each study, which we then used 132 

for our analyses5,7,8. Throughout, we use the term cell type for the general concept of different 133 

types of cells and as an umbrella term for both subclasses and subtypes, use the term subclass 134 

for the traditional classification of neuronal types found in the neocortex, and reserve the term 135 

subtype for more fine-grained clustering of cells. 136 

 137 

To test our hypothesis, we began by comparing human and marmoset (the only pair of species 138 

present in all three datasets) in the MTG, which had the greatest sequencing depth. We first 139 

estimated gene expression divergence for each of 14 subclasses using the Spearman 140 

correlation distance (1 – Spearman’s rho) between the pseudobulked expression of each 141 

species for each neuron subclass, restricting to one-to-one orthologous genes (see Methods). 142 

We observed a surprisingly strong negative correlation between subclass proportion and gene 143 

expression divergence (Spearman’s rho = -0.84, p = 8.0x10-5, Figure 1B), indicating that more 144 

abundant neuronal subclasses showed greater conservation of genome-wide gene expression. 145 

To ensure that estimates of cell type-specific expression divergence were not biased by cell 146 

type proportion itself, we analyzed the same number of cells and total reads for each cell type in 147 

each species. Specifically, for all analyses we report the median rho and p-values from 100 148 

independent down-samplings of cells and pseudobulked counts without replacement (see 149 

Methods). 150 
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 151 

We next asked whether the same pattern was present in the other cortical regions. We 152 

observed a similar strong negative correlation in the two other independently generated 153 

datasets (Spearman’s rho = -0.76, p = 0.00041 in the DLPFC, Figure 1C; Spearman’s rho = -154 

0.73, p = 0.0065 in the M1, Figure 1D). This replication suggests that the relationship we 155 

observed holds true across the primate neocortex. In addition, the fact that methodological 156 

details and biological samples differ across these studies lends additional robustness to any 157 

patterns shared by all three. 158 

 159 

To explore the generality of this result in additional species, we repeated this analysis between 160 

every pair of species in each dataset. We observed similarly strong negative correlations across 161 

all pairwise comparisons (Supplemental Figures 1-3), with the interesting exception of 162 

comparisons between humans and non-human great apes, where a weaker negative correlation 163 

was observed (discussed below). Furthermore, we observed strong negative correlations within 164 

excitatory or inhibitory subclasses in all three brain regions (Figure 2 and Supplemental Figures 165 

4-9, although this correlation does not reach statistical significance for inhibitory neurons in M1, 166 

potentially due to having only five subclasses in that dataset). In addition, we tested all possible 167 

combinations of a wide variety of filtering parameters, analysis decisions, and distance metrics, 168 

finding that this negative correlation was generally robust to any reasonable choice of 169 

parameters we made (Supplemental Table 1). 170 

 171 

Next, we investigated this relationship at the level of neuronal subtypes, a finer-grained 172 

clustering with ~4-fold more cell subtypes than subclasses. We found strong negative 173 

correlations between subtype proportion and expression divergence when using all neurons 174 

(Figure 3A-C, Supplemental Figures 10-12) or only excitatory neurons (Figure 3D-F, 175 

Supplemental Figures 13-15). When restricting our analysis to inhibitory neurons, this 176 
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correlation was statistically significant in the MTG and in two of three comparisons (mouse-177 

marmoset and human-mouse) in the M1, but not in DLPFC (Figure 3G-I, Supplemental Figures 178 

16-18). This may reflect the lower read depth (average of 180,054 counts used for DLPFC, 179 

compared to 254,703 for M1 and 325,422 for MTG) or lower numbers of cells per subtype in the 180 

DLPFC data compared to the other datasets, as we observed a much stronger negative 181 

correlation (Spearman’s rho = -0.50, p = 0.057) when restricting to subtypes with at least 500 182 

cells in the DLPFC data (Supplemental Figure 19). Overall, our results suggest that there is a 183 

strong, robust negative correlation between expression divergence and cell type proportion for 184 

neocortical neurons. 185 

 186 

Finally, we investigated the properties of the genes driving the negative correlation we 187 

observed. First, we stratified genes into three equally sized bins by their expression level and 188 

recomputed correlations in each bin. Interestingly, while we observed strong correlations for 189 

highly and moderately expressed genes, there was no significant correlation when restricting to 190 

lowly expressed genes (Figure 4A, Supplemental Figures 20-22, Supplemental Table 2). Next, 191 

we stratified genes based on evolutionary constraint on expression level or cell type-specificity 192 

of expression (using shet
61 and the Tau metric62 respectively, Supplemental Tables 3 and 4). 193 

While there was no difference in correlation when stratifying by constraint on expression 194 

(Supplemental Figures 23-25, Supplemental Table 3), we observed a much stronger negative 195 

correlation between cell type proportion and expression divergence for more cell type-196 

specifically expressed genes (Figure 4B, Supplemental Figures 26-28, Supplemental Table 4). 197 

Since expression level is also associated with cell-type specificity, we tested whether these two 198 

properties were contributing independently to the negative correlations by stratifying genes by 199 

one of them while simultaneously controlling for the other. We found that both properties 200 

retained their predictive power even when controlling for the other (Figure 4C-D, Supplemental 201 

Figures 29-34, Supplemental Tables 2 and 4), suggesting independent contributions. We note 202 
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that whether the weaker correlations we observed for lowly expressed genes were due to a true 203 

lack of association or simply less accurate expression level measurements remains an open 204 

question that will require larger datasets to explore. Overall, our results suggest that more highly 205 

expressed, cell type-specific genes are primarily driving the negative correlation between cell 206 

type proportion and gene expression divergence. 207 

 208 

Rapid evolution of layer 2/3 intratelencephalic neurons in the human lineage 209 

Having identified this strong relationship between cell type proportion and evolutionary 210 

divergence, we reasoned that cell types with much faster divergence in the human lineage than 211 

expected based on their abundance may have been subject to atypical selective forces.  212 

To identify subclasses showing the most dramatic lineage-specific shifts in selection, we 213 

decomposed human-chimpanzee MTG expression divergence into its two components, 214 

divergence on the human branch and divergence on the chimpanzee branch. Applying the 215 

concept of parsimony—explaining the data with as few evolutionary transitions as possible—216 

allows an outgroup species such as gorilla to polarize changes and assign them to either the 217 

human or chimpanzee branch (see Methods). In the chimpanzee lineage, there was a strong 218 

negative correlation between divergence and subclass proportion (Figure 5A, Spearman’s rho = 219 

-0.77, p = 0.00076), similar to the correlations between other primate species (Figure 1A, 220 

Supplemental Figure 1). However, we observed a much weaker negative correlation in the 221 

human lineage (Figure 5B, Spearman’s rho = -0.19, p = 0.49). The clearest outlier weakening 222 

the correlation was L2/3 IT neurons, the most abundant neuronal subclass, which diverged 223 

much faster than expected based on its proportion. This was also true to a lesser extent for the 224 

next two most abundant subclasses, L4 IT and L5 IT neurons. Indeed, removing these three 225 

subclasses substantially strengthened the negative correlation between subclass proportion and 226 

human-specific divergence (Figure 5B; Spearman’s rho = -0.59, p = 0.041), making it 227 
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indistinguishable from the corresponding chimpanzee-specific correlation (Figure 5A, blue 228 

points; Spearman’s rho = -0.58, p = 0.048). Quantifying the magnitude of human acceleration 229 

for every subclass confirmed that L2/3 IT neurons underwent the greatest acceleration, followed 230 

by L4 and L5 IT neurons (Figure 5C).  231 

Accelerated evolution can involve either positive selection favoring gene expression changes 232 

that increased fitness, or relaxed selective constraint in which random mutations are allowed to 233 

accumulate over time because they have little or no effect on fitness56. Although both positive 234 

selection and relaxed constraint can lead to similar patterns of lineage-specific acceleration, 235 

they imply very different underlying factors: positive selection is the force underlying nearly all 236 

evolutionary adaptation, while relaxed constraint is simply the weakening or absence of natural 237 

selection which can lead to the passive deterioration of genes and their regulatory elements via 238 

mutation accumulation.  239 

To distinguish whether positive selection or relaxed constraint was more likely to underlie the 240 

human-specific acceleration of IT neurons, we investigated the interindividual variability in 241 

expression of each neuronal subclass in the human population63. If IT neurons evolved under 242 

reduced constraint in the human lineage then we would expect them to have more variable 243 

expression among humans, leading to a weaker negative correlation between subclass 244 

proportion and interindividual variability. Instead, we observed a strong negative correlation 245 

between subclass proportion and interindividual variability in gene expression, with L2/3 IT 246 

neurons having the lowest variability of any subclass among humans (Figure 5D, Spearman’s 247 

rho = -0.55, p = 0.049). Consistent with this, L2/3 IT neurons had the largest human branch 248 

divergence relative to their expression variability in modern humans (Figure 5E). Overall, these 249 

results suggest that the rapid gene expression evolution of L2/3 IT neurons in the human 250 

lineage was unlikely to be due to relaxed constraint, and instead more likely the result of 251 

positive selection (Figure 5F), though we cannot formally rule out other possible scenarios (see 252 
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Discussion). In addition, it suggests that the relationship between cell type proportion and 253 

expression divergence holds within species as well as between species. 254 

Lower expression of ASD-linked genes in humans compared to chimpanzees 255 

As discussed above, L2/3 IT neurons are thought to play a particularly important role in ASD. To 256 

investigate a potential connection between accelerated evolution of L2/3 IT neurons and the 257 

prevalence of ASD in humans, we asked whether genes previously implicated in ASD showed 258 

human-specific gene expression patterns. To begin, we asked whether differentially expressed 259 

