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Abstract

Both Mycobacterium tuberculosis infection and helminths may affect innate immune mecha-

nisms such as differential effects on monocytes towards the non-classical and intermediate

subsets that favor bacterial persistence. Our aim, was to investigate helminth species spe-

cific effects on the frequency and functional activity of monocyte subsets in patients with

active tuberculosis and healthy subjects. HIV-negative patients with active pulmonary tuber-

culosis (PTB) and community controls (CCs) in Gondar, Ethiopia were screened for hel-

minth infection by stool microscopy. Flow cytometric analysis of peripheral blood

mononuclear cells (PBMCs) and ex vivo stimulation with purified protein derivative (PPD)

and helminth antigens were used to characterize the distribution of monocyte subsets and

their function. A total of 74 PTB patients and 57 CCs with and without helminth infection

were included. Non-classical monocytes were increased in PTB patients with Ascaris and

hookworm infection but not in Schistosoma-infected patients. Ascaris had the strongest

effect in increasing the frequency of non-classical monocytes in both PTB patients and CCs,

whereas PTB without helminth infection did not affect the frequency of monocyte subsets.

There was a helminth specific increase in the frequency of TNF-α producing non-classical

monocytes in hookworm infected PTB patients, both with and without PPD-stimulation.

Low-to-intermediate TB disease severity associated with increased frequency of non-classi-

cal monocytes only for helminth-positive PTB patients, and the frequency of TNF-α produc-

ing monocytes were significantly higher in intermediate and non-classical monocytes of

helminth positive PTB patients with an intermediate disease score. Helminth infection

affected the frequency of monocyte subsets and function both in TB patients and controls

which was helminth species dependent in TB patients. The clinical role of this potential

immunomodulatory effect needs further study and may affect the response and protection

to tuberculosis in areas where helminth infections are endemic.
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Author summary

Monocytes are important cells for the early innate immune response and play an integral

part during inflammation and infection. Classical monocytes, the dominant monocyte

subset during homeostasis and health, have been linked to efficient TB protection. Inter-

mediate or non-classical monocytes have instead been associated with uncontrolled

inflammation (TNF-alpha), cell death, and poor protection against Mycobacterium tuber-
culosis. In areas endemic for intestinal helminths, the immunoregulatory effects of mono-

cytes may affect development or progression of TB disease. The role of monocyte subsets

during helminth/TB coinfection have not been studied. In Gondar, Ethiopia, we show

that in patients with helminth infection, a helminth species dependent expansion of non-

classical monocytes is triggered, where Ascaris and hookworm had the strongest effect in

coinfected pulmonary TB-patients. The increase in non-classical monocytes was mainly

detected in coinfected patients with a low-to-intermediate disease severity. Only coinfec-

tion with helminths and TB induced an increased TNF-alpha response in monocytes.

Thus, we found a helminth species-specific dysregulation of monocyte subset distribution

and functionality in coinfected TB-patients which could affect TB pathogenesis.

Introduction

Tuberculosis (TB) and helminthiasis are two wide-spread infections with a considerable over-

lap, especially in tropical countries [1,2]. In TB endemic areas such as Ethiopia, helminth infec-

tion rates are higher in TB patients compared with household contacts and community

controls [3–5]. Intestinal helminth infections have been described to have a negative impact

on the clinical outcome to TB therapy. Higher number of disease-involved lung zones were

found in helminth infected TB patients compared with helminth negative TB patients, at the

end of TB treatment [6]. In active TB patients, asymptomatic helminth infections are strongly

associated with an increased regulatory T cell and Th2 type immune response [5], and

decreased frequencies of Th1, Th17 and CD8+ T cells [7], that could lead to impaired protec-

tive cellular immunity to Mycobacterium tuberculosis (Mtb) infection. Helminth infections can

also increase immunoregulatory monocytes characterized by downregulation of proinflamma-

tory cytokines [8]. However, there is a paucity of studies about the effect of chronic helminth

infection on monocyte subsets and their biological function during TB.

Monocytes are heterogeneous phagocytic cells of the innate immune system that play a key

role during the immune defense against Mtb. Based on the relative expression of CD14 and

CD16 surface markers, human monocytes can be classified into three phenotypically distinct

subsets: classical (CD14++CD16-) monocytes, intermediate (CD14++CD16+) monocytes and

non-classical (CD14+CD16++) monocytes [9]. In a healthy individual, classical monocytes are

the major subset making up 80–95% of all monocytes, while intermediate and non-classical

monocytes comprises up to 2–8% and 2–11%, respectively [10].

Classical monocytes are proinflammatory, exhibit high phagocytic activity [11–13], and can

produce reactive oxygen species [12]. Intermediate monocytes, also display high phagocytic

activity but less so than classical monocytes [13], and have both pro-inflammatory [14,15] and

anti-inflammatory characteristics [16]. Non-classical monocytes mainly patrol the inflamed

tissues and are involved in wound healing and resolution of inflammation [17]. During early

inflammation, mouse classical Ly6C++CD43+ monocytes differentiate into M1 (proinflamma-

tory or classically activated) macrophages characterized by high Mtb killing capacity. Mouse

non-classical Ly6C+CD43++ monocytes instead differentiate into M2 (anti-inflammatory or
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alternatively activated) macrophages with poor bactericidal activity [17,18]. M2 macrophages

are highly involved in inflammation resolution and wound healing [19], and protection against

helminthic infections [20].

