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Temporal assortment of cooperators in the spatial
prisoner’s dilemma

Tim Johnson® 2™ & Oleg Smirnov® 3

We study a spatial, one-shot prisoner’s dilemma (PD) model in which selection operates on
both an organism’s behavioral strategy (cooperate or defect) and its decision of when to
implement that strategy, which we depict as an organism'’s choice of one point in time, out of
a set of discrete time slots, at which to carry out its PD strategy. Results indicate selection for
cooperators across various time slots and parameter settings, including parameter settings in
which cooperation would not evolve in an exclusively spatial model—as in work investigating
exogenously imposed temporal networks. Moreover, in the presence of time slots, coop-
erators’ portion of the population grows even under different combinations of spatial
structure, transition rules, and update dynamics, though rates of cooperator fixation decline
under pairwise comparison and synchronous updating. These findings indicate that, under
certain evolutionary processes, merely existing in time and space promotes the evolution of
cooperation.
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ooperation not only occurs at specific locations, but, also,

it takes place at particular points in time. Indeed, whenever

organisms interact in the flesh, cooperation necessarily
occurs at both a spatial location and temporal moment.

For instance, at night)?, spinner dolphins collectively herd
prey, creating food aggregations that exceed the prey densities
encountered by lone foragers’. After amassing their prey, the
encircling herders enter the accumulation in pairs and take turns
feeding®. Each pair feeds for roughly the same duration, thus
resisting the opportunity to enjoy a disproportionate individual
gain that would diminish others’ benefits®. Also, only participants
in the herding appear to partake in the feeding’, even though,
conceivably, non-herders could lurk nearby and attempt to con-
sume the accumulated prey. This herding behavior amounts to
cooperation in a prisoner’s dilemma: the herders create a benefit,
b, at a cost, ¢, that free riders could consume without paying a
cost. The behavior’s subtleties, however, obscure a seemingly
mundane feature of it—namely, that it occurs at one point in
time (a particular moment at night), as opposed to other points
in time.

The temporal concentration of cooperation also occurs in other
species. Consider humans engaged in illicit market transactions
that occur beyond the scope of institutions that support coop-
erative trade. These traders aim to acquire a benefit, b, by
exchanging a resource that they part with at personal cost, c.
However, they do best when their trade partner delivers b, while
they transfer poor-quality goods or inadequate currency that
reduce or nullify c. To avoid such cheating, illegal barterers
schedule the time of transactions deliberately, or express pre-
ferences for some hours over others?. Cooperation, these activities
imply, succeeds more frequently at certain times.

Albeit possible that proximate environmental factors (e.g.,
illuminance) explain the time of behavior in these examples, the
examples also raise the possibility that the time of behavioral
implementation—by itself—might act as a mechanism that allows
cooperators to separate themselves from defectors. Thus, we ask
—does selection on organisms’ decisions of when to interact
influence the evolution of cooperation?

Here we answer that question via a computer simulation in
which organisms adopt strategies consisting of a tuple: (i) a choice
in PD play (cooperate or defect) and (ii) the time at which to
implement that behavior. Time slots, t, in the model vary from 1
to 10. When ¢ = 1, the model amounts to a spatial model in which
all spatially adjacent organisms interact with each other. For > 1,
organisms at the same spatial location might not interact.
Organisms only interact with spatially adjacent organisms who
are also in their same time slot—that is, who implement their
behavior at the same time. If two agents in the same time slot
both choose to cooperate in the PD, they receive b—c, where b
ranges from 1 to 10 and c is fixed at 1; mutual defection earns
zero, whereas free-riding earns b and exploited cooperators suffer
—c. We run this simulation for 10000 generations, repeating the
simulation for 7 runs at each parameter setting. We, furthermore,
perform our simulation on two separate spatial structures—a
regular lattice and a small-world network. Organisms in the
simulated population are arrayed across the nodes of those
graphs, with the population size, N, set at 100, 225, and 400. In
the small-world network model, we vary k, the average number of
edges per organisms, from 2 to 4. In models involving each spatial
structure, we also vary the transition rule that governs strategy
change; we study the model under both death-birth fitness pro-
portional selection (hereafter, “fitness proportional selection”)
and pairwise comparison®©. Moreover, we examine the effect of
alternative update dynamics by studying the model under asyn-
chronous versus synchronous updating®’-8. Via these simulation
methods, our investigation adds to the literature on the spatial

PD%-13, as well as to recent efforts!%1> to model the role of intra-
generational time in social evolution.