ASD-linked genes tended to be more highly expressed in humans or in chimpanzees, testing 260 

each neuron subtype in the DLPFC and MTG datasets. Although in some types of neurons, 261 

such as L6 CT neurons, there was no significant directionality bias (Figure 6A), many 262 

subclasses showed a bias towards lower expression of ASD-linked genes in humans compared 263 

to chimpanzees (Fig 6B). Strikingly, in both datasets we observed the most significant trend 264 

towards lower expression of these genes in human L2/3 IT neurons (60 genes higher in human 265 

vs. 12 genes lower in human in DLPFC, Figure 6C, Supplemental Figure 35).  266 

This excess of ASD-linked genes with lower expression in humans is consistent with either 267 

down-regulation in the human lineage, up-regulation in the chimpanzee lineage, or a 268 

combination of both. To distinguish between these possibilities, we again used gorilla as an 269 

outgroup to assign each gene’s expression divergence in the MTG to either the human or 270 

chimpanzee lineage.  271 

Comparing the expression of ASD-linked genes in all three species revealed that gorilla gene 272 

expression is generally intermediate between human and chimpanzee, but closer to 273 

chimpanzee. Specifically, the distribution of ASD-linked gene expression log-ratios of 274 

[human/gorilla] is generally negative (lower expression in humans), whereas 275 

[chimpanzee/gorilla] is generally positive (Figure 6D). Interestingly, the magnitude of the 276 
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[human/gorilla] divergence was generally greater than the magnitude of the [chimp/gorilla] 277 

divergence, suggesting that there has been greater divergence in the human lineage 278 

([human/gorilla] median absolute log2 fold-change = 0.45, [chimp/gorilla] = 0.28, t-test p = 279 

0.00036, Figure 6D). Consistent with this, a larger number of ASD-linked genes’ expression 280 

diverged on the human branch than expected by chance in L2/3 IT neurons (binomial p = 0.025, 281 

1.5-fold enrichment, Supplemental Figure 36). Overall, these results suggest a strikingly 282 

consistent pattern of human-specific down-regulation of ASD-associated genes in a neuronal 283 

cell type with a key role in ASD.  284 

Polygenic positive selection for down-regulation of ASD-linked genes in the human 285 

lineage 286 

This human-specific down-regulation of ASD-linked genes is striking and, based on the highly 287 

constrained expression of these genes, likely functionally significant. However, as with the 288 

accelerated evolution of L2/3 IT neurons discussed above (Figure 5), the question of whether 289 

lineage-specific selection was responsible is key to understanding the factors that drove this 290 

divergence in the human lineage. Other potential explanations fall into two main categories. One 291 

is genetic changes that were not driven by selection, such as mutations that had little effect on 292 

fitness but became established in the human lineage through genetic drift. The other is non-293 

genetic differences in the individuals sampled for these data sets; factors such as diet, 294 

environmental exposures, and age can impact gene expression but cannot be controlled in any 295 

comparison of tissue samples between humans and other species. 296 

In order to definitively implicate lineage-specific selection, two steps are necessary. First, all 297 

non-genetic causes must be ruled out. Although this is not possible with tissue samples, it can 298 

be achieved in vitro. Human and chimpanzee induced pluripotent stem cells (iPSCs) can be 299 

fused to generate hybrid tetraploid iPSCs, which can then be differentiated into relevant cell 300 
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types or organoids64,65. In each hybrid cell, the human and chimpanzee genomes share 301 

precisely the same intracellular and extracellular environment. As a result, any difference in the 302 

relative expression levels of the human and chimpanzee alleles for the same gene—known as 303 

allele-specific expression (ASE)—reflects cis-regulatory changes between the two alleles. Both 304 

environmental and experimental sources of variability (including batch effects) are perfectly 305 

controlled in the hybrid system, since all comparisons are between alleles that share an 306 

identical environment and are present in the same experimental samples64,65. 307 

The second step necessary to infer lineage-specific selection is to test, and reject, a statistical 308 

“null model” of neutral evolution for the genetic component of divergence66. The simplest and 309 

most robust pattern predicted under neutral evolution of gene expression is the expectation that 310 

in a comparison between two species, genetic variants causing expression divergence will be 311 

just as likely to lead to higher expression in one species as in the other67. For example, in a set 312 

of 20 functionally related genes, neutral evolution leads to a similar pattern as a series of 20 313 

coin flips—an expectation of ~10 genes more highly expressed in one species and ~10 in the 314 

other, with deviation from this average following the binomial distribution67. In contrast, natural 315 

selection that favors lower expression of these genes in one lineage will lead to a pattern of 316 

biased expression, with most of the 20 genes expressed lower in that lineage67. This framework, 317 

which has been applied extensively to gene expression and other quantitative traits64–66,68,69, is 318 

known as the sign test. Because the ASE of each gene in hybrid cells is generally independent 319 

of that of other genes, facilitating statistical analysis, hybrid ASE is ideally suited for detecting 320 

selection with the sign test whereas data from non-hybrids cannot be used in this manner. 321 

To apply this test for lineage-specific selection, we focused on a previously published RNA-seq 322 

dataset from human-chimpanzee hybrid cortical organoids64. These organoids—which include 323 

glutamatergic and GABAergic neurons, astrocytes, and neural precursor cells—were sampled in 324 

a bulk RNA-seq time series spanning 200 days of development in vitro64. As described above, a 325 
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significant bias in the directionality of ASE for any predefined set of genes can reject the null 326 

hypothesis of neutral evolution, and instead suggests lineage-specific selection. Applying this 327 

test to known ASD-associated genes, we found a strong bias toward lower expression from the 328 

human allele in cortical organoids at two different stages of development (2.0-fold enrichment at 329 

day 100 of organoid development; binomial p = 0.003; Figure 6E). The bias toward lower 330 

expression from human alleles was even stronger when using only high-confidence ASD genes 331 

(2.5 fold-enrichment; binomial p = 0.01 at day 100; Supplemental Figure 37). This ASE bias is 332 

inconsistent with neutral evolution, and strongly implies the action of lineage-specific selection 333 

on the expression of ASD-linked genes. 334 

To determine the lineage (human or chimpanzee) on which the ASD-linked gene expression 335 

changes occurred, for genes with matching directionality in the L2/3 IT and organoid data we 336 

once again polarized gene expression divergence in the MTG into human-derived and 337 

chimpanzee-derived categories using gorilla as an outgroup. Out of 17 chimpanzee-derived 338 

genes, there was no directionality bias in the organoid ASE data at either day 100 or day 150 (9 339 

out of 17 with lower expression from the human allele at day 150, Figure 6F-G, Supplemental 340 

Figure 38), consistent with neutral evolution. However, out of 22 human-derived genes, 20 had 341 

lower expression from the human allele (Fisher’s exact test p = 0.010 at day 150; odds ratio = 342 

8.9; Figure 6F-G). This trend is even stronger when using a more relaxed false discovery rate 343 

(FDR) cutoff of 0.1 (25 down-regulated in human vs 2 up-regulated; Fisher’s exact test p = 344 

0.0017; odds ratio = 12.5). Overall, this strongly suggests that many ASD-linked genes were 345 

down-regulated specifically in the human lineage. 346 

This coordinated down-regulation of 25 ASD-linked genes could conceivably be due to either 347 

positive selection or loss of constraint, as both of these types of lineage-specific selection could 348 

lead to down-regulation67,69. To determine if ASD-associated genes might be evolving under 349 

relaxed constraint in humans, we tested several predictions of the relaxed constraint model. 350 
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First, genes evolving under relaxed constraint might be expected to have accumulated more 351 

substitutions affecting protein sequence and/or gene expression in the human lineage. 352 

However, we found no difference in protein sequence constraint (measured by dN/dS70) or the 353 

number of mutations near the transcription start site (TSS) between humans and chimpanzees 354 

(after correcting for genome-wide differences between the two lineages, p = 0.42 for dN/dS, p = 355 

0.24 for mutations near TSS, paired t-test, Supplemental Figure 39A-B). In addition, the 356 

expression of genes evolving under relaxed constraint in humans would likely be more variable 357 

across human individuals compared to chimpanzee individuals. However, we found the opposite 358 

for ASD-linked genes—slightly less variability in expression in humans (p = 0.08 for DLPFC, p = 359 

2.5x10-5 for MTG, paired t-test, Supp Fig. 39C-D), suggesting that the expression of ASD-linked 360 

genes may actually be under stronger constraint in humans compared to chimpanzees. 361 