During inflammatory diseases, non-classical and intermediate monocytes are highly

expanded, and the normal proportion of monocyte subsets is changed [21]. In TB patients,

intermediate and non-classical monocytes have been shown to increase [22–24]. Classical

monocytes produce less TNF-α and high levels of IL-10, while intermediate and non-classical

monocytes produce higher levels of TNF-α and less IL-10 in TB patients [22]. Mtb infected

mice, receiving CD16- monocytes exhibited high levels of IL-10 and TGF-β, and mice receiv-

ing CD16+ monocytes had higher levels of TNF-α in their lungs [25].

Helminth infection with filaria caused a significant expansion of non-classical monocytes

[26]. The separate infections of helminths and TB mostly skew the expansion of monocytes

towards a non-classical phenotype, which promotes mycobacterial persistence and intracellu-

lar multiplication [27]. Thus, we hypothesized that chronic helminth infection in TB may shift

the balance of monocyte subsets towards the non-classical subset, which could impair innate

immune mechanisms for control and protection against Mtb. Therefore, our aim was to inves-

tigate the distribution of monocyte subsets and their function in pulmonary TB patients (PTB)

and healthy community controls (CCs) during chronic helminth infection.

Materials and methods

Ethical statement

Written informed consent was obtained from all study participants. The study obtained ethical

clearance from Ethics Review Board of the University of Gondar, Ethiopia (O/V/P/RCS/05/

1254/2016). All TB patients received treatment according to national guidelines [28] and hel-

minth positive individuals were offered anti-helminth treatment as a part of the protocol.

Study participants

After oral and written consent, newly diagnosed pulmonary tuberculosis patients were

recruited consecutively during the period from 2016-07-25 to 2018-12-18 at the Directly

Observed Treatment Short-course (DOTS) Clinics of University of Gondar Hospital, Gondar

Health Center, Maraki and Azezo Health Centers in the Gondar area. The inclusion criteria

were patients from 15–65 years old with a sputum smear positive result for acid fast bacilli

(smear positive TB) or Xpert positive. The exclusion criteria were patients requiring hospital

admission, HIV, pregnancy, clinical signs or medical treatment indicating any concomitant

infectious diseases other than TB. None of the study participants had symptoms suggestive of

active helminth infection during enrolment. All helminth positive patients or community con-

trols were offered anti-helminth treatment, based on the Standard Treatment Guidelines for

primary hospitals [29]. S. mansoni infected TB patients and CCs, were treated with praziquan-

tel, with a dose calculated as 40 mg/kg in two divided doses, 4–6 hours apart. Ascaris lumbri-
coides and hookworm infected TB patients and CCs were treated with albendazole, with

400mg in a single dose.

Only QuantiFERON-TB Gold In-Tube (QFT) (Qiagen, Australia) negative healthy com-

munity controls (CCs) were included, from the same community as TB patients, at the blood

bank of University of Gondar Hospital. CCs who were fulfilling the blood donation criteria

and were QFT negative were also included from the nearby areas found around Gondar town.

Moreover, all CCs had a TB-score value of�3 and did not show any clinical signs or symp-

toms suggestive of clinical tuberculosis.
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HIV-screening

Testing for HIV was done at the voluntary counseling and testing clinic and at the DOTS clinic

as part of provider-initiated HIV testing and counseling program (PITC) according to the hos-

pital routine with HIV 1/2 STAT-PAK Assay (Chembio Diagnostics systems Inc., USA), Uni-

Gold Recombigen HIV-1/2 (Trinity Biotech, USA), and SD BIOLINE HIV-1/2 3.0 (Abbott,

USA). HIV-positive patients were referred to the HIV clinics for further assessment and free

antiretroviral treatment (ART) according to Ethiopian HIV/AIDS treatment guideline, and

were excluded from the study.

Clinical examination

A structured questionnaire was used to collect socio-demographic and clinical information.

As previously described [30,31], the TB score which ranges from 0 to 13 points was assessed at

baseline during initial inclusion. The TB score composed of signs and symptoms for TB

(cough, haemoptysis, chest pain, dyspnea, night sweating, anemic conjunctivae, lung ausculta-

tion finding, tachycardia (�100/min), temperature (�37˚C), body mass index (BMI)�18 kg/

m2, BMI�16 kg/m2, mid-upper arm circumference (MUAC)�220 mm, and MUAC�200

mm), each having one point. TB disease severity was defined by TB score, and TB patients

were classified in to three severity classes: severity class I (SCI: 0–5 points), severity class II

(SCII: 6–7 points) and severity class III (SCIII: 8–13), as previously described [30].

Laboratory investigations

The stool samples were collected once from each participant and the classification into hel-

minth positive or negative were based on the examination of the stool samples by three stool

examination techniques, using direct, Kato-Katz, and the formol-ether concentration tech-

nique [32,33]. Additionally, the egg count by Kato-Katz was used to determine the helminth

burden according to the WHO’s guidelines for classification of helminth infection intensity

(light, moderate, and heavy infection intensity; WHO/CTD/SIP/98.1)[34]. All stool examina-

tions were performed by the same technician throughout the study. One in 10 slides were ran-

domly selected and checked again blindly by a second microscopist for quality control. Acid

fast bacilli (AFB) staining and evaluation was done using the direct method and a fluorescent

microscope at baseline on spot-spot sputum samples according to national guideline by the

same laboratory technician throughout the study. Sputum samples stored at -20˚C for a maxi-

mum of 3 to 4 months were analyzed by Xpert, as previously described [35]. Xpert analysis

was done for all patients including those who had been diagnosed with AFB, and PTB patients

who were either Xpert positive or AFB positive were included in the study.

