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0ere is a known link between DNAmethylation and cancer immunity/immunotherapy; however, the effect of DNAmethylation
on immunotherapy in lung adenocarcinoma (LUAD) remains to be elucidated. In the current study, we aimed to screen key
markers for prognostic analysis of LUAD based on DNA methylation regulatory factor clustering. We classified LUAD using the
NMF clustering method, and as a result, we obtained 20 DNAmethylation regulatory genes. 0ese 20 regulatory genes were used
to determine the pattern of DNAmethylation regulation, and patients were grouped for further analysis.0e risk score model was
analyzed in the TCGA dataset and an external validation set, and the correlation between the risk score and DNA methylation
regulatory gene expression was explored. We analyzed the correlation between the prognostic model and immune infiltration and
checkpoints. Finally, we analyzed the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functions of the prognosis
model and established the nomogram model and decision tree model. 0e survival analyses of ClusterA and ClusterB were
significantly different. Survival analysis showed that patients with a high risk score had a poor prognosis. Survival models (tobacco,
T, N, M, stage, sex, age, status, and risk score) were abnormally correlated with Tcells and macrophages. 0e higher the risk score
associated with smoking was and the higher the stage was, the more severe the LUAD and the more maladjusted the immune
system were. Immune infiltration and abnormal expression of immune checkpoint genes in the prognostic model of LUAD were
associated with the risk score.0e prognostic models were mainly enriched in the cell cycle and DNA replication. Characterization
of DNAmethylation regulatory patterns is helpful to improve our understanding of the immunemicroenvironment in LUAD and
to guide the development of a more personalized immunotherapy strategy in the future.

1. Introduction

Lung adenocarcinoma (LUAD) is the most common his-
tological subtype of primary lung cancer. LUAD is usually
evolved from mucosal glands, accounts for approximately
40% of all lung cancer cases, and is one of the most ag-
gressive and rapidly lethal tumor types [1]. LUAD is usually
diagnosed as disseminated metastatic tumors at an advanced
stage, with an overall survival rate of <5 years [2]. As a
heterogeneous disease, LUAD has important therapeutic
significance [3]. In many cases, LUAD can be found in areas
of scarring or chronic inflammation [4]. Studies have shown
that FDG PET can be used to predict the histopathological
classification and growth pattern of early LUAD [5]. Al-
though LUAD can be surgically resected, approximately half

of patients with early lung cancer who undergo resection
eventually relapse and die of the disease [6]. Epigenetic
changes are considered potential biomarkers for the early
diagnosis of various cancer tissue types, and novel DNA
methylation markers have been reported to play an im-
portant role in the early diagnosis of LUAD [7]. 0erefore, it
is important to explore the role of DNA methylation in the
pathogenesis of LUAD.

DNA methylation is abnormal in cancer and is often
described as a “silent” epigenetic marker [8, 9]. Changes in
DNA methylation may lead to changes in gene expression
profiles, most notably promoter DNA hypermethylation
leading to silencing of tumor suppressors, microRNAs,
endogenous retroviruses, and tumor antigens, as well as
genomic DNA hypermethylation leading to the upregulation
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of oncogenes [10].0e potential of epigenetic-targeted drugs
in combination with chemotherapy, targeted therapy, and/
or immunotherapy is being investigated [11]. An association
between DNA methylation and tumor immunity/immu-
notherapy has been reported [12], and changes in DNA
methylation are associated with epigenetic regulation in
precision immunotherapy [13]. However, the role of DNA
methylation in LUAD immunopathology and immuno-
therapy remains unclear.

0e immune system plays an active role in the occur-
rence and growth of LUAD [14]. Tumor-infiltrating immune
cells have been shown to be positively correlated with overall
survival (OS) in patients with LUAD [15]. 0e tumor im-
mune microenvironment (TIM) plays a key role in the
regulation of tumor progression, and the rapid development
of immunotherapy has opened up a new approach for cancer
treatment. Immune checkpoint blockade therapy has rev-
olutionized the treatment of human cancers, including
LUAD [16]. It has been reported that a large number of
patients with advanced LUAD have targeted mutations [17].
In these patients, antibodies against immune checkpoints,
such as programmed death-1 (PD-1) and cytotoxic
T-lymphocyte-associated antigen-4 (CTLA-4), have dem-
onstrated the safety of treatment [18]. 0is reflects the
importance of the TIM to the clinical outcomes of patients
with LUAD. 0erefore, greater understanding of the im-
mune microenvironment of LUAD will serve to guide
immunotherapy strategies.