Consistent with this, the vast majority of ASD-linked genes have strongly constrained 362 

expression in humans as measured by loss-of-function intolerance (82% of ASD-linked genes 363 

have probability of loss of function intolerance71 > 0.9 compared to 17% genome-wide; similarly, 364 

82% of ASD-linked genes have a fitness effect of heterozygous loss of function61 [shet] > 0.1, 365 

compared to 18% genome-wide). 366 

Although we cannot rule out any possibility of relaxed constraint at some point in the past, these 367 

results favor a model in which polygenic positive selection acted to decrease expression of 368 

ASD-linked genes in human L2/3 IT neurons (as well as in some other cell types in the 369 

neocortex). As loss of function underlies increased probability of ASD diagnosis for the vast 370 

majority of these genes72, this suggests that down-regulation of ASD-linked gene expression 371 

may have increased ASD prevalence in the human lineage. In monogenic cases, decreased 372 

expression of ASD-linked genes in the human lineage may have led to humans being closer to 373 

a hypothetical “ASD expression threshold” below which ASD characteristics would manifest. As 374 

an example, DLG4, which encodes the key synaptic protein PSD-95 and for which loss of one 375 
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copy causes ASD73, has 2.5-fold lower expression in humans compared to chimpanzees (Figure 376 

6H). Consistent with this, it also has 2.5-fold lower protein abundance in the postsynaptic 377 

density (PSD) in humans compared to rhesus macaques, and 3.4-fold lower protein abundance 378 

in humans compared to mice74 (human vs. rhesus t-test p = 0.0028, human vs. mouse t-test p = 379 

0.00014, Supplemental Figure 40). While this human-specific down-regulation that led to the 380 

current human baseline expression level of DLG4 is not sufficient to cause ASD, further down-381 

regulation via loss of a single copy may push humans below the ASD expression threshold 382 

whereas loss of a single copy in chimpanzees would maintain expression above this threshold 383 

(Figure 6H). Although these genes are linked to ASD primarily due to their monogenic effects, 384 

the majority of ASD cases are thought to be caused by many small genetic and environmental 385 

perturbations collectively pushing individuals past some threshold75. We propose that the down-386 

regulation of ASD-linked genes in humans increased the likelihood of ASD in the human lineage 387 

such that small perturbations on a developmental timescale are sufficient to cause ASD 388 

characteristics in humans but not chimpanzees (Figure 6I).  389 

Down-regulation of schizophrenia-linked genes in humans 390 

Having observed a consistent pattern of human-specific down-regulation for ASD-linked genes, 391 

we then tested whether genes linked to schizophrenia (SCZ)76, another human-specific 392 

neuropsychiatric disorder, show a similar bias. We found an 8-fold enrichment for human down-393 

regulation of SCZ-linked genes in DLPFC L2/3 IT neurons (Supplemental Figure 41A-B). 394 

Although this is even stronger than the ASD bias, it only reaches an FDR < 0.05 in three MTG 395 

subclasses, such as Lamp5 and Pax6 inhibitory neurons, due to much lower statistical power 396 

(31 SCZ-linked genes vs. 233 high-confidence ASD-linked). Consistent with the known genetic 397 

overlap between ASD and SCZ, six of the SCZ-linked genes are also implicated in ASD, making 398 

it difficult to disentangle the signal from ASD and SCZ. Furthermore, although there are very few 399 

SCZ-linked genes with significant ASE in the hybrid cortical organoid data, among all SCZ-400 
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linked genes regardless of significance there is a clear bias toward human down-regulation (2.6 401 

fold-enrichment, binomial test p = 0.025 at day 150, Supplemental Figure 41C). We interpret 402 

these results as preliminary evidence that SCZ-linked genes may have also been subject to 403 

selection for down-regulation in the human lineage, though further work will be required to 404 

confirm this. 405 

 406 

Discussion 407 

 408 

Building on an analogy between genes and cell types, we have identified a general principle 409 

underlying the rate of evolution of different neuronal types in the mammalian neocortex. We 410 

found a strong negative correlation between the abundance of each neuronal cell type and the 411 

rate at which its gene expression levels diverge across six mammalian species and three 412 

independent datasets5,7,8. Interestingly, this correlation remained very strong when collectively 413 

analyzing inhibitory and excitatory neurons, despite their very different developmental origins 414 

and functions77,78. 415 

 416 

Based on this initial discovery, we found that L2/3 IT neurons evolved unexpectedly quickly in 417 

the human lineage compared to other apes. This accelerated evolution included the 418 

disproportionate down-regulation of genes associated with autism spectrum disorder and 419 

schizophrenia, two neurological disorders closely linked to L2/3 IT neurons that are common in 420 

humans but rare in other apes. Finally, we found that this down-regulation, present both in adult 421 

neurons and in organoid models of the developing brain, was likely due to polygenic positive 422 

selection on cis-regulation. These results differ from, but do not contradict, previous findings that 423 

a group of synapse genes show human-specific up-regulation during early development that is 424 

disrupted in people with ASD57. Overall, our analysis suggests that natural selection on gene 425 
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expression may have increased the prevalence of ASD, and perhaps also SCZ, in humans (Fig 426 

6H).  427 

 428 

Although it has been widely hypothesized that natural selection for human-specific traits has 429 

increased human disease risk46,47,79–81, unambiguous evidence for this has been lacking. While 430 

there is strong evidence linking natural selection on within-human genetic variation to disease 431 

risk (e.g. sickle cell disease82), it has proven far more challenging to find similar examples 432 

involving genetic variants shared by all humans. There are human-chimpanzee differences that 433 

have been linked to interspecies differences in disease risk (e.g. human-specific 434 

pseudogenization of the CMAH gene, which is thought to have shaped human susceptibility to 435 

infectious diseases81,83,84), but there is no evidence for positive selection on these interspecies 436 

genetic differences. In addition, while there are many examples of positive selection on human-437 

chimpanzee differences64,65,70,85–87, these changes have no clear link to the likelihood of 438 

diseases or disorders in humans. Finally, although the enrichment for ASD-linked variants within 439 

HARs54,55 is suggestive of a role for human-chimpanzee differences in HARs (many of which are 440 

thought to be positively selected56) in increasing the likelihood of ASD in humans, a connection 441 

between those human-chimpanzee differences and ASD has not been established. Overall, our 442 

findings provide the strongest evidence to date supporting the long-standing hypothesis that 443 

natural selection for human-specific traits has increased the likelihood of certain disorders. 444 

 445 

Although our results strongly suggest natural selection for down-regulation of ASD-linked genes, 446 

the reason why this conferred fitness benefits to our ancestors remains an open question. 447 

Answering this question is difficult in part because we do not know what human-specific 448 

features of cognition, brain anatomy, and neuronal wiring gave our ancestors a fitness 449 

advantage, but we can speculate about two general classes of evolutionary scenarios. First, 450 

down-regulation of ASD-linked genes may have led to uniquely human phenotypes. For 451 
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example, haploinsufficiency of many ASD-linked genes is associated with developmental 452 

delay47, so their down-regulation could have contributed to the slower postnatal brain 453 

development in humans compared to chimpanzees. Alternatively, capacity for speech 454 

production and comprehension are unique to or greatly expanded in humans and often 455 

impacted in ASD and SCZ53,88. If down-regulation of ASD-linked genes conferred a fitness 456 

advantage by slowing postnatal brain development or increasing the capacity for language, that 457 

could result in the signal of positive selection we observed. 458 

 459 

On the other hand, the down-regulation we observed may have been compensatory and 460 

reduced the negative effects of some other human-specific trait or traits. For example, the ratio 461 

of excitatory and inhibitory synapses on pyramidal neurons is fairly constant between humans 462 

and rodents despite massive differences in brain and neuron size89. In addition, excitatory-463 

inhibitory imbalance is a leading hypothesis for the circuit basis of ASD90. If human brain 464 

expansion, changes in metabolism, or any other factor shifted this balance away from the 465 

fitness optimum, down-regulation of ASD-linked genes could potentially compensate. Overall, 466 

more work to understand human and non-human primate phenotypic differences and how 467 

polygenic changes in gene expression affect phenotypes is needed if we are to better 468 

understand selective forces acting on the expression of ASD-linked genes in the human lineage. 469 

 470 

Our results come with important caveats. As with most correlations, causality is not implied. Our 471 

initial hypothesis was that cell type proportions may affect evolutionary rates via more severe 472 

fitness effects of expression changes in more abundant cell types, leading to greater 473 

evolutionary constraint than in rare cell types (Fig 1A). While this is a plausible explanation for 474 

our results, there also may be unknown correlates of cell type proportion that are causal. We 475 

leave explicit testing of this model to future work.  476 

 477 
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Along with establishing a mechanism underlying these correlations, another exciting future 478 

direction will be to explore this phenomenon in other tissues. This will become increasingly 479 

feasible as subclasses and fine-grained subtypes are annotated in large, uniformly processed 480 

cross-species studies. It will also be interesting to explore what factors are associated with the 481 

rate of cell type-specific gene expression divergence in contexts that lack stable cell type 482 

proportions (e.g. during development or in the immune system).  483 

 484 

Considering that many ASD-linked genes are extremely sensitive to perturbations in their 485 

expression, our findings raise the important question of how significant reductions in the 486 

expression of so many dosage-sensitive genes were tolerated in the human lineage. As 487 

haploinsufficiency of many of these genes has severe fitness consequences in both humans 488 

and mice47, it is unlikely that these changes occurred through single mutations of large effect. In 489 

addition, our analysis of allele-specific expression suggests that cis-regulatory changes underlie 490 

many of the gene expression changes we observe. Therefore, we favor a model in which many 491 

cis-acting mutations of small effect fixed over time, eventually leading to the large-scale down-492 

regulation of ASD-linked genes in the human lineage. It will be interesting to use deep learning 493 

predictions of variant effects combined with experimental validation to identify the genetic 494 

differences underlying changes in the expression of ASD-linked genes in the human lineage.  495 