Specifically, we build on the spatial games framework first
proposed in Chapter 8 of Axelrod’s The Evolution of
Cooperation'® and revolutionized by Nowak and May®. Con-
sistent with this paradigm”-1>17, we ignore cognitively complex
strategies that, for instance, identify and cooperate with kin!8-20,
prior cooperators?122, phenotypic doppelgangers?3-2%, or eco-
nomic equals®’~2%. Instead, we study a population of organisms,
positioned on graphs, who adopt zero-intelligence303! strategies
that always cooperate or defect in one-shot PD games.

Nowak and May®~!! revealed that playing those games on a
grid and updating strategies based on neighborhood comparisons
yielded clusters of cooperators that persist in the population
alongside defectors. Subsequent research explored how modeling
subtleties influenced the success of cooperation in this
framework”32 and it extended the framework’s reach into the
study of heterogeneous networks”-33-3%, including the develop-
ment of universal rules to characterize the conditions in which
cooperation evolves in any spatial structure3®. We augment such
models by considering how the addition of a temporal dimension
to spatial PD models influences social evolution. To do so, we
create the possibility for organisms at any node of the spatial
structure to choose one out of a fixed set of time slots to
implement their behavioral strategy; selection then operates on
this choice behavior.

Adding these time slots might appear redundant with existing
models. If one regards space and time as interchangeable (for
instance, interpreting a three-dimensional model as depicting a
two-dimensional space with time as the third dimension), then
models of the spatial prisoner’s dilemma!! would seem already to
have examined the case we consider. Yet such an interpretation
requires a researcher to assume that temporally adjacent organ-
isms interact like spatially adjacent organisms. We do not assume
so. In our model, only agents in the same time slot—not adjacent
time slots—interact. This distinguishes our model from multi-
dimensional, spatial PD models and it formalizes what we believe
is a plausible notion: organisms that stand elbow-to-elbow at the
same time likely interact, whereas those that wake at sunset don’t
interact with those who are fast asleep at that same time, even if
they are physically proximate.

Our model might also be mistaken with spatial PD models
studying movement. Regardless of whether movement occurs
because of stochastic drives3’~3, pre-planned patterns of travel*,
tendencies toward cohesive collective movement*!#2, or the
attributes of an organism’s current®3-40 or prospective
location*’>1, movement constitutes a change in spatial location
that occurs across time. Thus, two moving agents that interact
implicitly do so at the same moment. In such models, however,
the instant of social interaction does not vary. Movement occurs,
interaction transpires, and this game play happens either at one
particular time point or in a repeated fashion such that organisms
interact with others at all available time points. Time of beha-
vioral implementation, therefore, remains homogenous among
organisms in extant models involving movement. Alternatively,
we allow organisms in the population to vary when, within a
generation, they interact. (Time would play a more salient role in
a model of movement in which agents move perpetually within a
generation, bumping occasionally into other organisms and
commencing a PD game. We know of no such model presently,
though we propose it in the discussion.)

By allowing varied times for social interaction, our model also
differs from the compelling conceptualization of temporal
assortment by Aktipis®2, which focuses on the delayed effects of
an organism’s behavior on its fitness. A deeper connection exists,
however, between our model and studies involving strategic
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timing!> and temporal networks'#. Our model resembles research
into strategic timing in that we also examine how cooperation is
influenced by the choice of when, within a generation, organisms
implement social behavior. Yet, unlike research into timing!>,
payoffs in our model do not vary based on their relation to
particular events (such as the provision of resources from a public
good); instead, they vary based upon the strategies adopted by
other organisms active in the same spatial location at the same
point in time. Treating the choice of time at which to implement
PD behavior as a part of an organism’s strategy also differentiates
our work from research into the effect of temporal networks on
cooperation!4, Research on temporal networks!4 depicts the time
of PD activity as exogenous and studies how the addition of
multiple, temporal network layers influences cooperation. Our
study allows for the endogenous development of such networks
by letting selection operate on organisms’ choices of when to
implement their behavioral strategy of cooperation or defection.