In this study, we classified LUAD using the NMF clus-
tering method and, as a result, obtained 20 DNAmethylation
regulatory genes to determine the pattern of DNA methyl-
ation regulation. We investigated the association between the
risk score and DNA methylation regulatory gene expression
and analyzed the correlation between the prognostic model
and immune infiltration and checkpoints. Finally, we ana-
lyzed the Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) functions of the prognosis
model and established the nomogram model and decision
tree model. Our results showed that the more the risk score
was associated with smoking and the higher the stage was, the
more severe the disease was and the more the immune system
was maladjusted in patients with LUAD. Immune infiltration
and abnormal expression of immune checkpoint genes in the
prognostic model of LUAD were associated with the risk
score. 0e characterization of the regulatory pattern of DNA
methylation is helpful to guide the development of a more
personalized immunotherapy strategy in the future.

2. Materials and Methods

2.1. LUAD Datasets and Preprocessing. 0e TCGA dataset
was downloaded from UCSC Xena (https://xenabrowser.
net/), and RNA sequencing (RNA-Seq) data were
downloaded from the TCGA data portal. 0e fragment’s
value per million fragment numbers (FPKM) was then
converted into the transcript per million byte points
(TPM) value. 0e microarray dataset GSE72094 served as
an external validation set from the Gene Expression
Omnibus (https://www.ncbi.nlm.nih.gov/geo/). Raw data

from the microarray dataset were generated by Affyme-
trix. 0e RMA algorithm in the Affy software package was
then applied to process the raw data from Affymetrix for
quantile normalization and background correction. All
data were analyzed using R software (version 3.6.1) and
the R Bioconductor software package. A total of 500
samples were included, and clinicopathological data were
collected, including tobacco, T, N, M, stage, gender, age,
and status (Table 1).

2.2. Clustering Types of DNA Methylation Regulatory Genes.
LUAD was classified using the NMF clustering method, and
20 DNA methylation regulatory genes were obtained to
determine the pattern of DNA methylation regulation. 0e
patients were then grouped for further analysis.

2.3. Establishment of the Risk Score for DNA Methylation
Regulation. 0e “limma” package in R software was used to
identify differentially expressed genes (DEGs) associated with
two immune checkpoint-related patterns [19]. P values <0.05
and |logFC|> log2 (1.5) were used to determine significant
sexual criteria of DEGs. Univariate Cox regression analysis
was used to determine the representative DEG, and then
lambda values (lambda-1se) were selected through 1,000
cross-validations using the lasso method. A set of prognostic
genes and their lasso regression coefficients were obtained.
0e risk score was the sum of the expression value of the genes
screened by lasso, and the risk score was divided into two
groups of high and low risk by the optimal point method. Risk
score� 0.1798 ∗ UHRF1+−0.1435 ∗ CLSPN+0.2179 ∗ CE
NPE+−0.2046 ∗ POLQ+−0.06 ∗ MCM4+0.0325 ∗ BRIP
1+−0.1421 ∗ HELLS+−0.0996 ∗ ATAD2+0.138 ∗ ZNF36
7+−0.2166 ∗ ESCO2+0.1384 ∗ TMPO+0.2106 ∗ POP1+
0.1902 ∗ NUP107+ 0.1177 ∗ FXYD1+−0.0408 ∗ GGTLC1
+0.0288 ∗ HIF1A+−0.0186 ∗ LDHD+−0.2112 ∗ MUST
N1+−0.0533 ∗ GPD1L+0.0408 ∗ TDRD10+−0.0311 ∗ T
MEM130+−0.0908 ∗ FBP1+−0.0839 ∗ ATAD3C+0.1504
∗ IL1R2.

2.4. Estimation of Immune Infiltration. 0e CIBERSORT,
ESTIMATE, MC, and TIMER algorithms were compared to
assess the relationship between the risk score and cell
composition or cellular immune response, and the differ-
ences in the immune response under different algorithms
were revealed using heat maps [20].

2.5.PathwayAnalysis. We calculated the risk score and all of
the correlations of the gene expression of the relativity of
selected gene enrichment analysis, mainly analyzed the GO
of biological processes (BP), cellular components (CC),
molecular function (MF), and KEGG. 0e definition of
correlation was |cor| >0.3 and P< 0.05.