 496 

It is also possible that the down-regulation of many ASD-linked genes is less deleterious than 497 

the down-regulation of a single gene. As an analogy, whole-genome duplications can be well-498 

tolerated in vertebrates, even though duplication of some individual genes—including many of 499 

those linked to ASD—can be far more deleterious. An intuitive explanation for this counter-500 

intuitive observation is that relative expression levels, or stoichiometry, could impact fitness 501 

even more than absolute expression levels91. Under this model, the key idea is that the down-502 
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regulation of many ASD-linked genes would have less impact on their relative levels than a 503 

change in the expression of a single gene. Excitingly, CRISPR-based methods to precisely 504 

manipulate the expression levels of many genes at once may soon allow us to more directly test 505 

this hypothesis. Overall, it will be important to develop a deeper understanding of how cell types 506 

and genes implicated in ASD and SCZ have evolved in the human lineage as this will improve 507 

our understanding of uniquely human traits and neuropsychiatric disorders.  508 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2024. ; https://doi.org/10.1101/2024.08.02.606407doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.02.606407
http://creativecommons.org/licenses/by-nc/4.0/


 509 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2024. ; https://doi.org/10.1101/2024.08.02.606407doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.02.606407
http://creativecommons.org/licenses/by-nc/4.0/


Figure 1: More common neuronal cell types evolve more slowly than rarer types. A) 510 

Rationale for hypothesis that more common neuronal types might evolve more slowly than rarer 511 

types. A gene expression change in a common cell type has a large negative effect on fitness 512 

whereas the same change in a rarer cell type has a smaller effect. B) On the left: outline of 513 

data analysis strategy. SnRNA-seq from the MTG of five species (14 subclasses of neuron) was 514 

analyzed and used to measure cell type proportion and pairwise divergence between species. 515 

On the right: plot showing the correlation between neuronal subclass proportion (log10 scale on 516 

the x-axis) and subclass-specific divergence between human and marmoset in the MTG. A 517 

representative iteration from 100 independent down-samplings is shown. The Spearman’s rho 518 

and p-value shown are the median across 100 independent down-samplings (see methods for 519 

details). The line and shaded region are the line of best fit from a linear regression and 95% 520 

confidence interval respectively. C) Same as (B) but snRNA-seq from the DLPFC (17 521 

subclasses of neuron) of four species was analyzed. D) Same as (B) but snRNA-seq from M1 522 

(12 subclasses of neuron) of three species was analyzed. 523 

  524 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2024. ; https://doi.org/10.1101/2024.08.02.606407doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.02.606407
http://creativecommons.org/licenses/by-nc/4.0/


 525 

Figure 2: More common neuronal cell types evolve more slowly than rarer types within 526 

excitatory and inhibitory classes. A) Plot showing the correlation between neuronal subclass 527 

proportion (log10 scale on the x-axis) and subclass-specific divergence between human and 528 

marmoset in the MTG, restricted to excitatory neurons. A representative iteration from 100 529 

independent down-samplings is shown. The Spearman’s rho and p-value shown are the median 530 

across 100 independent down-samplings (see methods for details). The line and shaded region 531 

are the line of best fit from a linear regression and 95% confidence interval respectively. B) 532 

Same as in (A) but for the DLPFC data. C) Same as in (A) but for the M1 data. D) Same as in 533 

(A) but restricting to inhibitory neurons. E) Same as in (B) but restricting to inhibitory neurons. F) 534 

Same as in (C) but restricting to inhibitory neurons. 535 

  536 
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 537 

Figure 3: More common neuronal cell types evolve more slowly than rarer types at the 538 

subtype level. A) Plot showing the correlation between neuronal subtype proportion (log10 539 

scale on the x-axis) and subtype-specific divergence between human and marmoset in the 540 

MTG. A representative iteration from 100 independent down-samplings is shown. The 541 

Spearman’s rho and p-value shown are the median across 100 independent down-samplings 542 

(see methods for details). The line and shaded region are the line of best fit from a linear 543 

regression and 95% confidence interval respectively. B) Same as in (A) but for the DLPFC data. 544 

C) Same as in (A) but for the M1 data. D) Same as in (A) but restricting to excitatory neurons. E) 545 

Same as in (B) but restricting to excitatory neurons. F) Same as in (C) but restricting to 546 

excitatory neurons. G) Same as in (A) but restricting to inhibitory neurons. H) Same as in (B) but 547 

restricting to inhibitory neurons. I) Same as in (C) but restricting to inhibitory neurons. 548 
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Figure 4: More highly expressed, cell type-specific genes drive the negative correlation 550 

between cell type proportion and evolutionary divergence. A) Left: Plot showing the 551 

correlation between neuronal subtype proportion (log10 scale on the x-axis) and subtype-specific 552 

divergence for highly expressed genes between human and marmoset in the MTG. A 553 

representative iteration from 100 independent down-samplings is shown. The Spearman’s rho 554 

and p-value shown are the median across 100 independent down-samplings (see methods for 555 

details). The line and shaded region are the line of best fit from a linear regression and 95% 556 

confidence interval respectively. Right: Same as the left but for lowly expressed genes. B) Left: 557 

Same as in (A) but for genes with more cell type-specific expression. Right: Same as left but for 558 

genes with less cell type-specific expression. C) Same as in (A) but controlling for expression 559 

level (Methods). D) Same as in (B) but controlling for cell type-specificity of expression.  560 

  561 
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 562 

Figure 5: Accelerated evolution of L2/3 IT neurons in the human lineage. A) Plot showing 563 

the correlation between neuronal subclass proportion (log10 scale on the x-axis) and subclass-564 

specific divergence on the chimp branch in the MTG. Chimp branch divergence was computed 565 

for each of 100 down-samplings and the mean across those down-samplings is shown. The line 566 

and shaded region are the line of best fit from a linear regression and 95% confidence interval 567 

respectively. Green points indicate L2-5 IT neurons. B) Same as in (A) but for human branch 568 
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divergence. Yellow points indicate L2-5 IT neurons. C) Barplot showing the human branch 569 

divergence divided by the chimp branch divergence for each subclass. D) Plot showing the 570 

correlation between neuronal subclass proportion (log10 scale on the x-axis) and subclass-571 

specific interindividual variation across DLPFC samples from 25 human individuals. A 572 

representative iteration from 100 independent down-samplings is shown. The Spearman’s rho 573 

and p-value shown are the median across 100 independent down-samplings (see methods for 574 

details). The line and shaded region are the line of best fit from a linear regression and 95% 575 

confidence interval respectively. E) Barplot showing the human branch divergence divided by 576 

the within human variability for each subclass. F) Conceptual model for accelerated evolution of 577 

L2/3 IT neurons in the human lineage. 578 

  579 
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 580 

Figure 6: Positive selection for down-regulation of ASD-linked genes in the human 581 

lineage. A) Barplot showing the number of high confidence ASD-linked genes that are up-582 

regulated in human and number of genes that are down-regulated in human relative to chimp in 583 

DLPFC L6 CT neurons. B) Volcano plot showing the fold-enrichment for down-regulation in 584 

human DLPFC (x-axis) and the -log10 binomial FDR (y-axis). Subclasses with FDR < 0.05 are 585 

shown in red; only subclasses with at least 500 differentially expressed (DE) genes up-regulated 586 

in human and 500 differentially expressed genes down-regulated in human are shown. C) 587 

Barplot showing the number of high confidence ASD-linked genes that are up-regulated in 588 
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human and number of genes that are down-regulated in human relative to chimp in DLPFC L2/3 589 

IT neurons. D) Distribution of log2 fold-changes (x-axis) comparing human or chimpanzee to 590 

gorilla in L2/3 IT neurons for high confidence ASD-linked genes with FDR < 0.05 when 591 

comparing human and chimpanzee. Only genes with absolute log2 fold-change less than 3 are 592 

shown. E) Barplot showing the number of differentially expressed ASD-linked genes with higher 593 

allele-specific expression from the human allele (red) and higher expression from the chimp 594 

allele (blue) in cortical organoids. ** indicates binomial p < 0.01. F) Barplot showing the number 595 

of differentially expressed ASD-linked genes with higher allele-specific expression from the 596 

human allele (red) and higher expression from the chimp allele (blue) in day 150 cortical 597 

organoids for human-derived and chimp-derived genes separately. ** indicates binomial p < 598 