Finally, our investigation also dovetails with a recent model by
Wang and colleagues that studies a finite population whose
members are divided into groups to play the public goods game,
but who are subject to individual-level selection across the
population3. The group affiliations in this model function like
the time slots in our model, as they determine with whom
simulated individuals interact; then, selection occurs across the
entire population, as in our investigation, not within groups. Our
model primarily differs from this recent work because of its (i)
inclusion of a spatial dimension, (ii) focus on the one-shot PD,
and (iii) applicability to the study of time in social evolution.
However, the choice of a discrete time point at which to imple-
ment a PD strategy bears important technical similarity to the
choice of joining a group in which to play a public goods game,
thus warranting future consideration of the implications of these
related models.

In our study, we find that adding the opportunity for organ-
isms to implement their behavioral strategy at a discrete time
point leads to the evolution of cooperation under a wide variety of
parameter settings. Furthermore, increasing the number of time
slots within the range examined in our model boosts the like-
lihood of cooperator fixation. When fixation does not occur,
simulation runs with more time slots exhibit larger shares of
cooperators in their terminal generation. Also, across combina-
tions of spatial structures, transition rules, and update dynamics,
we find higher rates of cooperator fixation and growth in the
presence of time slots.

Results
Lattice model. In Fig.1, we present a typical simulation run in
which (a) the population interacts on a lattice, (b) fitness pro-
portional selection governs strategy transitions, (c) updating
occurs asynchronously, and (d) b=2, N=225, and ¢ is set,
respectively, at 1, 5, and 10. When ¢ =1 (Fig.1a, leftmost panel),
defectors dominate the population as all agents pool into the only
time slot (Fig.1b, leftmost panel). When t =5, cooperators come
to dominate the population (Fig. 1a, middle panel) and selection
favors behavioral implementation at multiple time slots (Fig.1b,
middle panel). When we increase the number of time slots to its
maximal value, ¢ = 10, cooperators again grow to fixation (Fig.1a,
rightmost panel) and the population evolves to implement that
strategy at 5 different time slots (Fig.1b, rightmost panel).
Figure 2 displays the growth and decline of strategies across
generations for the example runs displayed in Fig. 1. With t=1,
the proportion of defectors in the population immediately
overtakes that of cooperators (Fig. 2, leftmost panels). However,
with t =5, cooperators resist the growth of defectors as selection
favors cooperators at time slots in which they are populous

(Fig. 2, center panels). Close inspection of the lower-middle panel
of Fig. 2 indicates selection for defectors in a time slot when the
respective number of cooperators and defectors in that time slot
are modest; however, defectors appear to extinguish themselves as
they grow more prolific, driving selection for cooperators in time
slots where those prosocial agents already thrive. Temporal
assortment of cooperators, in sum, drives the population toward
higher levels of cooperation.

As in these example runs, results across simulation runs that
use the same transition rule and update dynamic show selection
for cooperators in the presence of time slots. When t=1 (all
agents interact at the same time), cooperators reach fixation in
31.4% of all runs, yet the addition of one additional time slot
(t=2) results in a slight majority of runs (52.9%) reaching
fixation of cooperators. The percent of runs resulting in the
fixation of cooperators grows with the addition of each time slot,
reaching 80% of all runs at t=5 and 86.2% of runs at t=10.
Indeed, cooperation reaches fixation in 77.6% of all runs when
t>2. However, the increasing likelihood of cooperator fixation
with growth in the number of time slots clearly has theoretical
limits as astutely pointed out by an anonymous reviewer of this
article. Were t — N or exceed it, the population would become
sparsely distributed across time slots, leading inevitably to an
asocial state in which cooperation would fail. In the discussion
section, we propose analytic approaches to gain insight into such
possibilities, though we preclude such phenomena by our choice
of parameters in the current model.

As evident in Fig. 3, the frequency of the population reaching
fixation of cooperators also grows with the value of b. Only in one
anomalous case do we find cooperation growing to fixation when
b=1. When b=>2, cooperation reaches fixation in 81.1% of all
runs. At first glance, Fig. 3 seems to suggest that the findings
violate Ohtsuki et al.’s rule for the evolution of cooperation on
graphs, which stipulates that selection favors cooperation when
the ratio of benefits to costs exceeds k, the average number of
neighboring organisms3¢. In 54.8% of all runs, cooperators grow
to fixation when b/c # k (i.e. when b<4, given c=1 and k=4)
and multiple time slots are present (¢ = 2). This apparent violation
of the canonical rule b/c >k, however, is superficial; as another
anonymous reviewer adroitly recognized, organisms experience
an effective k, which we label k*, denoting the average neighbors
at a given temporal-spatial location. Were organisms uniformly
distributed across spatial locations and time slots, k* would equal
k/t. However, random seeding of time slots and the evolution of
game play in those slots distributes the population unevenly; thus,
k* = k/t constitutes the minimum value that parameter can take.
This equation indicates that the addition of time slots has the
effect of decreasing the value of k—a phenomenon observed in
other recent research!®>*. When ¢ > 1, k* is less than k and one
would expect cooperation to evolve when b/c > k*, thus explain-
ing why apparent violations of the rule b/c > k appear in the data.