2.6. Establishment of the Nomogram. According to the re-
sults of the multivariate Cox regression analysis, a nomo-
gram was constructed using “RMS” in R software to predict
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1-, 3-, and 5-year OS. 0e prediction accuracy of the OS
nomogrammodel was evaluated by the calibration curve and
DCA.

2.7. Statistical Analysis. 0e Shapiro–Wilk normality test
was used to check the normality of variables. For normally
distributed variables, an unpaired Student’s t-test was used
to compare the differences between the two groups. 0e
Wilcoxon test was used to compare variables that were not
normally distributed. Pearson correlation and distance
correlation analyses were used to calculate the correlation
coefficients. Patients were divided into high or low risk
scores of each dataset according to the risk score of di-
chotomy. 0e data were mainly visualized using the R

package “ggplot2.” 0e Benjamini–Hochberg method was
used to analyze DEGs, which converted P values into FDR to
identify important genes. 0e Kaplan–Meier method was
used to generate and visualize subgroup survival curves, and
the log-rank test was used to determine the statistical sig-
nificance of differences in each dataset. 0e “rpart” package
was used for decision tree analysis. All survival curves were
generated by the R package “survminer.” All heat maps were
generated based on “pheatmap.” All statistical analyses were
performed in R (https://www.r-project.org/, version 3.6.1).
All of the tests were two-sided, and P values <0.05 were
considered statistically significant.

3. Results

3.1. DNA Methylation Regulates Gene Clustering. First, we
constructed the connectivity matrix, which was based on
DNA methylation regulatory clustering and was opti-
mized to cluster into two classes: ClusterA and ClusterB.
0e cophenetic coefficient decreased with the increase in
the number of clusters (Figures 1(a) and 1(b)). Subse-
quently, LUAD was classified using the NMF clustering
method, and 20 DNA methylation regulatory genes were
obtained to determine the pattern of DNA methylation
regulation. All DNA methylation regulatory genes and
their clinical characteristics in ClusterA and ClusterB are
shown in Figure 1(c). UHRF2, MBD4, ZBTB38, ZBTB4,
MBD1, MBD2, ZBTB33, MECP2, NTHL1, SMUG1,
DNMT1, MBD3, TET1, DNMT3A, TET3, UNG, TDG,
DNMT3B, and UHRF1 were associated with tobacco, T,
N, M, stage, sex, age, and status. Survival analyses were
conducted on ClusterA and ClusterB, and the results
showed significant differences between the two groups
(Figure 1(d)). Figure 1(e) shows the volcano map of the
two types of differential genes. 0ese results showed that
there were significant differences between ClusterA and
ClusterB.

3.2. Establishment and Verification of Prognosis Scores.
0e limma package in R software was used to identify the
DEGs associated with the two immune checkpoint-related
patterns, and the number of DEGs in the two categories was
1026. A total of 607 genes were screened by univariate
analysis in the TCGA dataset, and a risk score model
containing 24 genes was screened by the lasso machine
learning method (Figures 2(a) and 2(b)). 0e risk score
model was analyzed in the TCGA dataset and the external
validation set, as shown in Figures 2(c) and 2(d). Survival
analysis showed that patients with high risk scores had poor
prognosis (P< 0.05). We then explored the relationship
between the risk score and DNA methylation regulation of
gene expression. Figure 2(e) shows that the survival model
(tobacco, T, N, M, stage, sex, age, status, and risk score) was
associated with IL1R2, HIF1A, ESCO2, TMPO, POP1,
NUP107, UHRF1, HELLS, POLQ, CLSPN, CENPE,
MCM4, ATAD2, BRIP1, ZNF367, TMEM130, FXYD1,
MUSTN1, TDRD10, FBP1, GGTLC1, GPD1L, LDHD, and
ATAD3C.

Table 1: Clinical features.