0.01. G) Plot showing the log2 allele-specific expression ratios of differentially expressed, 599 

human-derived, ASD-linked genes in day 150 cortical organoids. H) Left: Expression of DLG4 in 600 

MTG L2/3 IT neurons. Right: Predicted expression of DLG4 if one copy of the gene were non-601 

functional. I) Conceptual model for how positive selection for down-regulation of ASD linked 602 

genes led to higher likelihood of ASD in humans compared to chimpanzees.  603 

  604 
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Methods 605 

 606 

Quantifying cell type-specific gene expression divergence between species 607 

 608 

We analyzed three main datasets in this study, which we refer to by the cortical area sampled 609 

(MTG, DLPFC, M1). These were the only studies meeting both of our inclusion criteria: multiple 610 

species profiled in the same study using the same snRNA-seq protocols for each species within 611 

a study, and at least 10 orthologous cell types having 250 or more cells per species. As an 612 

example of a study that did not meet these inclusion criteria, we can consider a recent multi-613 

species atlas of the retina92. While this has a sufficient number of cells, species, and 614 

orthologous cell types, different protocols were used for different species and not all species 615 

were sampled as part of the same study. For example, different antibodies were used to enrich 616 

for subpopulations of cells in different species and some species did not have a sufficient 617 

number of cells profiled without enrichment to accurately estimate cell type proportions.  618 

 619 

All statistical tests and analyses were performed in python using scipy v1.10.193 except for the 620 

DESeq2 analysis. For the M1 and MTG data, we converted from RDS files to h5 files using 621 

Seurat and Seurat Disk94. We conducted all analyses within each dataset to avoid batch effects 622 

from comparing across datasets. We used the cell type annotations and counts matrices directly 623 

from the study that first reported the dataset in conjunction with scanpy v1.7.295. The procedure 624 

outlined below was performed 100 times independently on each dataset unless otherwise 625 

noted. To quantify cell type-specific expression divergence without confounding with cell type 626 

proportion, we first down-sampled the number of cells in each cell type so that it was equal 627 

across all cell types and species. We down-sampled without replacement to 250 cells at the 628 

subclass level and 50 cells at the subtype level for the main analysis presented in the text. Only 629 
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subclasses and subtypes with at least this many cells were included in downstream analysis. 630 

We then restricted to 5-way one-to-one protein-coding non-mitochondrial orthologs (downloaded 631 

from ensembl biomart for hg38)96 between human, chimpanzee, gorilla, rhesus macaque, and 632 

marmoset for the MTG and DLPFC data and 3-way one-to-one orthologs for human, marmoset, 633 

and mouse for the M1 dataset. We then summed expression across all cells within a cell type to 634 

create a pseudobulked expression profile for that cell type. 635 

 636 

For each possible pairwise comparison between species, we down-sampled the total counts in 637 

each cell type so that it was equal across all cell types for both species in the comparison. We 638 

then computed counts per million (CPM) in each cell type. After computing CPM, we filtered out 639 

genes with (1) fewer than 25 counts in both species or (2) fewer than 1 CPM in both species per 640 

cell type. As a result, if a gene passed the filtering criteria in one cell type but not another it 641 

would be included only for the cell type in which it passed the filtering criteria. We then 642 

computed the log2(CPM) and used the Spearman correlation distance to measure the gene 643 

expression divergence between species in each cell type.  644 

 645 

Notably, this process involved several analysis decisions that could affect our results. To test 646 

how robust our results were to these choices, we tested all combinations of the following: 647 

 648 

1. Down-sampling to 50, 100, 250, or 500 cells. 649 

2. Filtering genes with fewer than 5, 10, 25, or 50 counts. 650 

3. Filtering genes with fewer than 1 or 5 CPM. 651 

4. Using log2(CPM) or not log transforming. 652 

5. Using the Spearman correlation distance, Pearson correlation distance, Euclidean 653 

distance, or L1 distance metrics.  654 
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 655 

In general, our results were robust to any combination of these parameters (Supplemental 656 

Tables). When stratifying, we only used a subset of these combinations due to the greater 657 

number of computations required.  658 

 659 

Computing cell type proportions and correlation with gene expression divergence 660 

 661 

All three datasets were generated with single-nucleus RNA-sequencing (snRNA-seq) and so 662 

likely accurately represent the true proportion of neuronal cell types in the neocortex97. To 663 

compute cell type proportions, we restricted to neuronal cells with greater than or equal to the 664 

number of cells we down-sampled to. We then computed cell type proportion separately for 665 

each species by dividing the number of cells of each type by the total number of cells profiled. 666 

For each interspecies comparison, we averaged the cell type proportion across both species. 667 

We then computed the Spearman correlation between the averaged cell type proportions and 668 

cell type-specific gene expression divergence computed as described above. As we did this 669 

across 100 independent down-samplings (numbered 1 to 100), we reported the median 670 

Spearman’s rho and p-value throughout the text and figures. If there was an individual down-671 

sampling iteration that had the median Spearman’s rho and p-value, we made the scatterplots 672 

shown in Figures 1-4 using the first such iteration. If no iteration had the median rho and p-673 

value, we showed the iteration closest to the median with the greatest number of iterations that 674 

had that rho and p-value. For example, if 22 iterations resulted in rho = -0.5 and 19 iterations 675 

resulted in rho = -0.6, both of which were closest to the median of -0.55, then an iteration with -676 

0.5 would be shown. If there was still a tie after this process, we showed the iteration with the 677 

lowest number. Because the Spearman correlation is a nonparametric rank-based test, it is 678 

unaffected by any rank-preserving transformation of the data; therefore our choice to show 679 
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scatter plots with log-transformed cell type proportions was for visualization only and had no 680 

effect on the results. 681 

 682 

To estimate divergence along the human branch, we used the formula: 683 

𝐻𝐶 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 + 𝐻𝐺 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 − 𝐶𝐺 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒

2
 684 

Here, HC stands for human-chimp, HG stands for human-gorilla, and CG stands for chimp-685 

gorilla. 686 

 687 

Similarly, to estimate divergence along the chimp branch, we used the formula: 688 

𝐻𝐶 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 + 𝐶𝐺 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 − 𝐻𝐺 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒

2
 689 

 690 

Stratifying by expression level, cell type-specificity of expression, and constraint on 691 

expression 692 

 693 

To stratify by expression level, we ranked genes by the average CPM between the two species 694 

being compared for each cell type separately. We then assigned the top third of genes with the 695 

highest expression to the highly expressed bin, the next third to the moderately expressed bin, 696 

and the remaining third to the lowly expressed bin. Whenever we stratified by expression level 697 

or another metric, we used the Euclidean distance to measure gene expression divergence 698 

because the limited dynamic range of expression for the moderately and lowly expressed bins 699 

led to unrealistically high correlation distances. Similarly, we ranked genes by Tau62, a measure 700 

of how cell type-specifically a gene is expressed, and split those genes into three bins. We 701 

computed Tau separately for both species across all subclasses or subtypes with a sufficient 702 

number of cells and then computed the average value for each gene. For constraint on 703 
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expression, we considered all genes with heterozygous fitness effect61 shet > 0.1 to be highly 704 

constrained, genes with shet between 0.1 and 0.01 as moderately constrained, and the 705 

remaining genes with shet < 0.01 to be lowly constrained. Because there was a different number 706 

of genes in each bin in this case, we down-sampled genes to reach an equal number in each 707 

bin. 708 

 709 

When controlling for expression level and stratifying by Tau, we compared the high bin with the 710 

moderate and low bins separately. To control for expression, we first computed the log2 fold-711 

change between all genes in the high bin and all genes in the moderate or low bin and restricted 712 

to pairs of genes with absolute log2 fold-change less than 0.05. We then split this list of gene 713 

pairs into those with a negative log2 fold-change, positive log2 fold-change, and zero log2 fold-714 

change, shuffled the list, and removed duplicate genes. We kept all gene pairs with a log2 fold-715 

change of zero and down-sampled the list of gene pairs with positive or negative log2 fold-716 

change so that there were an equal number in each category. This resulted in a final set of 717 

genes in the high bin with matched expression to genes in the moderate or low bin which we 718 

used to compute cell type-specific gene expression divergence. When controlling for Tau, we 719 

applied the same strategy but required an absolute log2 fold-change less than 0.01. 720 

 721 

Comparing interindividual variability in gene expression and cell type proportion 722 

 723 

To measure the within-human interindividual variation in cell type-specific gene expression, we 724 

used a uniformly processed dataset from the DLPFC63. We restricted to control samples from 725 

individuals of European ancestry with an age of death greater than or equal to 25. We selected 726 

thirteen neuronal subclasses for which the majority of individuals had greater than 50 nuclei 727 

profiled for further analysis and restricted to samples with greater than or equal to 50 nuclei for 728 
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all thirteen subclasses. After this filtering process, 25 samples remained. Next, we down-729 

sampled to 50 nuclei from each subclass in each dataset and computed pseudobulked counts. 730 