Isolation of peripheral blood mononuclear cells (PBMCs) from whole

blood

Heparinized venous blood (10 ml) was collected at DOTS clinics for TB patients, and for CCs

at University of Gondar blood bank and from nearby villages to Gondar town, and transported

within a maximum of two hours to the laboratory where PBMCs were directly isolated. The

heparinized blood was diluted with equal volume of normal saline solution and carefully lay-

ered on the top of LymphoPrep density gradient solution (Serumwerk, Bernburg AG, Oslo,

Norway), and then centrifuged at 800g for 30 minutes at 20˚C. The resulting interphase ring

consisting of a mixture of mononuclear cells was collected and then washed twice with PBS fol-

lowed by centrifugation at 250g for 10 minutes. Finally, cells were resuspended in RPMI 1640

supplemented with 10% sterile heat-inactivated FBS and 1% antimycotic antibiotic solution
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(Sigma-Aldrich, Munich, Germany) before counting in a Bürker chamber with 0.4% trypan

blue exclusion dye (Sigma-Aldrich, Munich, Germany) for detection of cell viability. All

included donor samples had a cell viability above 75%, which was the cutoff point for the sam-

ple to be included for further analysis. Isolated PBMC cells were stored at -80˚C using 10%

dimethyl sulfoxide in fetal bovine serum, and used within 1–2 weeks for further analysis.

Analysis of monocytes by flow cytometry

The cryopreserved PBMCs were thawed and washed, and included in the analysis if the cell

viability was above 75% after thawing. PBMCs were stimulated with Mtb derived purified pro-

tein derivative (PPD; Statens Serum Institute, Copenhagen, Denmark) at a final concentration

of 10 ug/ml, or media alone. Additionally, depending on the helminth status PBMCs were

stimulated with 5 ug/ml of whole worm protein extracts from Ascaris lumbricoides from Aller-

gen AB Thermo Fisher Scientific. After stimulation, cells were incubated at 37˚C for a total of

6h. At 2h of stimulation, brefeldin A solution (10ug/ml) was added for the remaining 4h. Fol-

lowing the incubation period, PBMCs were treated with 5mM ethylenediaminetetraacetic acid

(EDTA) for 15min at 37˚C, washed and stained with the surface antibodies APC labeled anti-

human HLADR (clone: LN3), PerCP-cyanine5.5 labeled anti-human CD14 (clone:61D3), and

FITC labeled anti-human CD16 (clone: CB16), all from eBioscience. After staining of the

monocyte subsets, PBMCs were fixed and permeabilized using BD Cytofix/Cytoperm and

stained intracellularly according to the manufacture’s recommendation (BD Biosciences).

Cells in Perm/Wash Buffer (BD Biosciences) were stained for intracellular cytokine expression

using PE labeled anti-human TNFa (eBioscience, clone:MA611). Fluorescence minus one

(FMO)-controls were used for gating purposes. Monocytes were first identified using their dis-

tinctive characteristics on forward/side scatter dot plot, and then HLADR positive cells were

gated to exclude any CD16+HLADRneg NK cells or other non-MHC expressing PBMCs as pre-

viously verified [36–38]. Monocyte subsets were then identified by CD14 and CD16 surface

expression: classical monocytes (CD14++CD16-), intermediate monocytes (CD14++CD16+),

and non-classical monocytes (CD14+CD16++). Starting with a lymphocyte gate based on lym-

phocytes forward/side scatter characteristics and thereafter proceeding with the same gating

strategy used for monocytes showed that although some lymphocytes are HLADRhigh they do

not populate the subsequent CD14/CD16-monocyte gate. Additionally to the described sample

treatment, one PBMCs aliquot of the thawed PBMCs without stimulation or ex vivo incubation

was directly surface stained with the antibodies (against HLADR, CD14, and CD16), but with-

out intracellular staining. This sample was used for reporting the frequencies of the monocyte

subsets, whereas multi-stained samples including the anti-TNFa antibody (described above)

was used to assess the TNF-production after the 6h ex vivo incubation. Flow cytometry data

were collected on a FACS Calibur flow cytometer (BD Biosciences), using Cell Quest acquisi-

tion software and were analyzed using FlowJo 10.5.3 (TreeStar, USA).

Statistical analysis

Continuous data are expressed as mean ± standard error of mean (SEM). Comparisons within

CCs groups and within PTB groups was performed using one-way ANOVA followed by

Tukey’s multiple comparison test. Comparisons between CCs groups and PTB groups after

grouping into helminth negative and helminth positive was performed using two-way

ANOVA followed by Tukey’s multiple comparison test. The main effect of disease severity

between helminth negative and helminth positive PTB patients was analyzed using two-way

ANOVA followed by Sidak’s multiple comparison test. We estimated that 16 patients in the

helminth negative and positive groups respectively were needed to show an increase in non-
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classical monocytes from 10% to 25% with a power of 80% and an alpha of 0.05. Data analysis

was performed using GraphPad Prism version 8.3.0 (GraphPad Software, San Diego, CA), and

p values< 0.05 were considered statistically significant.

Results

Baseline characteristics of TB patients and healthy controls

A total of 74 PTB patients with or without Ascaris, S. mansoni or hookworm infection, as well

as 57 CCs with or without Ascaris or S. mansoni infection were included in the study (Fig 1).