The panels of Fig.3 suggest that the value of N also influences
the success of cooperation. When N = 225, 79.0% of runs result in
the fixation of cooperators. When N =400, 55.9% of runs do so,
whereas 84.1% result in the fixation of cooperators when N = 100.
Does this pattern indicate the success of defectors or the slower
growth of cooperators? First, when N =225, 85.7% of all runs
result in more than three-quarters of the population adopting the
cooperator strategy at G =10000. When N =400, 84.4% of all
runs end with more than three-quarters of the population
adopting the cooperator strategy at G =10000. Second, on
average, when N = 100, cooperators reach fixation at generation,
G=1709; when N=225, the average generation at which
cooperators reach fixation is 3386; when N =400, this average
generation is 3502. Together, these pieces of evidence imply that
cooperation still grows in larger populations, but it reaches
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(a)  t=1, b=2, N=225 t=5, b=2, N=225

Defector Cooperator

(b) =1, b=2, N=225 t=5, b=2, N=225 t=10, b=2, N=225

Time Slots
1 2 3 4 5 = 6 7 = 8 9 10

Fig. 1 Evolution of behavioral strategies and time of implementation in an example run. The figure displays the final distribution of behavioral strategies
(a) and time slots in which behavior is implemented (b) in an example run of the simulation. The lattices in each column result from data generated in the
same simulation run, with parameters set at those listed above each grid. Selection favors defectors when t =1 (a, leftmost panel) with all agents pooled
into the same time slot at G =10000 (b, leftmost panel). When t = 5, cooperators come to dominate the population (a, middle panel) and selection leads
to behavioral implementation at 4 time slots (b, middle panel). When t = 10: fixation of cooperators occurs (a, rightmost panel) and the population evolves
to implement that strategy at 5 different time slots (b, rightmost panel).

(a) t=1, b=2, N=225 (b) t=5, b=2, N=225 (<) t=10, b=2, N=225

Proportion of Type
Proportion of Type
Proportion of Type

10000 T 10000 T

5000 000 5000
Generation Generation Generation

Time Slot
Time Slot
Time Slot

5000 5000
Generation Generation

Gon%
eneration Cooperators Defectors

Fig. 2 Selection for cooperation in the presence of multiple time slots in an example run of the simulation. Panels display data from the same example
simulation runs displayed in Fig. 1, with parameter settings appearing above the uppermost panel in each column. The upper row of panels displays the
respective proportions of cooperators (light blue) and defectors (orange) in the population at each of the 10000 generations of the simulation run. The
lower row of panels shows the number of cooperators and defectors in each time slot across generations, with time slots labeled on the left vertical axis
and the right vertical axis measuring the number of cooperators and defectors at each time slot. Note that the vertical distance above O on the vertical axis
measures the number of cooperators and the vertical distance below O (i.e., absolute value) measures the number of defectors. When t =5 (middle
panels) or t =10 (right panels), selection favors cooperation and prosocial behavior evolves at multiple time slots.

fixation at a slower rate, thus leading to a greater frequency of runs  fitness proportional selection and asynchronous updating yields
in which cooperation cannot spread through the entire population  qualitatively similar results (see Fig. 4). Adding time slots to the
by G = 10000, even though a plethora of agents adopt it. model and allowing selection to operate on organisms’ choices of

which time slot to implement behavior increases the frequency of

simulation runs resulting in the fixation of cooperators. When
Small-world network model. Analysis of selection on behavioral t=1, 37.2% of all runs end with the fixation of cooperators; that
types and time of implementation in a small-world network with  percent increases to 56.7% when t=2, grows to 76.9% when
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Fig. 3 Cooperator fixation becomes more frequent across runs as benefit (b) and the number of time slots (t) increase in the lattice model. We