We then down-sampled counts so that there was an equal number of total counts across all 731 

subclasses for each individual. For each subclass, we removed genes with average counts 732 

across all individuals less than 25 and computed CPM. We then computed the Spearman 733 

correlation distance between each sample and the mean expression profile across all samples 734 

and took the mean of those 25 correlation distances as our measure of cell type-specific gene 735 

expression variation within humans. We performed this procedure across 100 independent 736 

down-samplings. To estimate cell type proportions, we computed the cell type proportions for 737 

the thirteen subclasses and averaged them together. We then computed the Spearman 738 

correlation between the subclass-specific interindividual variation and the cell type proportions 739 

across the 100 down-samplings. We report the median Spearman’s rho and p-value across the 740 

100 down-samplings and show the first down-sampling with the median Spearman’s rho and p-741 

value in Figure 5D. 742 

 743 

Analysis of ASD- and SCZ-linked genes in snRNA-seq data  744 

 745 

We used the SFARI gene database of ASD-linked genes and considered any genes with a 746 

score of 1 to be “high-confidence” (233 total) and all genes regardless of score to be all ASD-747 

linked genes (1176 genes)98. As we are not aware of a similar resource for SCZ, we used the 31 748 

genes with FDR < 0.1 in a recent rare variant association study for SCZ76. Throughout, FDRs 749 

were corrected for multiple tests with the Benajmini-Hochberg method. To identify differentially 750 

expressed (DE) genes and compute log2 fold-changes between species, we ran DESeq299 on 751 

the subclass-level pseudobulked counts and used apeglm100 to shrink the log2 fold-changes. To 752 

test for a bias toward lower expression of ASD- and SCZ-linked genes in each cell type, we 753 
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restricted to genes with FDR < 0.05 in the human-chimpanzee comparison and use the binomial 754 

test comparing the number of genes with negative log2 fold-change (i.e. higher expression in 755 

chimpanzee) to the number of genes with positive log2 fold-change. We used the frequency of 756 

negative log2 fold-changes among all genes with FDR < 0.05 as the background probability in 757 

the binomial test. We repeated this for both high-confidence and all ASD-linked genes.  758 

 759 

To determine whether the higher expression in chimpanzees relative to human was more likely 760 

due to changes on the chimpanzee branch or the human branch, we first filtered to only high-761 

confidence ASD-linked genes that were differentially expressed between chimpanzees and 762 

gorillas in L2/3 IT neurons. Genes were assigned as having a significant human-derived or 763 

chimpanzee-derived expression change in the MTG dataset by comparison with the human-764 

gorilla and chimpanzee-gorilla log2 fold-changes. First, if the absolute human-gorilla and 765 

chimpanzee-gorilla log2 fold-change both were greater than the absolute human-chimpanzee 766 

log2 fold-change, that gene was considered ambiguous. After removing ambiguous genes, a 767 

gene was considered as having a human-derived expression change if the absolute human-768 

gorilla log2 fold-change was greater than the absolute human-chimpanzee log2 fold-change and 769 

vice versa for chimpanzee-derived.  770 

 771 

Analysis of ASD-linked genes in human-chimpanzee hybrid cortical organoid data 772 

 773 

We used the previously described dataset from human-chimpanzee cortical organoids, 774 

reprocessed as previously described86. Briefly, reads were aligned to the human (hg38) and 775 

chimpanzee (PanTro6) genomes with STAR and corrected for mapping bias using Hornet101. 776 

Reads were assigned to the human or chimpanzee allele using a set of high-confidence human-777 

chimp single nucleotide differences and collapsed to counts per gene with ASEr. DESeq299 was 778 
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used to identify genes with significant ASE with the hybrid line that each sample was from used 779 

as a covariate. DESeq299 and apeglm100 were used to compute log2 fold-changes. For the below 780 

analyses, we used the chimpanzee-aligned data, which has a very slight bias toward higher 781 

expression from the human allele, to ensure that our analyses were conservative. 782 

 783 

To test for a significant bias toward down or up-regulation from the human allele for ASD- or 784 

SCZ-linked genes, we restricted to genes with FDR < 0.05 in the cortical organoid data and 785 

intersected those genes with the list of ASD- or SCZ-linked genes. We then used the binomial 786 

test comparing the number of genes with negative log2 fold-change (i.e. higher expression in 787 

chimpanzee) to the number of genes with positive log2 fold-change. We used the frequency of 788 

negative log2 fold-changes among all genes with FDR < 0.05 as the background probability in 789 

the binomial test. We repeated this for both high-confidence and all ASD-linked genes. To 790 

investigate whether these cis-regulatory changes likely occurred in the human or chimpanzee 791 

lineage, we used the assignments as human- or chimpanzee-derived from L2/3 IT neurons in 792 

the MTG dataset described above. For genes that had matching human-chimpanzee log2 fold-793 

change sign in both the MTG and cortical organoid datasets, we created a 2x2 table of 794 

human/chimp-derived and down/up-regulated from the human allele and applied Fisher’s exact 795 

test.  796 

 797 

Analysis of constraint on ASD-linked genes in humans and chimpanzees 798 

 799 

We used previously published dN/dS computations70 and restricted only to genes with at least 800 

one synonymous and nonsynonymous difference on both the human and chimpanzee 801 

branches. We compared the dN/dS for ASD-linked genes with a paired t-test. To compute the 802 

number of genetic differences within 5 kilobases of the transcription start site (TSS) for each 803 
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lineage, we used our previously described set of high-confidence human-chimpanzee single 804 

nucleotide genetic differences86. Briefly, this was created by identifying all single nucleotide 805 

differences between PanTro6 and hg38 and the filtering out sites that were not homozygous for 806 

the reference allele in 3 humans and 3 chimpanzees. We then intersected this with a previously 807 

described list of human-chimpanzee orthologous TSS expanded by 2.5 kilobases on either side 808 

and restricted to only TSS for ASD-linked genes87. To correct for the slightly larger number of 809 

human-derived sites across all genes, we down-sampled the human-derived variants near the 810 

TSS of ASD-linked genes, keeping a fraction of sites equal to the total number of chimp-derived 811 

genetic differences divided by the total number of human-derived genetic differences. We then 812 

used a paired t-test to compare the two distributions. 813 

 814 

To compare the within-species variance for humans and chimpanzees in expression of ASD-815 

linked genes, we computed the variance in pseudobulked CPM from L2/3 IT neurons across 816 

individuals in the DLPFC and MTG separately. As the mean expression level and batch effects 817 

can have a major impact on expression variance, we normalized the variance to the variance of 818 

the 100 genes with closest mean expression to each ASD-linked gene. To do this, we computed 819 

the fraction of those 100 genes with smaller variance than the focal ASD-linked gene in each 820 

species and dataset separately. We then compared the values in human and chimpanzee with a 821 

paired t-test.  822 

 823 

Analysis of postsynaptic proteomics data 824 

 825 

We plotted PSD-95 protein abundances from the supplemental materials of Wang et al74. We 826 

used the t-test to compare levels between species. 827 

  828 
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variety of parameter combinations. 881 
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  885 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2024. ; https://doi.org/10.1101/2024.08.02.606407doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.02.606407
http://creativecommons.org/licenses/by-nc/4.0/


References 886 

1. Zeisel, A. et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by 887 

single-cell RNA-seq. Science 347, 1138–1142 (2015). 888 

2. Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. 889 

Neurosci. 19, 335–346 (2016). 890 

3. Yao, Z. et al. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse 891 

brain. Nature 624, 317–332 (2023). 892 

4. Krienen, F. M. et al. Innovations present in the primate interneuron repertoire. Nature 586, 262–893 

269 (2020). 894 

5. Jorstad, N. L. et al. Comparative transcriptomics reveals human-specific cortical features. 895 

Science 382, eade9516 (2023). 896 

6. Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. 897 

Nature 573, 61–68 (2019). 898 

7. Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and 899 

mouse. Nature 598, 111–119 (2021). 900 

8. Ma, S. et al. Molecular and cellular evolution of the primate dorsolateral prefrontal cortex. 901 

Science 377, eabo7257 (2022). 902 

9. Eyre-Walker, A. Evolutionary genomics. Trends Ecol. Evol. 14, 176 (1999). 903 

10. Pál, C., Papp, B. & Hurst, L. D. Highly expressed genes in yeast evolve slowly. Genetics 158, 904 

927–931 (2001). 905 

11. Hirsh, A. E. & Fraser, H. B. Protein dispensability and rate of evolution. Nature 411, 1046–1049 906 

(2001). 907 

12. Fraser, H. B., Hirsh, A. E., Steinmetz, L. M., Scharfe, C. & Feldman, M. W. Evolutionary rate in the 908 

protein interaction network. Science 296, 750–752 (2002). 909 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2024. ; https://doi.org/10.1101/2024.08.02.606407doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.02.606407
http://creativecommons.org/licenses/by-nc/4.0/


13. Duret, L. & Mouchiroud, D. Determinants of substitution rates in mammalian genes: expression 910 

pattern affects selection intensity but not mutation rate. Mol. Biol. Evol. 17, 68–74 (2000). 911 