Hookworm positive CCs were not included in the study, since assessing impact of hookworm

infection was not our initial aim while designing the study. There was no significant difference

in median age between the PTB and CCs groups, and within each PTB group and CCs group.

BMI was significantly higher in helminth negative CCs compared with Ascaris infected CCs

(p< 0.05). No significant differences in BMI and TB score were observed between Ascaris, S.

mansoni, hookworm infected and helminth negative PTB patients (Table 1). The helminth

burden determined according to WHO’s guidelines for classification of helminth infection

intensity showed that most CCs and PTB patients had the lowest infection intensity class,

which is consistent with them being asymptomatic.

The effect of helminths on the frequency of monocyte subsets in PTB

patients is helminth species specific

To elucidate whether the effect of helminth infection on the frequency of monocyte subsets

is species specific, we analyzed how Ascaris, S. mansoni and hookworm affected the distri-

bution of monocyte subsets in both PTB patients and CCs. A significantly increased fre-

quency of non-classical monocytes was observed in Ascaris+/PTB patients compared to

Helm-/PTB patients (p < 0.05) (Fig 2). Ascaris infection also causes a significant elevation

of non-classical monocytes in CCs (p < 0.01) (Fig 2). Similarly, non-classical monocytes

were significantly increased in hookworm+/PTB patients compared to Helm-/PTB patients

(p < 0.05) (Fig 2). In contrast to Ascaris and hookworm infection, S. mansoni infection did

not alter the frequency of any monocyte subsets in PTB patients. However, in CCs, non-

classical monocytes were significantly increased with S. mansoni infection (p < 0.05) (Fig

2), indicating that the effect of S. mansoni infection is different in PTB patients and CCs.

The comparison between CCs and PTB groups supported this notion, showing a significant

difference between S. mansoni+/CCs and S. mansoni+/PTB (p < 0.01), for both classical

and non-classical monocytes.

From this analysis we conclude that helminth infections affected, the frequency of mono-

cyte subsets in a species-dependent manner in PTB patients and that Ascaris induced an

increase in non-classical monocytes both in the CC and PTB groups.

Impact of helminth species on the functional activity of monocyte subsets

in PTB patients and CCs

The frequency of TNF-α producing monocyte subsets was evaluated in PTB patients and CCs

with and without helminth infection, to investigate whether helminth infection affects the

functional activity of monocyte subsets (Fig 3). The frequency of TNF-α producing non-classi-

cal monocytes was significantly increased in hookworm-infected PTB patients compared to

PTB patients without helminths (Helm-), in both unstimulated (p< 0.05) and PPD-stimulated

PBMCs (p< 0.01). In contrast, Ascaris and S. mansoni infections did not significantly affect

TNF-α production in any monocyte subset in neither PTB patients nor CCs (Fig 3). In the
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additional comparison between CCs and PTB, there was a significant difference in TNF-α pro-

ducing intermediate monocytes between S. mansoni+/CCs and S. mansoni+/PTB for both

unstimulated and PPD-stimulated PBMCs (p< 0.05).

Fig 1. Flowchart of the inclusion process. (A) For pulmonary tuberculosis patients in the study conducted at four Directly Observed Treatment Short-Course Clinics

of University of Gondar Hospital, Gondar Health Center, Maraki and Azezo Health Centers, Ethiopia. (B) For healthy community controls.

https://doi.org/10.1371/journal.pntd.0009194.g001
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Impact of Ascaris infection on the functional activity of monocyte subsets

after Ascaris antigen stimulation

As Ascaris had the strongest effect on the expansion of non-classical monocytes in PTB

patients and CCs, Ascaris protein antigen was used to stimulate a recall response in PBMCs

from PTB patients and CCs with Ascaris infection. In Ascaris+/CCs, Ascaris antigen caused a

significant increase in TNF-α producing intermediate and non-classical monocytes (Fig 4A),

whereas in the Ascaris+/PTB group with already increased or sustained TNF-α production the

same effect was not evident (Fig 4B).

Table 1. Demographic characteristics of PTB patients and CCs and TB score value.

Helm- /CCs Ascaris+/CCs S.mansoni+/CCs PC Helm-/PTB Ascaris+/PTB S.mansoni+/PTB Hookworm+/PTB PTB

N 18 12 27 40 6 14 14

Sex (%) M 66.7% 33.3% 63% NA 61.5% 83.3% 78.6% 64.3%

F 33.3% 66.7% 37% NA 38.5% 16.7% 21.4% 35.7%

Age: median

(R)

26.5 (20–32) 25.5 (17–58) 24 (18–57) NS 22.5 (17–65) 22.5 (20–44) 27 (17–65) 25 (20–58) NS

BMI:

median (R)

22.1 (15.8–32) 19.1 (15.8–32) 20.3 (16.4–29.8) PCA< 0.05 18.1 (14.4–23.2) 17.8 (15.4–20.2) 18.4 (14.9–24.6) 18.2 (15.5–19.3) NS

TB score:

median (R)

NA 6 (3–12) 6 (4–9) 7 (2–9) 6 (4–10) NS

WHO

Helm.