Features n� 500
lncRNAs

High (n� 179) Low (n� 321)
Gender
Female 270 86 184
Male 230 93 137
Age
<65 219 88 141
≥65 271 91 180
NA 10 3 7
Status
0 318 86 232
1 182 93 89
Risk score
<1 268 0 268
≥1 232 53 179
Stage
I 268 72 196
II 120 60 60
III 79 36 43
IV 25 9 16
NA 8 2 6
T
T1 168 42 126
T2 267 102 165
T3 45 27 18
T4 17 7 10
NA 3 1 2
N
N0 323 106 217
N1 95 41 54
N2 69 30 39
NA 13 2 11
M
M0 332 121 211
M1 24 9 15
NA 144 49 95
Tobacco
No 363 113 250
Yes 119 58 61
NA 18 8 10
Cluster
ClusterA 246 35 211
ClusterB 254 144 110
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Figure 1: DNA methylation regulates gene clustering. (a, b) 0e optimal clusters were ClusterA and ClusterB according to DNA
methylation regulation clustering. (c) Total DNA methylation regulatory genes and their clinical characteristics in ClusterA and ClusterB.
(d) Survival analyses of ClusterA and ClusterB. (e) Volcano maps of ClusterA and ClusterB differential genes. ∗ ∗ ∗ ∗P< 0.0001.
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3.3. Immune Infiltration and Immune Checkpoint Analysis of
the Prognostic Model. Next, we analyzed the correlation
between prognosis and immune infiltration. Figure 3 shows
the relationship between the risk score and cell composi-
tion or cellular immune response under CIBERSORT,
ESTIMATE, McCounter, and TIMER algorithms. Heat

maps revealed differences in the immune response under
different algorithms. Under the CIBERSORT algorithm,
CD8 Tcells, CD4 memory-activated Tcells, monocytes, M0
macrophages, M1 macrophages, resting mast cells, acti-
vated mast cells, and neutrophils were abnormal. Under the
McCounter algorithm, cytotoxic lymphocytes, NK cells,
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Figure 2: Establishment and verification of prognosis scores. (a, b) Risk score model of 24 genes. (c, d) Survival analysis of the TCGA dataset
and the risk score model of the external validation set. (e) Demonstration of DNA methylation regulatory genes and clinical characteristics
as the risk score increased from low to high. ∗ ∗ ∗ ∗P< 0.0001.
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myeloid dendritic cells, neutrophils, endothelial cells, and
fibroblasts were abnormal. Under the TIMER algorithm,
B cells, CD4 T cells, and macrophages were abnormal. In
general, survival models (tobacco, T, N, M, stage, sex, age,
status, and risk score) were abnormally correlated with
T cells and macrophages. 0e higher the risk score asso-
ciated with smoking and the higher the stage, the more
severe the LUAD and the more maladjusted the immune
system. 0ese results suggested that immune infiltration
was associated with a risk score in the prognostic model of

LUAD. 0e correlation analysis of different immune reg-
ulatory factors when the risk score changed from low to
high is shown in Figure 4. 0e immune checkpoint cate-
gories are as follows: chemokine, immune inhibitor, im-
mune stimulator, and MHC and receptor. Among them,
the higher the risk score associated with smoking and the
higher the stage, the more severe the LUAD. In addition,
the abnormal expression of immune checkpoint
genes was significantly correlated with high and low
risk scores.
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Figure 3: Correlation analysis of immune infiltration among different immune infiltration algorithms as risk scores ranged from low to
high. ∗P< 0.05, ∗ ∗P< 0.01, ∗ ∗ ∗P< 0.001, and ∗ ∗ ∗ ∗P< 0.0001.
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3.4. Functional Analysis of the Prognostic Model. We next
performed functional analysis to further investigate the prog-
nostic model. 0e BP in GO analysis is shown in Figure 5(a). It

mainly involved DNA replication, cell cycle G2-/M-phase
transition, and cell cycle checkpoint. 0e CC in GO analysis
mainly involved DNA-dependent ATPase activity and ATPase
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Figure 4: Correlation analysis of different immune regulatory factors from low to high risk scores. ∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001, and
∗∗∗∗P< 0.0001.
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activity (Figure 5(b)). MF in GO analysis mainly referred to the
chromosonmal region, chromosome, centromeric region, etc.
As shown in Figure 5(d), KEGGpathwaysweremainly enriched
in the cell cycle and DNA replication. We speculated that the
pathways related to the prognostic model might be related to
immune infiltration and survival.