replicate our simulation for 7 runs at each parameter setting and display how the proportion of runs reaching fixation of cooperators varies by the values of
b (horizontal axis) and t (vertical axis), displaying results for each value of N separately (as listed above each panel). Cooperation effectively never reaches
fixation when b =1, signifying the dearth of gains cooperators obtain even when interacting with each other in such situations. With b>2, we observe
populations in which cooperators grow to fixation; the prevalence of light blue tiles in the northeast corner of the grids indicates the increased success of
cooperation when both b and t take large values within the model's parameter range. Notably, we observe less instances of cooperators reaching fixation as

population size grows; as discussed in the text, this pattern relates to the speed of cooperators’ growth as opposed to their ultimate success.
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Fig. 4 Cooperator fixation becomes more frequent across runs as benefit (b) and the number of time slots (t) increase in the small-world network
model. The panels display the frequency of cooperator fixation in simulation runs in which agents reside in a small-world network. Regardless of rewiring

probability, Pr, we observe cooperator fixation more frequently as b and t take higher values.

t =15, and peaks at 83.9% when t = 10. Likewise, as the value of b
increases, the frequency of runs in which cooperators reach
fixation increases; simulation runs ending with a population
replete with cooperators occur extremely rarely when b= 1, but
45.5% of runs end with cooperator fixation when b =2 and 91.2%
of runs do when b = 10. As evident in Fig. 4, we again see that the
population converges more slowly with larger values of N.
Additionally, varying the probability of rewiring, Pr, does little to
influence the simulation’s results—as a comparison of the left-
and right-half of Fig. 4 indicates. When Pr. = 0.05, 71.7%% of all
runs result in the fixation of cooperators; a comparable 72.6% of
all runs result in the fixation of cooperators when Pr=0.15.
Accordingly, when we explore this model under alternative

transition rules and update processes (see below), we set the
rewiring probability solely to Pr=0.05 in order to limit simula-
tion runtime to a manageable duration. Similarly, we find little
evidence that rates of cooperator fixation vary across values of k:
for k=2, k= 3, and k = 4, we observe, respectively, 72.1%, 72.2%,
and 72.0% of simulation runs reaching cooperator fixation.

Sensitivity analysis. The frequency of cooperator fixation, how-
ever, does vary in sensitivity analyses aimed at examining the
consequences of altering the transition rule and update process of
our simulation®®%5>, Tn those sensitivity analyses, we replicated
our simulation under combinations of two different transition
rules (fitness proportional selection and pairwise comparison)
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Table 1 Design of sensitivity analysis to study the effect of varying transition rules and update dynamics for the lattice model.

Update Dynamics

Asynchronous Synchronous
Transition rule Death-birth fitness proportional selection (a) (b)
Pairwise comparison © (d)

indicating the methods that underlie the results reported in those portions of this article.

Table 1 presents an index denoting the combinations of transition rules and update dynamics studied in our sensitivity analysis of the lattice model. We use this index in Figs. 5 and 6 as a means of

network model.

Table 2 Design of sensitivity analysis to study the effect of varying transition rules and update dynamics for the small-world

Update Dynamics

Asynchronous Synchronous
Transition rule Death-birth fitness proportional selection (e) )
Pairwise comparison (g) h)

Table 2 presents an index denoting the combinations of transition rules and update dynamics studied in our sensitivity analysis of the small-world network model. We use this index in Figs. 5 and 6 as a
means of indicating the methods that underlie the results reported in those portions of this article.

Lattice Model

Small-World Network Model

@ . . (b)
Fitness Proportional Selection
Asynchronous Updating

Fitness Proportional Selection

2100 2100 4 Synchronous Updating

Frequency
Frequency

. .
0

05 05
Proportion of Cooperators Proportion of Cooperators
(c) . (d)

Pairwise Comparison
pdating

Pairwise Comparison

Asynchronous 2100 Synchronous Updating

Frequency
Frequency

|
.

°

05 05
Proportion of Cooperators Proportion of Cooperators

(e)
Fitness Proportional Selection

Fitness Proportional Selection
6300 Asynchronous Updating 6300 Synchronous Updating