Intensity

(L/M/H)

(9/2/1) (19/7/1) NA (4/2/0) (10/2/2) (14/0/0) NA

%Class. Mo

median (R)

69.5 (44.7–97.9) 51.3 (24.5–91.8) 62.1 (26.4–84.7) 81.6 (25.9–98.5) 53.5 (24.5–82.1) 82.8 (25.8–98.4) 62.3 (20.7–98.8)

%Inter. Mo

median (R)

13.3 (0.44–46.1) 11.9 (4.20–26.4) 11.6 (4.74–21.5) 13.3 (0.96–39.2) 18.8 (6.92–32.4) 9.94 (1.14–27.1) 13.9 (0.78–48.2)

%Non-class.

Mo median

(R)

9.06 (0.53–35.2) 37.1 (3.76–57.7) 21.6 (3.19–63.9) 5.52 (0.58–54.9) 27.3 (1.34–68.2) 5.53 (0.46–47.1) 13.95 (0.46–69.0)

%TNF+

Class. Mo

(unstim.)

median (R)

22.6 (5.65–71.6) 13.1 (1.28–63.3) 33.1 (3.51–69.9) 47.8 (7.90–88.5) 43.2 (28.0–56.4) 49.0 (12.1–81.6) 46.5 (6.72–87.5)

%TNF+

Inter. Mo

(unstim.)

median (R)

15.0 (3.16–68.7) 10.4 (0–50.0) 19.7 (0–53.0) 26.6 (1.87–62.5) 32.8 (20.8–42.9) 42.2 (6.71–76.0) 34.3 (3.60–88.2)

%TNF+

Non-class.

Mo

(unstim.)

median (R)

4.86 (0–29.9) 3.15 (0–11.4) 3.26 (0–21.2) 4.97 (0–22.4) 6.71 (2.40–14.2) 5.96 (0–21.8) 9.74 (1.72–42.4)

Age: years; R: range; BMI: Body mass index in Kg/m2 (kilogram per meter square); CCs: community controls; PTB: Pulmonary tuberculosis; Helm-/CCs: Helminth

negative CCs; Ascaris+/CCs: Ascaris positive CCs; S.mansoni+/CCs: S. mansoni positive CCs; Helm-/PTB: Helminth negative PTB; Ascaris+/PTB: Ascaris positive PTB;

S.mansoni+/PTB: S. mansoni positive PTB; Hookworm+/PTB: Hookworm positive PTB; p values within CCs groups; PCA: p value of Helm-/CCs versus Ascaris+/CCs;

PTB: p values within PTB groups; NA: not analyzed; NS: no p values were significant between groups. Only significant p values are displayed. WHO Helm. Intensity;

Helminth infection intensity according WHO’s classification of egg burden into light/moderate/heavy (L/M/H), number of donors in each group; Median and range for

classical monocytes (Class. Mo), intermediate monocytes (Inter. Mo), non-classical monocytes (Non-class. Mo), and % TNF positivity within these monocyte subsets

left unstimulated (unstim.) are shown. Statistical comparisons for monocyte subsets and TNF-positivity are shown in Figs 2–6.

https://doi.org/10.1371/journal.pntd.0009194.t001
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Helminth infection affected the frequency of monocyte subsets and their

function in PTB patients and CCs

Next, we combined all patients with helminth infection into one group, for PTB patients as

Helm+/PTB and in CCs as Helm+/CCs, without differentiating between specific helminth spe-

cies. This allowed comparison of Helm+ and Helm- groups as traditionally done in previous

immunological studies on helminths, and also offered more reliable comparisons between the

CCs and PTB groups. This analysis showed a significant increased frequency of non-classical

monocytes in Helm+/CCs compared to Helm-/CCs (p< 0.01) (Fig 5A). Similarly, helminth

infection in PTB patients caused a non-significant increase of non-classical monocytes. There

were no significant differences between Helm-/CCs vs. Helm-/PTB nor Helm+/CCs vs. Helm

+/PTB (Fig 5A). This suggests that TB as such does not affect the monocyte subset distribution,

but that the observed effect on monocyte subset re-distribution is due to helminth infection.

The frequency of TNF-α producing monocyte subsets were also analyzed in these cohorts

to elucidate whether general helminth infection affects the functional activity of monocyte sub-

sets. We found that TNF-α producing classical monocytes were significantly increased in

Helm+/PTB patients compared to Helm+/CCs (p< 0.05) in unstimulated PBMCs (Fig 5B).

TNF-α producing intermediate monocytes were also increased in the Helm+/PTB group,

compared to Helm+/CCs (p< 0.01), and to Helm-/CCs (p< 0.05), for both unstimulated and

PPD-stimulated PBMCs (Fig 5B and 5C). In PTB patients, an increased frequency of TNF-α
producing non-classical monocytes was observed in the Helm+/PTB group compared to the

Helm-/PTB group after PPD-stimulation (p< 0.05) (Fig 5C). Thus, this analysis further illus-

trates that helminth infection drives monocyte subset re-distribution towards non-classical

monocytes, independently of TB. Using TNF-α as a functional readout for monocytes, indi-

cates that helminth infection alone does not affect monocyte function, whereas coinfection

with helminths and TB increases TNF-α in both intermediate and non-classical monocytes.

