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Experimental realization of non-
adiabatic universal quantum gates 
using geometric Landau-Zener-
Stückelberg interferometry
Li Wang1, Tao Tu1, Bo Gong1, Cheng Zhou2 & Guang-Can Guo1

High fidelity universal gates for quantum bits form an essential ingredient of quantum information 
processing. In particular, geometric gates have attracted attention because they have a higher intrinsic 
resistance to certain errors. However, their realization remains a challenge because of the need for 
complicated quantum control on a multi-level structure as well as meeting the adiabatic condition 
within a short decoherence time. Here, we demonstrate non-adiabatic quantum operations for a  
two-level system by applying a well-controlled geometric Landau-Zener-Stückelberg interferometry. 
By characterizing the gate quality, we also investigate the operation in the presence of realistic 
dephasing. Furthermore, the result provides an essential model suitable for understanding an interplay 
of geometric phase and Landau-Zener-Stückelberg process which are well explored separately.

In quantum information science, a primary goal is to implement precise universal gates, because they provide the 
fundamental building blocks for constructing complex operations1. A universal set of quantum logic gates 
requires two types of non-commutable operations or arbitrary rotations around two axes on the Bloch sphere of 
a quantum bit (qubit). For fault-tolerant quantum computation, it is believed that an infidelity or error threshold 
ranging between −10 4 and −10 2 is required2–5; however, most experimental implementations thus far have fallen 
short of these thresholds6–11.

One promising approach towards this goal is to use quantum geometric phases which are acquired when-
ever a quantum system evolves cyclically along a path in the Hilbert space of quantum states12–14. In contrast to 
dynamical phases, geometric phases depend only on the geometry of the paths executed and are therefore resil-
ient to certain types of errors15–21, which offers a reliable method to improve the fidelity of the gate operations. In 
the original proposal on geometric quantum computation22–26, if a system has multiple energy levels, a qubit is 
encoded in a doubly degenerate eigenspace. When the system evolves cyclically, it acquires not only a geometric 
phase factor but also undergoes a transition between the eigenstates in the degenerate subspace, which constitutes 
a set of universal unitary transformations for the qubit. In this technique, the system is typically changed adiabati-
cally to guarantee the persistence of the degeneracy. However, the adiabatic condition makes any fast gate impos-
sible, and consequently limits the application of the geometric gate operations in many quantum information 
tasks. A method for extending this process to non-adiabatic cases has been pursued27–31; however, the complex 
quantum control of the multi-level structure remains an experimental challenge.

In recent years, the Landau-Zener-Stückelberg (LZS) interference has become a powerful tool for studying 
two-level systems11,32–35. A new type of LZS interferometry has been proposed to have geometric fashion in a 
recent interesting letter36, and an initial experiment is reported37,38. Inspired by this original proposal39, here we 
joint the LZS interferometry and geometric quantum computation which are well explored separately in many 
quantum systems. We first outline the process in a general context39 and then present an experimental realiza-
tion in a semiconductor quantum dot architecture. The results demonstrate how harnessing a well-controlled 
geometric LZS interferometry builds quantum gates for a two-level system, which combines the advantages of 
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universality and speed. These types of geometric gates can thus be implemented conveniently in a wide variety of 
natural or artificial two-level systems.

Furthermore, in any realistic realization, a quantum system is influenced by its environment or control field 
leading to relaxation and dephasing during time evolution. The decoherence properties of geometric phase have 
been actively investigated in theory15,40–47. Therefore, there raises an interesting question about how an interplay 
of a geometric phase and a LZS dynamics manifests in the decoherence process. The present model can serve as a 
valuable tool to address this problem.

Results
Universal gates based on geometric phase for a two-level system.  The principal idea is to generate 
a non-adiabatic, cyclic state evolution in a two-level system that results in a universal operation on the space 
spanned by the computational basis states, 0  and 1  (Fig. 1)39. Let us write a state at t τ( ≤ ≤ )t0  as Ψ ( )t . 
We  c o n s i d e r  a  p a i r  o f  o r t h o g o n a l  s t a t e s  Ψ ( ) = +θ θ

+ 0 cos 0 sin 1
2 2

 a n d 
Ψ ( ) = − + ,θ θ
− 0 sin 0 cos 1

2 2
 which act as auxiliary states and evolve cyclically after the gate operation. 