14. Drummond, D. A. & Wilke, C. O. Mistranslation-induced protein misfolding as a dominant 912 

constraint on coding-sequence evolution. Cell 134, 341–352 (2008). 913 

15. Drummond, D. A., Raval, A. & Wilke, C. O. A single determinant dominates the rate of yeast 914 

protein evolution. Mol. Biol. Evol. 23, 327–337 (2006). 915 

16. Drummond, D. A., Bloom, J. D., Adami, C., Wilke, C. O. & Arnold, F. H. Why highly expressed 916 

proteins evolve slowly. Proc. Natl. Acad. Sci. U. S. A. 102, 14338–14343 (2005). 917 

17. Yang, Z. PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol. Biol. Evol. 24, 1586–1591 918 

(2007). 919 

18. Arendt, D. et al. The origin and evolution of cell types. Nat. Rev. Genet. 17, 744–757 (2016). 920 

19. Pembroke, W. G., Hartl, C. L. & Geschwind, D. H. Evolutionary conservation and divergence of 921 

the human brain transcriptome. Genome Biol. 22, 52 (2021). 922 

20. Kebschull, J. M. et al. Cerebellar nuclei evolved by repeatedly duplicating a conserved cell-type 923 

set. Science 370, eabd5059 (2020). 924 

21. Tosches, M. A. et al. Evolution of pallium, hippocampus, and cortical cell types revealed by 925 

single-cell transcriptomics in reptiles. Science 360, 881–888 (2018). 926 

22. Peng, Y.-R. et al. Molecular Classification and Comparative Taxonomics of Foveal and 927 

Peripheral Cells in Primate Retina. Cell 176, 1222-1237.e22 (2019). 928 

23. Luo, L. Architectures of neuronal circuits. Science 373, eabg7285 (2021). 929 

24. Jagadeesh, K. A. et al. Identifying disease-critical cell types and cellular processes by 930 

integrating single-cell RNA-sequencing and human genetics. Nat. Genet. 54, 1479–1492 (2022). 931 

25. Wightman, D. P. et al. A genome-wide association study with 1,126,563 individuals identifies 932 

new risk loci for Alzheimer’s disease. Nat. Genet. 53, 1276–1282 (2021). 933 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2024. ; https://doi.org/10.1101/2024.08.02.606407doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.02.606407
http://creativecommons.org/licenses/by-nc/4.0/


26. Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional pathways 934 

influencing Alzheimer’s disease risk. Nat. Genet. 51, 404–413 (2019). 935 

27. Galakhova, A. A. et al. Evolution of cortical neurons supporting human cognition. Trends Cogn. 936 

Sci. 26, 909–922 (2022). 937 

28. Berg, J. et al. Human neocortical expansion involves glutamatergic neuron diversification. 938 

Nature 598, 151–158 (2021). 939 

29. Kanton, S. et al. Organoid single-cell genomic atlas uncovers human-specific features of brain 940 

development. Nature 574, 418–422 (2019). 941 

30. Dear, R. et al. Cortical gene expression architecture links healthy neurodevelopment to the 942 

imaging, transcriptomics and genetics of autism and schizophrenia. Nat. Neurosci. 27, 1075–943 

1086 (2024). 944 

31. Parikshak, N. N. et al. Integrative functional genomic analyses implicate specific molecular 945 

pathways and circuits in autism. Cell 155, 1008–1021 (2013). 946 

32. Wamsley, B. et al. Molecular cascades and cell type–specific signatures in ASD revealed by 947 

single-cell genomics. Science 384, eadh2602 (2024). 948 

33. Velmeshev, D. et al. Single-cell genomics identifies cell type-specific molecular changes in 949 

autism. Science 364, 685–689 (2019). 950 

34. Pintacuda, G. et al. Protein interaction studies in human induced neurons indicate convergent 951 

biology underlying autism spectrum disorders. Cell Genomics 3, 100250 (2023). 952 

35. Batiuk, M. Y. et al. Upper cortical layer–driven network impairment in schizophrenia. Sci. Adv. 8, 953 

eabn8367 (2022). 954 

36. Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in 955 

schizophrenia. Nature 604, 502–508 (2022). 956 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2024. ; https://doi.org/10.1101/2024.08.02.606407doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.02.606407
http://creativecommons.org/licenses/by-nc/4.0/


37. Ruzicka, W. B. et al. Single-cell multi-cohort dissection of the schizophrenia transcriptome. 957 

Science 384, eadg5136 (2024). 958 

38. Sullivan, P. F., Yao, S. & Hjerling-Leffler, J. Schizophrenia genomics: genetic complexity and 959 

functional insights. Nat. Rev. Neurosci. (2024) doi:10.1038/s41583-024-00837-7. 960 

39. Jutla, A., Foss-Feig, J. & Veenstra-VanderWeele, J. Autism spectrum disorder and schizophrenia: 961 

An updated conceptual review. Autism Res. Off. J. Int. Soc. Autism Res. 15, 384–412 (2022). 962 

40. Dodell-Feder, D., Tully, L. M. & Hooker, C. I. Social impairment in schizophrenia: new 963 

approaches for treating a persistent problem. Curr. Opin. Psychiatry 28, 236–242 (2015). 964 

41. Sato, M., Nakai, N., Fujima, S., Choe, K. Y. & Takumi, T. Social circuits and their dysfunction in 965 

autism spectrum disorder. Mol. Psychiatry 28, 3194–3206 (2023). 966 

42. Lugo Marín, J. et al. Prevalence of Schizophrenia Spectrum Disorders in Average-IQ Adults with 967 

Autism Spectrum Disorders: A Meta-analysis. J. Autism Dev. Disord. 48, 239–250 (2018). 968 

43. Lai, M.-C. et al. Prevalence of co-occurring mental health diagnoses in the autism population: a 969 

systematic review and meta-analysis. Lancet Psychiatry 6, 819–829 (2019). 970 

44. Zheng, S. et al. Autistic traits in first‐episode psychosis: Rates and association with 1‐year 971 

recovery outcomes. Early Interv. Psychiatry 15, 849–855 (2021). 972 

45. Sikela, J. M. & Searles Quick, V. B. Genomic trade-offs: are autism and schizophrenia the steep 973 

price of the human brain? Hum. Genet. 137, 1–13 (2018). 974 

46. Crow, T. J. Is schizophrenia the price that Homo sapiens pays for language? Schizophr. Res. 28, 975 

127–141 (1997). 976 

47. Zug, R. & Uller, T. Evolution and dysfunction of human cognitive and social traits: A 977 

transcriptional regulation perspective. Evol. Hum. Sci. 4, e43 (2022). 978 

48. Yoshida, K. et al. Single-neuron and genetic correlates of autistic behavior in macaque. Sci. 979 

Adv. 2, e1600558 (2016). 980 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2024. ; https://doi.org/10.1101/2024.08.02.606407doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.02.606407
http://creativecommons.org/licenses/by-nc/4.0/


49. Faughn, C. et al. Brief Report: Chimpanzee Social Responsiveness Scale (CSRS) Detects 981 

Individual Variation in Social Responsiveness for Captive Chimpanzees. J. Autism Dev. Disord. 982 

45, 1483–1488 (2015). 983 

50. Marrus, N. et al. Initial description of a quantitative, cross-species (chimpanzee-human) social 984 

responsiveness measure. J. Am. Acad. Child Adolesc. Psychiatry 50, 508–518 (2011). 985 

51. MacLean, E. L. Unraveling the evolution of uniquely human cognition. Proc. Natl. Acad. Sci. U. 986 

S. A. 113, 6348–6354 (2016). 987 

52. Mody, M., MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical 988 

School, Department of Radiology, Charlestown, MA, Belliveau, J. W., & MGH/HST Athinoula A. 989 

Martinos Center for Biomedical Imaging, Harvard Medical School, Department of Radiology, 990 

Charlestown, MA. Speech and Language Impairments in Autism: Insights from Behavior and 991 

Neuroimaging. Am. Chin. J. Med. Sci. 5, 157 (2012). 992 

53. Chang, X. et al. Language abnormalities in schizophrenia: binding core symptoms through 993 

contemporary empirical evidence. Schizophrenia 8, 95 (2022). 994 

54. Doan, R. N. et al. Mutations in Human Accelerated Regions Disrupt Cognition and Social 995 

Behavior. Cell 167, 341-354.e12 (2016). 996 

55. Shin, T. et al. Rare Variation in Noncoding Regions with Evolutionary Signatures Contributes to 997 

Autism Spectrum Disorder Risk. http://medrxiv.org/lookup/doi/10.1101/2023.09.19.23295780 998 

(2023) doi:10.1101/2023.09.19.23295780. 999 

56. Pollard, K. S. et al. Forces Shaping the Fastest Evolving Regions in the Human Genome. PLoS 1000 

Genet. 2, e168 (2006). 1001 

57. Liu, X. et al. Disruption of an Evolutionarily Novel Synaptic Expression Pattern in Autism. PLOS 1002 

Biol. 14, e1002558 (2016). 1003 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2024. ; https://doi.org/10.1101/2024.08.02.606407doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.02.606407
http://creativecommons.org/licenses/by-nc/4.0/