The impact of TB disease severity on monocyte subsets distribution and

their function during helminth/TB coinfection

To assess whether TB disease severity, estimated by the TBscore subdivided in three severity

classes (SCI-III) [30,39], affected monocyte subsets and their TNF-α production, we examined

the frequency of each monocyte subset in helminth-negative and helminth-positive PTB

patients. We observed that, Helm+/PTB patients with less severe TB disease (SCI and SCII

combined) showed a significantly increased frequency of non-classical monocytes compared

to the corresponding disease severity classes in Helm-/PTB patients (p< 0.05, n = 23 and

n = 22 for SCI-II in Helm+/PTB and Helm-/PTB, respectively) (Fig 6A). Further, within the

group of Helm+/PTB patients, those with less severe TB (SCI+SCII) showed significantly

increased levels of non-classical monocytes compared to Helm+/PTB patients with severe

Fig 2. Monocyte subset distribution in QFT negative CCs and PTB patients according to their helminth species. Frequency of classical (CD14+

+CD16-), intermediate (CD14++CD16+), and non-classical (CD14+CD16++) monocytes in healthy community controls (CCs) and pulmonary tuberculosis

patients (TB) before start of treatment. CCs and patients with or without (Helm-) the indicated asymptomatic helminth infection, and results were from

PBMCs without ex vivo incubation. (A) Gating strategy for monocyte subsets including representative samples from patients in the TB group, starting

with the characteristic forward/side scatter (FSC/SSC) gate of monocytes. Starting with the characteristic FSC/SSC gate of lymphocytes (from a sample in

(A)) indicates that lymphocytes do not contaminate downstream monocyte gates (B). (C) Data is presented as the mean frequency ± SEM of monocytes

within each monocyte subset. n = 18/12/27 for Helm-/Ascaris+/Schistosoma+ CCs, and n = 40/6/14/14 for Helm-/Ascaris+/Schistosoma+/hookworm+

PTB patients. Statistical analysis was made separately for CCs and PTB groups, using one-way ANOVA followed by Tukey’s multiple comparison test.

Further, there was a significant decrease in classical monocytes in S. mansoni+/CCs versus S. mansoni+/PTB (p < 0.01) and increase in non-classical

monocytes for S. mansoni+/CCs versus S. mansoni+/PTB (p< 0.01), when comparing CCs against PTB. �, p< 0.05; ��, p< 0.01.

https://doi.org/10.1371/journal.pntd.0009194.g002
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disease (SCIII, n = 9). This indicates that disease severity affects the frequency of non-classical

monocytes in helminth/TB coinfected individuals, but not by TB without helminth infection.

Monocytes from Helm+/PTB patients with SCII only had an overall increased frequency in

TNF+ cells across all monocyte subsets compared to Helm-/PTB patients whereas there were

no other differences observed for the other severity classes (Fig 6B and 6C).

Fig 3. TNF-α producing monocyte subsets in QFT negative CCs and PTB patients according to helminth species. The frequency of monocytes within each subset of

monocytes (classical, intermediate, and non-classical monocytes) in helminth negative (Helm-) and helminth positive (as indicated) after 6h ex vivo stimulation of PBMCs

with medium (Unstim.) or PPD, where TNF positivity was analyzed by flow cytometry following intracellular staining with anti-human TNFα PE. (A) Intracellular PE-

isotype stained PBMCs were used to set the TNF+ gates for the monocyte subsets, gated as in Fig 2A. Gating for PPD-stimulated PBMC from patients with TB is shown,

and the numbers in gates are the mean values for each group. (B) Data is presented as the mean frequency ± SEM of TNF-α producing monocytes within each monocyte

subset. n = 18/10/25 for Helm-/Ascaris+/Schistosoma+ CCs, and n = 35/6/14/14 for Helm-/Ascaris+/Schistosoma+/hookworm+ PTB patients. Statistical analysis was

performed separately for CCs and PTB groups, using one-way ANOVA followed by Tukey’s multiple comparison test. Additionally to the differences within the PTB

groups, there was a significant increase in % TNF+ intermediate monocytes in S. mansoni+/PTB compared to S. mansoni+/CCs, both in unstimulated and PPD-

stimulated PBMCs (p< 0.05). �, p< 0.05; ��, p< 0.01.

https://doi.org/10.1371/journal.pntd.0009194.g003
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Discussion

Monocytes, take part in the early innate immune response and play an important role during

inflammation and infection. The impact of helminth/TB coinfection on monocyte subsets

have not been investigated in clinical studies previously. We show that Ascaris infection had

the strongest effect on the expansion of non-classical monocytes in both PTB patients and

CCs, followed by S. mansoni infection in CCs, and with hookworm infection in PTB patients.

Our data show that helminth-induced monocyte subset alterations in PTB patients are species-

specific in that Ascaris and hookworm infections, but not S. mansoni, significantly increased

non-classical monocytes in PTB patients. This is in accordance with our previous study show-

ing that helminths and their secreted antigens have a species-dependent impact on polariza-

tion of Mtb infected monocyte-derived macrophages [40].