Here θ is the spherical coordinate of the state vector on the Bloch sphere. During the cyclic evolution, a phase ϕ 
accumulates13, and the evolution operator can be expressed as follows: Ψ τ ϕ Ψ( ) = (± ) ( )± ±iexp 0  (see 
Supplementary Information for the definition of the phase factor during a cyclic evolution). Generally, this phase 
consists of both dynamical ϕd and geometric ϕ g  components. We note that in many schemes dynamical phase can 
also be acquired simultaneously in the cyclic evolution15. Specific operations or complex designs such as spin-
echo technique can be used to remove the dynamical phase15,39, and the total phase reduces to pure geometric 
fashion. Here we focus on an interplay of dynamical phase and geometric phase.

For an arbitrary input state Ψ Ψ Ψ( ) = ( ) + ( )+ + − −a a0 0 0in , the final state is determined to be 
Ψ τ Ψ( ) = ( )τ( , )U 0out 0 in , and the matrix representation of the final operator that acts on the basis states 0  

and 1  can be expressed as follows39:
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We can achieve a universal set of single qubit gates by selecting two non-commutable operations: θ ϕ( , )U 1 1  and 
θ ϕ( , )U 2 2 .

Electron qubit in a double quantum dot.  We describe an experiment conducted on an individual 
two-level system in a semiconductor electronic circuit (Fig. 2a, see Methods section for the details of devices and 
experimental techniques)48,49. An excess valence electron in the left and right quantum dots defines the charge 
occupation states 0  and 1 . The charge qubit in a double quantum dot is typically regarded as a two-level sys-
tem in the basis of 0  and 1 . The Hamiltonian can be expressed as follows48,50,51,52:

ε ε( ) = ( ) + ( ) + ∆( + ), ( )H t t t0 0 1 1 0 1 1 0 20 1

where ε0 and ε1 correspond to the discrete energy level in each dot; and Δ  is the tunneling amplitude between the 
neighboring dots. In practice, the control pulse can be applied to vary the electrode voltages of the dots (for exam-
ple, the left dot in our experiment), which leads to a change in the energy levels. The current approach is based  
on the cyclic evolution of the two orthogonal states Ψ ( )+ t  and Ψ ( )− t , which are the instantaneous  
eigenstates of the system with energy eigenvalues ε ε ε ε( ) = ± ( ) + − ( ) − + ∆+E t t t{ [ ] 4 }1

2 0 1 0 1
2 2  and 

ε ε ε ε( ) = ( ) + + ( ) − + ∆−E t t t{ [ ] 4 }1
2 0 1 0 1

2 2 , respectively. For our experiments, the anti-crossing gap 2Δ  is 

Figure 1.  Quantum circuit for creation of cyclic evolution with a pair of orthogonal states Ψ ( )+ t  and 
)Ψ (− t , which is also equivalent to encoding the universal gate based on geometric phase in the 

computational basis states 0  and 1 .
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fixed to 37.6 μ eV and the reference level ε1 is set to zero. In this system, known as charge qubit, the two-level sys-
tem is affected by its electromagnetic environment. We have experimentally determined an energy relaxation 
time of ≈T 101  ns and a phase coherence time of ≈T 32  ns48.

Realization of universal gates using geometric LZSM interferometry.  Thus far, we have proposed 
a general method to achieve non-adiabatic universal quantum gates based on geometric phase accumulated by 
a two-level system. It is important to further consider implementing this technique with actual physical setups. 
This implementation can be achieved by driving the two-level system using a geometric LZS interferometry, with 
control parameters satisfying the condition of destructive interference.