3.5. Establishment of the NomogramModel and Decision Tree
Model. A nomogram model was established using clinical
characteristics (T and N) and risk score. Personalized pre-
diction of 1-, 3-, and 5-year survival probability was per-
formed using a comprehensive nomogram (Figure 6(a)).
Calibration curve analysis of the model indicated a high
degree of consistency between the predicted results and the
actual results (Figure 6(b)). 0e DCA curve indicated that
the model had good clinical practicability (Figure 6(c)).
0rough decision tree analysis of clinical features and risk
score, the decision tree was mainly composed of risk score,
T, and N (Figure 6(d)). In addition, survival analysis was
conducted for patients in different groups according to the
decision tree. As shown in Figure 6(e), the survival prob-
ability of Tree1 decreased with the increase in time com-
pared with the other eight trees, but the survival probability
of Tree1 was relatively high.

4. Discussion

0e results of this bioinformatics study demonstrated that
the survival models (tobacco, T, N, M, stage, sex, age, status,
and risk score) were abnormally correlated with T cells and
macrophages. 0e more the risk score was associated with
smoking and the higher the stage was, the more severe the
LUAD and the more maladjusted the immune system were.
Immune infiltration and abnormal expression of immune
checkpoint genes in the prognostic model of LUAD were
associated with the risk score. In addition, pathways related
to the prognostic model may be related to immune infil-
tration and survival.

LUAD is one of the most common and fatal cancers
worldwide. LUAD has significant heterogeneity, and ab-
normal DNA methylation profiles contribute to tumor
heterogeneity and altered immune responses [21]. DNA
methylation biomarkers may provide a molecular-level
predictor of cancer recurrence risk. In addition, candidate
epigenetic biomarkers may provide a theoretical basis for
patient stratification and precision medicine, thereby
maximizing the chance of successful treatment while min-
imizing adverse effects [22]. Studies have shown that
changes in DNA methylation are frequently observed in
LUAD and may play an important role in carcinogenesis,
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Figure 6: Establishment of the nomogrammodel and decision tree model. (a) Comprehensive nomogram of 1-, 3-, and 5-year survival rates
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diagnosis, and prediction [23]. In this study, we classified
LUAD using the NMF clustering method and obtained 20
DNA methylation regulatory genes to determine the pattern
of DNA methylation regulation. In addition, we found that
the LUAD survival model (tobacco, T, N, M, stage, sex, age,
status, and risk score) was associated with genes involved in
regulating DNA methylation.

DNA methylation plays a key role in the “depletion” of
cytotoxic T cells associated with tumor progression [24]. 0e
presence of immune cells in the tumor microenvironment is
associated with the response of various cancers to immu-
notherapy [25]. Macrophage polarization is a key regulatory
process in tumor progression [26]. Studies have shown that
immunogenic chemotherapy enhances the recruitment of
CAR T cells to lung tumors and, combined with checkpoint
blockade, can improve antitumor efficacy [27]. Moreover,
HDAC inhibitors have been reported to enhance T-cell
chemokine expression in LUAD and enhance the tumor
response to PD-1 immunotherapy [28]. Early clinical tumors
lackingmemory B cells or with an increased proportion ofM0
macrophages are associated with poor prognosis in LUAD
[29]. In addition, tumors activated by lipid metabolism tend
to have greater immune cell infiltration and a better response
to checkpoint immunotherapy [30]. In a previous study on
non-small cell lung cancer, invasive immune cells were sig-
nificantly enriched in tumor tissues of patients, and there was
a strong correlation between CD38 and PD-1 expression on
CD8+ T cells in tumors [31]. In our study, we found that the
LUAD survival model (tobacco, T, N, M, stage, sex, age,
status, and risk score) was abnormally correlated with T cells
and macrophages. Studies have shown that smoking-related
LUAD is associated with other environmental exposures and
the field effect in normal adjacent tissues of LUAD [32]. In
addition, LUAD patients with STK11 mutant have less im-
mune cell infiltration and a worse prognosis after immu-
notherapy [33]. Our study showed that themore the risk score
was associated with smoking and the higher the stage was, the
more severe the disease and the greater the maladjustment of
the immune system were in LUAD.

In conclusion, cluster analysis of DNA methylation
regulators was helpful to explore the effect of LUAD and
immunotherapy. Patients with LUAD with a high risk score
showed immune cell inactivation and abnormal immune
checkpoint expression. Moreover, the characterization of
DNAmethylation regulatory patterns served to improve our
understanding of the LUAD immune microenvironment
and guide the development of a more personalized im-
munotherapy strategy in the future.
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