Ascaris infection affects adaptive immunity through the induction of a strong Th2 type

immune response characterized by an increased IL-4, IL-5 [41,42], IL-13 and IL-10 cytokine

response [43]. However, studies on the effect of Ascaris on innate immune cells like monocytes

Fig 4. TNF-α producing monocytes in Ascaris positive CCs and PTB patients after Ascaris antigen stimulation. (A) QFT negative CCs with Ascaris

infection and without helminth infection (Helm-). PBMCs were left unstimulated or stimulated with Ascaris antigen (Ascaris Ag) for 6h prior

intracellular analysis of TNF-α in the monocyte subsets by flow cytometry. (B) Similar to (A), but for PTB patients with Ascaris infection and without

helminth infection. Data is presented as the mean frequency ± SEM of TNF-α producing monocytes within each monocyte subset. p values calculated

using paired t test for analyzing the recall response to Ascaris Ag in Ascaris positive CCs (n = 8), and in Ascaris positive PTB patients (n = 6). Ascaris

negative CCs (n = 18) and Ascaris negative PTB patients (n = 34) are shown for reference and not included in the statistical analysis. �, p< 0.05.

https://doi.org/10.1371/journal.pntd.0009194.g004
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Fig 5. Monocyte subset re-distribution is helminth dependent and increased TNF-production only evident with helminth/PTB

coinfection. (A) Analysis of PBMCs without ex vivo incubation. Frequency of classical, intermediate and non-classical monocyte

subsets in QFT negative community controls (CCs) and PTB patients with (Helm+) and without (Helm-) helminth infection. (B)

Frequency of TNF-α producing monocytes within each monocyte subset from (A) in PBMCs left unstimulated for 6h prior

intracellular staining with anti-human TNFα PE and flow cytometric analysis of TNF+ monocytes. (C) Similar to (B) but with PPD

stimulation of PBMCs for 6h and analysis of TNF+ monocytes within each monocyte subset. Data is presented as the mean

frequency ± SEM of monocyte subsets and TNF-α producing monocytes within each subset. n = 18/35 for Helm-/Helm+ CCs, and
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n = 35/34 for Helm-/Helm+ for PTB. p values were calculated by two-way ANOVA followed by Tukey’s multiple comparison test. �,

p< 0.05; ��, p< 0.01.

https://doi.org/10.1371/journal.pntd.0009194.g005

Fig 6. TB disease severity only correlate with alterations in monocyte subtype distribution and functionality during coinfection. (A) Analysis of PBMCs

without ex vivo incubation. Frequency of classical, intermediate and non-classical monocyte subsets in pulmonary TB patients (PTB) based on their helminth

status and disease severity using TBscore to classify patients into the three disease severity classes (SCI, SCII, SCIII). (B) Frequency of TNF-α producing

classical, intermediate and non-classical monocytes in unstimulated PBMCs of PTB patients within the different disease severity classes. (C) Similar to (B) but

for PBMCs stimulated with PPD for 6h. Data was from PTB patients with SCI (n = 13/13), SCII (9/10), and SCIII (n = 17/9), that were Helm-/Helm+,

respectively. Data presented as the mean frequency ± SEM of monocyte subsets within each disease severity class of PTB patients, and the frequency of TNF-α
producing monocytes within those. For non-classical monocytes in (A), brackets indicate the analysis when SCI and SCII (SCI-SCII) have been combined. p

values were calculated by two-way ANOVA followed by Sidak’s multiple comparison test, and asterisks (�, ��) show the main effect of disease severity between

the helminth negative and helminth positive group. Additionally, the differences to SCII (or the combined SCI-II) within the group of helminth positive PTB

patients are indicated by number sign (#, ##). �/#, p< 0.05; ��/##, p< 0.01.

https://doi.org/10.1371/journal.pntd.0009194.g006
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are very scarce. Ascaris suum antigen was shown to inhibit in vitro differentiation of mono-

cytes to M1 macrophage [44], and Ascaris lumbricoides cystatin to interfere with maturation of

human monocyte-derived dendritic cells [45], in turn affecting T cell activation and inter-

feron-gamma production [46]. Here for the first time, we show that Ascaris lumbricoides infec-

tion significantly expands non-classical monocytes, in both CCs and PTB patients, and

additionally that hookworm infection increases non-classical monocytes in PTB patients. Sim-

ilarly, a previous study demonstrated that regulatory monocytes were significantly increased

in hookworm-infected individuals without TB [8].

The decreased frequencies of classical monocytes and increased expansion of non-classical

monocytes, as shown in Ascaris-infected PTB patients and to a lesser extent also in hook-

worm-positive PTB patients, suggests that classical monocytes might be converted into non-

classical monocytes as a result of helminth infection. The conversion from classical monocytes

to non-classical monocytes may be due to an increased production of IL-10 and TGF-β, which

is usually associated with helminth infections [5,47,48]. This is supported by in vitro IL-10

treatment of monocytes exhibiting enhanced CD16 expression [49]. S. mansoni infection sig-

nificantly increased non-classical monocytes in CCs. However, in contrast to Ascaris and

hookworm, S. mansoni did not affect the frequency of monocyte subsets in PTB patients. This

shows that the effect of S. mansoni on the frequency of monocyte subsets is not the same for

healthy controls and PTB patients. It has previously been shown that S. mansoni infection

reduce the bacillary burden in the sputum of TB patients [50], and that S. mansoni antigen

exposure of Mtb-infected human monocyte-derived macrophages reduce the intracellular Mtb

burden with a concurrent decrease in IL-10 and maintained ability to activate Mtb-specific

CD4 T cells [40]. Moreover, it was recently found that CD4 T cells of Shistosoma mansoni Mtb

coinfected individuals (both with active or latent TB) have a plasticity in regard to their func-

tional Th1 cytokine secretion where Th2 lineage positive CD4 T cells produced TNF, IFN-γ
and IL-2 in response to Mtb-antigens [51]. Taken together, these studies show that S. mansoni
coinfection in TB might induce TB protective Th1 type immune responses, which counteracts

the expansion of non-classical monocytes.