The schematic diagram in Fig. 2b illustrates the energies of the instantaneous eigenstates of the qubit can be 
continuously tuned by the applied pulse ε ( )t0 . The envelopes ε ( )t0  are Gaussian pulses with start point ε ( )t0 , 
amplitude A and total pulse length of τ . As indicated in Fig. 2b, the energy levels have a minimum distance of 
anti-crossing, and this minimum distance is realized at times t1 and t2. In the first stage, the control pulse takes the 
system from the initial state Ψ ( )+ 0  and passes through the anti-crossing point, at which a Landau-Zener tran-
sition occurs. The initial state is split into two occupied paths, one through Ψ ( )+ t  and the other through 
Ψ ( )− t , which is analogous to an optical beam splitter33,35. In the second stage, the control pulse takes the system 

Figure 2.  (a) Experimental setup for electron charge qubit in a double quantum dot. Scanning electron 
micrograph of the device that we used containing a double quantum dot and a nearby quantum point contact 
(QPC) sensor, with the locations of the states 0  and 1  indicated by circles. The electric control pulse profile 
is sketched in the down part of the electrode. (b) Top: Schematic illustration of the control pulse form. The 
driving pulse ε ( )t0  is implemented to vary the gate voltage of the dot and therefore the energy levels of the qubit. 
Down: The time evolution of the instantaneous energy levels. Driving the qubit from the initial state Ψ ( )+ 0  
through the avoided crossing induces Landau-Zener transitions between the two paths. The paths recombine 
and interfere when the qubit is brought back through the avoided crossing. For destructive interference,  
the system returns back to the initial state, i.e., a cyclic evolution for the state Ψ τ ϕ Ψ( ) = ( ) ( )+ +iexp 0 .  
(c) Cyclic evolution represented on a Bloch sphere. The state space is the projected Hilbert space spanned by  
the basis states 0  and 1 . The state vector fulfils the destructive interference condition and evolves cyclically 
under two Landau-Zener processes. The geometric phase ϕ g  is determined by half of the solid angle swept by 
the evolution loop.
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back to the anti-crossing point, and the two paths can coherently interfere. Putting things together, the LZS inter-
ferometry can be treated as a successive unitary transformation between the initial state and the final state as 
follows32:

Ψ τ Ψ( ) = ( ) , ( )τ( , ) ( , ) ( , ) +U U U U U 0 3t
T

t t tLZ LZ 02 2 1 1

where U is the evolution matrix for each segment and T  denotes a transposition of the matrix (the explicit expres-
sions are provided in the Supplementary Information).

Typically, not every closed loop in the parameter space can result in a cyclic evolution in the Hilbert space of 
the LZS interferometry. The experiment is equivalent to an optical interferometer, where we have the interference 
of paths in phase space rather than in coordinate space. The interference phase33,35

 ∫ϕ ϕ∆ = ( ) − ( ) + ,
( )− +E t E t dt1 [ ] 2
4t

t
s

1

2

depends on the magnitude of the qubit energy detuning excursion for times < <t t t1 2 (shaded region in Fig. 2b), 
ϕs is the Stokes phase. The destructive interference corresponds to integer values of ϕ π∆ /2 33,35. The destructive 
interference between the two transition paths, one through Ψ ( )+ t  and the other through Ψ ( )− t  in the inter-
mediate state, completely suppresses the probability to reach Ψ ( )− t  after the second crossing. Therefore the 
system undergoes an evolution of returning to the initial state, Ψ τ ϕ Ψ( ) = ( ) ( )+ +iexp 0 , and this cyclic evo-
lution loop corresponds to the operation τ( , )U 0  or θ ϕ( , )U  in the basis states 0  and 1 .

Different gates θ ϕ( , )U  are achieved by adjusting the values of control parameters ε ( )t0 , A and τ to satisfy the 
condition of destructive interference. The corresponding rotation angles of the gate operations are given by
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; and an interpretation of the cyclic dynamics of the sys-
tem is visualized in Fig. 2c, in which the value of the geometric phase ϕ g  corresponds to half of the solid angle 
swept by the state vector on the Bloch sphere13,39,53 (see Supplementary Information for details on calculation of 
the dynamical and geometric phase). For examples, we evolve the pulse profiles ε ( )t0  along three different loops, 
with the parameters ε τ( ( ), , )t A0  chosen respectively as (− 45.2 μ eV, 70.9 μ eV, 257 ps), (− 18.7 μ eV, 27.2 μ eV, 347 
ps), and (− 10.8 μ eV, 15.4 μ eV, 371 ps). The three gates results from these cyclic evolutions are denoted by 
( )θ ϕ= , = −π πU

8
3
2

, ( )θ ϕ= , = −π πU
4

3
2

, and ( )θ ϕ= , = −π πU
3

3
2

. The performance of the gates for three 
typical transformations is characterized by measured state tomography in Fig. 3.