Frequency
Frequency

Jl

r T 1 r T 1
1 0

05 05
Proportion of Cooperators Proportion of Cooperators

@ ) . .
Pairwise Comparison
Synchronous Updating

Pairwise Comparison

6300 Asynchronous Updating 6300 o

Frequency
Frequency

|

r T 1 r T 1
1 0 1

0.5 0.5
Proportion of Cooperators Proportion of Cooperators

Fig. 5 Final proportion of cooperators in the population under various combinations of transition rules and update dynamics. Panels present the count
of simulation runs with a given proportion of cooperators at G =10000 under different transition rules and update dynamics. a-d Present data from models
in which agents interacted on a lattice, while e-h present data from models in which agents interacted in a small-world network. The index presented in
Table 1, as well as the main heading of each panel, distinguishes the combination of transition rule and update dynamics used in the simulation that

generated data for a given panel. In each panel, we sort data into 5-unit bins of the horizontal axis, beginning at the minimal possible value (zero) and
proceeding to the maximal possible value (unity); the gray bars then display the count of simulation runs (i.e., frequency) that ended with a proportion of

cooperators resting within the range of a given bin.

and two separate update dynamics (synchronous and asynchro-
nous updating), leading to a 2 x 2 research design for each spatial
structure (see Tables 1 and 2). We treat the transition rule and
update dynamics deployed in the models reported above (viz.
fitness proportional selection and asynchronous updating) as a
baseline condition.

In the lattice model, we found that about 73% of all runs in our
baseline condition ended with the fixation of cooperators,
approximately 8.1% of all runs ended with fixation of defectors,
and 18.9% of all runs failed to converge (Fig. 5a). Under fitness
proportional selection and synchronous updating (Fig. 5b), the

percent of runs in which cooperators reached fixation was fewer
(61.6%), though it still exceeded the percent of runs resulting in
defector fixation (32.2%), and only 6.1% of runs failed to
converge. Failed convergence occurred more frequently when
pairwise selection served as the model’s transition rule; 63.8% of
runs failed to converge when that transition rule was combined
with asynchronous updating (Fig. 5¢) and 14.3% of runs failed to
converge when pairwise selection was combined with synchro-
nous updating (Fig. 5d). When convergence succeeded, fixation of
cooperators occurred more frequently than defector fixation in
models with pairwise comparison. When updating was
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Fig. 6 Varying the number of time slots influences the evolution of cooperation under combinations of transition rules and update dynamics. Panels
present box plots that display information about the distribution of cooperators’ final population share across simulation runs, when data are separated by
the number of time slots in those runs. a-d Present data from models in which agents interacted on a lattice, while e-h present data from models in which
agents interacted in a small-world network. The index presented in Table 1, as well as the main heading of each panel, distinguishes the combination of
transition rule and update dynamics used in simulations generating the data for a given panel. Heavy black lines denote the median value of the proportion
of cooperators at G=10000. The upper edge of a gray rectangle denotes the 75th percentile of the proportion of cooperators at G =10000 and the lower
edge of a gray rectangle denotes the 25th percentile, such that the full gray rectangle denotes the inter-quartile range (IQR). Points represent values that
reside either a distance more than 1.5 times the length of the IQR above the 75th percentile or a distance more than 1.5 times the absolute length of the IQR
below the 25th percentile. The short horizontal lines perpendicular to vertical dashed lines denote either the maximal value that rests less than 1.5 times
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asynchronous under pairwise selection, 20.5% of runs resulted in
cooperator fixation versus 15.7% of runs resulting in defector
fixation. When updating was synchronous under pairwise
selection, 59.8% of runs resulted in cooperator fixation versus
roughly 26% of runs resulting in defector fixation. Across all
combinations of transition rules and update dynamics, the
proportion of cooperators at G= 10000 in the lattice model
more frequently took higher values when the number of time
slots was high (e.g., t>5). As indicated in Fig. 6, under fitness
proportional selection (Fig. 6a, b), the population rarely fails to
reach cooperator fixation when t> 4, regardless of the update
dynamics. Under pairwise comparison, the distribution of
cooperators’ final proportion of the population shifts to higher
values as the number of time slots increases (Fig. 6¢, d), but only
under synchronous updating does it transition into a frequent
state of cooperator fixation when the number of time slots is high
(Fig. 6d). These results suggest that transition rules and update
dynamics affect the degree of influence that time slots have on
cooperation’s growth. However, they also indicate that those
modeling features do not drive cooperators’ growth entirely.
Instead, time slots continue to spur the growth of cooperators in
the population, regardless of the transition rules and update
dynamics employed in the simulation.