It has been demonstrated that classical monocytes can control intracellular growth of Mtb,

and that adoptive transfer of human classical monocytes to Mtb-infected SCID/Beige mice

induces a higher lung migration rate and pulmonary infiltration of murine leukocytes leading

to early Mtb infection control, compared to administration of CD16+ monocytes [25]. CD16+

monocytes are very permissive for intracellular mycobacterial growth and have an immune

modulatory capacity [27] that can impair the proinflammatory environment and lead to

chronic infection. CD16+ monocytes from TB patients were also impaired in their differentia-

tion into dendritic cells [52], an important step in activating and generating Mtb-specific T

cells. Thus, the expansion of non-classical monocytes, that we observe during coinfection with

certain helminth species, may decrease the control of intracellular Mtb growth and contribute

to enhanced susceptibility for TB.

Our result suggests that there was no TB specific impact on the frequency of monocytes,

rather the observed perturbation of the frequency of monocyte subsets was due to helminth

infections. This is in contrast to previous studies showing increased frequency of CD16

+ monocytes [23] and both intermediate and non-classical monocytes in TB patients [53].

Focusing on newly diagnosed PTB that do not have other concomitant infections such as HIV

or asymptomatic helminth infection, we do not observe TB specific effects on monocyte subset

distribution, even when stratifying the patients according to their disease severity.

To assess whether the helminth-induced alteration of monocyte subsets correlates with

their function, we measured the frequencies of TNF-α producing monocytes. Our data show

that helminth infections in PTB patients modulate the cytokine production of monocyte
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subsets in a species-dependent way. For hookworm positive PTB patients there was both an

expansion of non-classical monocytes along with an increased capacity for this subset to pro-

duce TNF-α, greatly increasing the total number of active cells. For Ascaris, there was a dis-

crepancy in that non-classical monocytes were increased but without a concomitant increase

in TNF-α production. This may be due to a lack of sensitivity in the assay to detect TNF-α as

the number of non-classical monocytes were low but also that there may be stimuli specific

subtypes and cytokine profiles of monocytes which are not detected by analyzing TNF-α only.

It has previously been shown that TNF-α is produced by non-classical and intermediate

monocytes from PTB patients, and that these CD16+ monocytes were more prone to undergo

Mtb-induced cell death compared to their CD16- counterpart [22].

TB disease severity defined by TB score, showed that for helminth positive PTB patients

non-classical monocytes were increased already in those with less severe disease (SCI+II). This

could indicate one way by which helminths drive TB pathogenesis. However, no such effect

was observed at any disease severity class among helminth negative PTB patients. This is in

contrast with previous findings, where CD16+ monocytes expanded with increased TB disease

severity and progression [23]. The difference might be explained by the method for TB disease

severity classification, where chest X-ray classification [23] is cruder than TB score, which is

the sum of signs and symptoms.

To focus on the specific effects of helminth infections, we selected only healthy controls

without latent TB (QFT negative), and used three methods for stool examination of asymp-

tomatic helminth infection in healthy controls and PTB patients. We were unable to make any

correlations to helminth infection intensity as it was “light” (72% and 82% with “light” infec-

tion intensity among helminth positive CCs and PTB, respectively) according to WHO’s

guidelines. Although the sample size is a limitation, we could analyze the data against a disease

severity score revealing an important link between helminth infection, disease severity, and

monocyte functionality. Our study is hypothesis driven and more studies are needed to con-

firm the results in the Ascaris positive group, for example a larger sample collection of Ascaris

positive PTB patients would enable a comparison based on disease severity classes and TNF-

production, and their response to Ascaris antigen restimulation. Another limitation was that a

DUMP channel could not be included in the flow cytometry analysis, but this was adjusted for

by carful gating strategies. In the PPD and Ascaris-antigen stimulation assays, our assay to

measure specific TNF-α positive monocyte subsets by flow cytometry may not be sensitive

enough to detect differences compared to total levels of TNF-α as measured by ELISA-based

methods which on the other hand has the disadvantage of not being cell specific. Additionally,

a potential limitation would be a difference in surface expression after the 6h incubation before

analysis of TNF-α [54], but using the stimuli in our study, we did not find any effect on mono-

cyte subset distribution after 6h (supporting information S1 Fig).

In summary, our study shows that helminth infections modulate monocyte subsets in a spe-

cies- dependent manner in PTB patients. These results may have clinical implications in areas

where both helminths and TB are endemic. The fact that helminths have different and species-

dependent effects on TB-immunity should be considered when combating TB. The differential

effect of helminths on monocyte subsets needs to be further explored, and large scale immuno-

logical and clinical studies need to be conducted to fully elucidate the impact of helminth species-

specific effects on the immune modulation of monocyte subsets and their clinical impact in TB.

Supporting information

S1 Fig. No stimulation effect of Ascaris antigen or PPD on monocyte subset distribution

in PBMCs. PBMCs from helminth negative pulmonary TB (PTB) patients (A) and Ascaris
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positive PTB patients (B) were either stained extracellularly (HLADR, CD14 and CD16)

directly after thawing the PBMCs (unincubated), or incubated 6h ex vivo without (unstimu-

lated) or with stimulation by Ascaris antigen (Ascaris-Ag) or PPD before being stained. Gating

of the monocyte subsets was done as shown in Fig 2 in the main manuscript, and data pre-

sented as the mean frequency ± SEM of monocytes within each monocyte subset. All available

data for unincubated and 6h incubated PBMCs for each respective group in A and B are

shown.

(TIF)
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