Dephasing during the geometric LZS process.  The experimentally obtained fidelity F of the gate pro-
cess θ ϕ( , )U  is provided in Fig. 4 as a function of total phase ϕ, with θ = 0. The fidelity is defined as the overlap 
between the physical and ideal density matrices after the gate operations (see Supplementary Information for 
theoretical calculations of the fidelity). One can also capture the essence of the observations through the intuitive 
picture presented in the following. Generally, fluctuations from control field cause errors in the acquired phase 
ϕ ϕ ϕ= +d g  of the qubit. On one hand, if the fluctuations are sufficiently fast, the error in the geometric phase 

Figure 3.  Characterization of the universal gates. Manhattan-style plots of the measured density matrices  
of the qubit states after the gate operations θ ϕ( , )U : (a) ( )θ ϕ= , = −π πU

8
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2

, (b) ( )θ ϕ= , = −π πU
4

3
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,  
(c) ( )θ ϕ= , = −π πU

3
3
2

. The wire frames denote the theoretical values of ideal gates.
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ϕ g  is minimum since the solid angle of the loop is preserved on average15,18,20,42,44,53. However, in our experiment, 
there is low-frequency fluctuations in the control field ε δε( ) +t0 0 induced by charge noise coupling to the 
qubit48,50. Thus, the geometric phase ϕ g  is sensitive to slow fluctuations, which cause the solid angle subtended by 
the path at the origin to change from one measurement to the next18,44,53. On the other hand, the dynamical phase 
ϕd is dominated by Δ φ giving rise to the interference which is proportional to the duration of the accumulation 
process multiplied by the amplitude of the energy between two Landau-Zener tunneling points. The presence of 
the fluctuation field δε0 can change the position of the avoided level crossing and therefore cause fluctuations in 
ϕd54. In the future, the influence of the geometric and LZS component on the quantum gates can be utilized and 
distinguished in a systematic way by using spin-echo technique to remove the dynamical phase15,39.

Discussion
In summary, we realize a geometric LZS interferometry on a semiconducting quantum dot qubit using 
well-designed electric control pulse. We can achieve non-adiabatic gate operations that correspond to a rep-
resentation of the complete SU(2) group, which is a central ingredient in geometric quantum computation. We 
can also investigate the fidelity of the resulting gate operations in the presence of realistic decoherence. Moreover, 
universal gates with inherent fault-tolerant geometric features demonstrated for semiconducting quantum 
devices can be implemented in general physical systems.

Methods
The experiment was performed on a GaAs/AlGaAs heterostructure using a molecular-beam epitaxy, with a 95 nm 
deep two-dimensional electron gas (2DEG) with an electron density of 2.0 ×  1011 cm−2 and a mobility of 6.0 ×  104 
cm−2V−1s−1 at 4 K. The metallic (Ti-Au) surface gates were fabricated using electron-beam lithography. Figure 2a 
provides the scanning electron micrograph of the surface gates which shape the double quantum dot and a nearby 
quantum point contact (QPC) charge-sensing channel.

The device was cooled inside an Oxford Triton dilution refrigerator to a base temperature of 30 mK. To reduce 
charge noise, the sample was cooled while a positive voltage bias was applied to all the gates. The plunge gate was 
connected to the bias-tees, which enabled the application of DC as well as high frequency control voltage to this 
gate.

As a result of the capacitive coupling between the dot and the sensing quantum point contact (QPC), the 
record current through the QPC is increased or decreased when an electron moves from the left dot to the right 
or vice versa. Thus, the conductance change through the QPC with and without the manipulation pulse is used 
to determine the average charge occupation and converted to the reported probabilities48,49. Our experiments are 
performed for a number of different runs. Since they have shown identical results and physics, we present, for 
consistency, only the data collected from one run.
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