In the small-world network model, we observed a comparable
pattern of findings in our sensitivity analysis. We set the
probability of rewiring in our sensitivity analysis of the small-
world network model to 0.05 in all simulation runs because that
parameter had little effect in our initial baseline runs while
leaving it fixed facilitated manageable runtimes. In these new
simulation runs, we found that 71.7% of all runs in our baseline
condition involving fitness proportional selection and asynchro-
nous updating ended with the fixation of cooperators, while only
3.1% of all runs ended with fixation of defectors; a sizable percent
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of runs (25.2%) failed to converge (Fig. 5e). Under fitness
proportional selection and synchronous updating (Fig.5f), the
percent of runs in which cooperators reached fixation was greater
(75.8%) than in our baseline condition, but so too was the percent
of runs in which defector fixation occurred (21.4%); only 2.9% of
runs failed to converge. Failure to achieve convergence happened
regularly under pairwise selection. Roughly 81% of runs failed to
converge to fixation under pairwise selection and asynchronous
updating (Fig. 5g); in the instances in which convergence
occurred in those runs, the population gravitated toward a state
of cooperator fixation a slightly smaller percent of runs than it
resulted in defector fixation (~9% versus 10% of runs). About
60.6% of runs failed to reach fixation under pairwise selection and
synchronous updating (Fig. 5h), though the percent of runs
resulting in the fixation of cooperators was over double the
percent of runs resulting in the fixation of defectors (approxi-
mately, 26.7% versus 12.6% of runs). In the small-world network
model, we also observed higher proportions of cooperators at
G = 10000 regardless of the transition rule and update dynamics
in runs that included a greater number of timeslots (Fig. 6e-h).
Under fitness proportional selection (Fig. 6e, f), the population
reached fixation of cooperators more often than not in the
presence of multiple timeslots whether updating was asynchro-
nous or synchronous. Under pairwise comparison, the final
proportion of cooperators at G=10000 more frequently
exceeded the final proportion of defectors whenever ¢>3. Also,
the median proportion of cooperators at G = 10000 appeared to
grow, albeit at a decreasing rate, with the number of time slots
(Fig. 6g, h). Panels (g) and (h) furthermore indicate that the final
proportion of cooperators in the population exceeded the final
proportion of defectors more often than not in the instances in
which convergence failed in the small-world network modeled.
These findings in the small-world network model also showed
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that transition rules and update dynamics affect the degree to
which time slots influence the growth of cooperation, but those
model features do not impede the efficacy of time slots entirely.
Selection for cooperation occurs across all of our models and it
does so especially when organisms can implement behavior in a
relatively large number of time slots.

Discussion

Our simulations indicate that selection for time of behavioral
implementation can spur the evolution of cooperation in the spatial
PD. In our baseline model, when agents can interact at more than
one point in time (> 1), we find that cooperators grow to fixation
frequently across a wide range of parameter settings, save for when
b=1. Moreover, when we alter the transition rule and update
dynamics of our simulation, we still find selection for cooperation
and this cooperation grows more prevalent when a larger number
of time slots are available for social interaction. Together, these
findings yield insight into a new way that time!%!> can influence
social evolution, while also reinforcing research indicating that
discrete groups®> and network temporality!4, respectively, expand
the conditions in which cooperation can evolve.

Our study also suggests new ways to extend existing models.
For instance, models of movement could include intra-
generational encounters that occur at various times. That is,
when organisms move independent of each other, their move-
ment could cause them to collide at different points in time, thus
blending temporal and spatial assortment in substantively
meaningful ways worthy of investigation.

Also, the framework used in this paper could be extended to
consider more nuanced temporal strategies: instead of specifying
strategies as a tuple consisting of an agent’s choice in the PD and
its selection of the single time at which to implement its PD
behavior, strategies could consist of a PD choice and a list of time
slots at which to play the PD. For instance, periodic behavior
(implementing behavior in every other time slot, for example),
punch-in-punch-out (implementing behavior in multiple adjacent
time slots, but not in others), and random schedules (selecting a
number of time slots randomly) could be explored. These variants,
moreover, could be studied while considering behavioral types
that cooperate or defect variously at different time slots. In sum,
the present model can be extended in many ways.

Analysis also might focus on deriving theoretical conditions in
which time slots promote cooperation, as in research that exo-
genously adds temporality to spatial networks'4. The present
study used computer simulation to assess the viability of selection
on time as a mechanism for the evolution of cooperation; it did
not offer a rigorous theoretical analysis of the properties that
allow time of behavioral implementation to promote coopera-
tion’s growth. We hope future research provides that analysis.