58. van den Heuvel, M. P. et al. Evolutionary modifications in human brain connectivity associated 1004 

with schizophrenia. Brain J. Neurol. 142, 3991–4002 (2019). 1005 

59. Burns, J. K. An evolutionary theory of schizophrenia: cortical connectivity, metarepresentation, 1006 

and the social brain. Behav. Brain Sci. 27, 831–855; discussion 855-885 (2004). 1007 

60. Ploeger, A. & Galis, F. Evolutionary approaches to autism- an overview and integration. McGill J. 1008 

Med. MJM Int. Forum Adv. Med. Sci. Stud. 13, 38 (2011). 1009 

61. Zeng, T., Spence, J. P., Mostafavi, H. & Pritchard, J. K. Bayesian estimation of gene constraint 1010 

from an evolutionary model with gene features. Nat. Genet. (2024) doi:10.1038/s41588-024-1011 

01820-9. 1012 

62. Yanai, I. et al. Genome-wide midrange transcription profiles reveal expression level 1013 

relationships in human tissue specification. Bioinforma. Oxf. Engl. 21, 650–659 (2005). 1014 

63. Emani, P. S. et al. Single-cell genomics and regulatory networks for 388 human brains. Science 1015 

384, eadi5199 (2024). 1016 

64. Agoglia, R. M. et al. Primate cell fusion disentangles gene regulatory divergence in 1017 

neurodevelopment. Nature 592, 421–427 (2021). 1018 

65. Gokhman, D. et al. Human-chimpanzee fused cells reveal cis-regulatory divergence underlying 1019 

skeletal evolution. Nat. Genet. 53, 467–476 (2021). 1020 

66. Orr, H. A. Testing natural selection vs. genetic drift in phenotypic evolution using quantitative 1021 

trait locus data. Genetics 149, 2099–2104 (1998). 1022 

67. Fraser, H. B. Genome‐wide approaches to the study of adaptive gene expression evolution: 1023 

Systematic studies of evolutionary adaptations involving gene expression will allow many 1024 

fundamental questions in evolutionary biology to be addressed. BioEssays 33, 469–477 (2011). 1025 

68. Wang, B., Starr, A. L. & Fraser, H. B. Cell Type-Specific Cis -Regulatory Divergence in Gene 1026 

Expression and Chromatin Accessibility Revealed by Human-Chimpanzee Hybrid Cells. 1027 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2024. ; https://doi.org/10.1101/2024.08.02.606407doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.02.606407
http://creativecommons.org/licenses/by-nc/4.0/


http://biorxiv.org/lookup/doi/10.1101/2023.05.22.541747 (2023) 1028 

doi:10.1101/2023.05.22.541747. 1029 

69. Simon, N. M., Kim, Y., Bautista, D. M., Dutton, J. R. & Brem, R. B. Stem cell transcriptional 1030 

profiles from mouse subspecies reveal cis -regulatory evolution at translation genes. Preprint at 1031 

https://doi.org/10.1101/2023.07.18.549406 (2023). 1032 

70. Gayà-Vidal, M. & Albà, M. Uncovering adaptive evolution in the human lineage. BMC Genomics 1033 

15, 599 (2014). 1034 

71. Chen, S. et al. A genomic mutational constraint map using variation in 76,156 human genomes. 1035 

Nature 625, 92–100 (2024). 1036 

72. Satterstrom, F. K. et al. Large-Scale Exome Sequencing Study Implicates Both Developmental 1037 

and Functional Changes in the Neurobiology of Autism. Cell 180, 568-584.e23 (2020). 1038 

73. Rodríguez-Palmero, A. et al. DLG4-related synaptopathy: a new rare brain disorder. Genet. Med. 1039 

23, 888–899 (2021). 1040 

74. Wang, L. et al. A cross-species proteomic map reveals neoteny of human synapse 1041 

development. Nature 622, 112–119 (2023). 1042 

75. Autism Spectrum Disorder Working Group of the Psychiatric Genomics Consortium et al. 1043 

Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 1044 

431–444 (2019). 1045 

76. Singh, T. et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. 1046 

Nature 604, 509–516 (2022). 1047 

77. Lim, L., Mi, D., Llorca, A. & Marín, O. Development and Functional Diversification of Cortical 1048 

Interneurons. Neuron 100, 294–313 (2018). 1049 

78. Molyneaux, B. J., Arlotta, P., Menezes, J. R. L. & Macklis, J. D. Neuronal subtype specification in 1050 

the cerebral cortex. Nat. Rev. Neurosci. 8, 427–437 (2007). 1051 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2024. ; https://doi.org/10.1101/2024.08.02.606407doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.02.606407
http://creativecommons.org/licenses/by-nc/4.0/


79. Vasseur, E. & Quintana-Murci, L. The impact of natural selection on health and disease: uses of 1052 

the population genetics approach in humans. Evol. Appl. 6, 596–607 (2013). 1053 

80. Benton, M. L. et al. The influence of evolutionary history on human health and disease. Nat. 1054 

Rev. Genet. 22, 269–283 (2021). 1055 

81. Varki, A. Loss of N-glycolylneuraminic acid in humans: Mechanisms, consequences, and 1056 

implications for hominid evolution. Am. J. Phys. Anthropol. 116, 54–69 (2001). 1057 

82. Sabeti, P. C. et al. Positive Natural Selection in the Human Lineage. Science 312, 1614–1620 1058 

(2006). 1059 

83. Chou, H.-H. et al. A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-1060 

Pan divergence. Proc. Natl. Acad. Sci. 95, 11751–11756 (1998). 1061 

84. Dankwa, S. et al. Ancient human sialic acid variant restricts an emerging zoonotic malaria 1062 

parasite. Nat. Commun. 7, 11187 (2016). 1063 

85. Enard, D., Messer, P. W. & Petrov, D. A. Genome-wide signals of positive selection in human 1064 

evolution. Genome Res. 24, 885–895 (2014). 1065 

86. Starr, A. L., Gokhman, D. & Fraser, H. B. Accounting for cis-regulatory constraint prioritizes 1066 

genes likely to affect species-specific traits. Genome Biol. 24, 11 (2023). 1067 

87. Wang, B., Starr, A. L. & Fraser, H. B. Cell Type-Specific Cis -Regulatory Divergence in Gene 1068 

Expression and Chromatin Accessibility Revealed by Human-Chimpanzee Hybrid Cells. 1069 

http://biorxiv.org/lookup/doi/10.1101/2023.05.22.541747 (2023) 1070 

doi:10.1101/2023.05.22.541747. 1071 

88. Vogindroukas, I., Stankova, M., Chelas, E.-N. & Proedrou, A. Language and Speech 1072 

Characteristics in Autism. Neuropsychiatr. Dis. Treat. 18, 2367–2377 (2022). 1073 

89. DeFelipe, J., Alonso-Nanclares, L. & Arellano, J. Microstructure of the neocortex: Comparative 1074 

aspects. J. Neurocytol. 31, 299–316 (2002). 1075 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2024. ; https://doi.org/10.1101/2024.08.02.606407doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.02.606407
http://creativecommons.org/licenses/by-nc/4.0/


90. Sohal, V. S. & Rubenstein, J. L. R. Excitation-inhibition balance as a framework for investigating 1076 

mechanisms in neuropsychiatric disorders. Mol. Psychiatry 24, 1248–1257 (2019). 1077 

91. Darnell, R. B. The Genetic Control of Stoichiometry Underlying Autism. Annu. Rev. Neurosci. 43, 1078 

509–533 (2020). 1079 

92. Hahn, J. et al. Evolution of neuronal cell classes and types in the vertebrate retina. Nature 624, 1080 

415–424 (2023). 1081 

93. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. 1082 

Methods 17, 261–272 (2020). 1083 

94. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587.e29 1084 

(2021). 1085 

95. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data 1086 

analysis. Genome Biol. 19, 15 (2018). 1087 

96. Yates, A. D. et al. Ensembl Genomes 2022: an expanding genome resource for non-vertebrates. 1088 

Nucleic Acids Res. 50, D996–D1003 (2022). 1089 

97. Ding, J. et al. Systematic comparison of single-cell and single-nucleus RNA-sequencing 1090 

methods. Nat. Biotechnol. 38, 737–746 (2020). 1091 

98. Abrahams, B. S. et al. SFARI Gene 2.0: a community-driven knowledgebase for the autism 1092 

spectrum disorders (ASDs). Mol. Autism 4, 36 (2013). 1093 

99. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-1094 

seq data with DESeq2. Genome Biol. 15, 550 (2014). 1095 

100. Zhu, A., Ibrahim, J. G. & Love, M. I. Heavy-tailed prior distributions for sequence count data: 1096 

removing the noise and preserving large differences. Bioinformatics 35, 2084–2092 (2019). 1097 

101. Van De Geijn, B., McVicker, G., Gilad, Y. & Pritchard, J. K. WASP: allele-specific software for 1098 

robust molecular quantitative trait locus discovery. Nat. Methods 12, 1061–1063 (2015). 1099 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2024. ; https://doi.org/10.1101/2024.08.02.606407doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.02.606407
http://creativecommons.org/licenses/by-nc/4.0/


 1100 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2024. ; https://doi.org/10.1101/2024.08.02.606407doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.02.606407
http://creativecommons.org/licenses/by-nc/4.0/