Despite these promising avenues for inquiry, researchers
should recognize the limits of our study and future ways to
scrutinize those limits. For one, some might contend that we
simply study a type of green beard mechanism?>2¢ here. At the
individual level, we would dispute that claim because the agents
in our model cannot discriminate between social partners.
However, at the level of the population, we observe a dynamic by
which the assortment process can extinguish the presence of
defectors in a given time and place, thus giving the appearance of
partner discrimination. Also, we make the strong claim that
temporally adjacent organisms do not interact like spatially
adjacent organisms do. This assumption should be relaxed in
future research such that being spatially adjacent and in a
neighboring time slot might “wake up” an organism that is not
implementing behavior in the same time slot.

Considering ways to enhance the verisimilitude of our model
will improve insights into how cooperation can emerge from
organisms’ decisions about the time at which they implement
social behavior. For now, we have shown in a simple model that
time, a fundamental feature of existence, can enable an assort-
ment process that allows cooperation to evolve.

Methods

The study’s models simulated the evolution of a population of N organisms
arranged spatially on each of two structures: a regular lattice and a small-world
network. In the regular lattice, individuals shared edges/connections with k =4
other organisms. In the small-world network, the parameter k determined the
average number of connections. At each location, organisms chose a time slot, ¢,
when they would interact in the PD and this influenced the partners with whom
organisms interacted—only organisms sharing an edge/link and choosing the same
time slot would interact with each other.

Interactions took the form of play in a one-shot prisoner’s dilemma (PD) game.
In the PD, organisms could cooperate or defect. Choosing to defect when a partner
chose to cooperate resulted in the payoff b (a.k.a. free-riding). Joint cooperation
earned b-c, whereas joint defection earned 0 and suffering free-riding resulted in -c.
Organisms adopted strategies that formed a tuple consisting of a behavior in the
PD (always cooperate or always defect) and a choice of the time slot at which to
implement the PD decision.

Payoffs from the implementation of these strategies influenced the rate at which
strategies were adopted according to a combination of transition rules and update
dynamics*8. The transition rules consisted of death-birth fitness proportional
selection (hereafter, “fitness proportional selection”) and pairwise comparison.
Under fitness proportional selection, payoffs were tallied after organisms played the
PD; then, one or more organisms were selected at random to die at the end of the
current generation, with the organism(s) replacing the dead organism(s) adopting
one of the model’s strategies with a probability proportional to each strategy’s
payoffs. When using asynchronous updating, only one organism died and was
replaced; when using synchronous updating, all agents die and are replaced. Under
asynchronous pairwise comparison, we randomly identify an organism in the
population (the “focal” organism) and, then, randomly select a neighbor of that
organism; if the neighbor has higher payoffs, then the focal organism adopts the
neighbor’s attributes. Under synchronous pairwise comparison, we repeat the
aforementioned pairwise comparison process for all members of the population—
i.e. making all comparisons before replacement—and, then, replace the population
in one batch process.

We studied the population subject to one combination of parameter settings,
transition rules, and update dynamics for 10000 generations, which we label one
“run” of the simulation. For every combination of parameters in the model, we ran
the model for 7 runs.

The study exogenously varied model parameters to understand whether and
how strategy evolution changed according to the values those parameters took.
We drew N from N = {100, 225, 400}, ¢t from T = {1, 2, ..., 10}, and b from
B={1, 2, ..., 10} (note that c =1 in all simulations). The parameter k was fixed
at 4 in the regular lattice, but in the small-world network model, we drew k from
K = {2, 3, 4}.The small-world network model was studied under two re-wiring
probabilities, 0.05 and 0.15, in our baseline condition of fitness proportional
selection and asynchronous updating. Then, to achieve reasonable runtimes, we
set the parameter equal to 0.05 for all other combinations of update dynamic
and transition rules due to the virtually null effect of the parameter on results
in the baseline model. The simulation explored the full parameter space and did
s0, as mentioned above, in 7 replications (i.e. runs) for each parameter
combination.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Code availability

Simulations were written in Python 3.7.6. Data generated in the simulations were
analyzed in R 3.5.3. All computer code is available online via a project page hosted by the
Open Science Framework (https://doi.org/10.17605/OSF.I0/3]SXV)%C.

Data availability

Data sets used in the study are publicly available online via a project page hosted by the
Open Science Framework (https://doi.org/10.17605/OSF.IO/3]SXV)*¢. Computer code
provided at that same project page can be used to reproduce all figures in this paper using
those data.
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