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Abstract: Cells communicate with their environment via proteins, located at the plasma membrane separating the interior of a
cell from its surroundings. The spatial distribution of these proteins in the plasma membrane under different physiological
conditions is of importance, since this may influence their signal transmission properties. In this study, the authors compare
different methods such as hierarchical clustering, extensible Markov models and the gammics method for analysing such a
spatial distribution. The methods are examined in a simulation study to determine their optimal use. Afterwards, they analyse
experimental imaging data and extend these methods to simulate dual colour data.

1௑Introduction
Cluster analysis is a widely used approach for many types of data
and applications. This is also represented by the high number of
available literature. For example, the PubMed Health [1] search
finds 111,848 articles with the keyword cluster analysis.

One application field is genomic data. Here, the aim of the
cluster analysis is finding genes with similar functions or genes
also which cause the same type of disease. Often gene expression
data is employed to find these groups, as described, e.g. in Eisen et
al. [2] and Sunaga et al.[3]. Here, we analyse clusters (and their
behaviour) of similar proteins located in the cell membrane, which
is also of high interest, see, e.g. Arnau et al.[4] or Manley et al. [5].

In mammalian cells, the plasma membrane separates the interior
from the cell's environment. The cell communicates with the
environment via proteins that are embedded in, or attached to, the
plasma membrane. The spatial distribution of these proteins is
thought to play an important role in signal transmission via the
plasma membrane. For instance, the small GTPase Ras forms
clusters of about seven molecules with a diameter of around 20 nm,
which are thought to be important for the robust transduction of
signals into the cell. However, not all proteins form clusters, only a
part and the remaining proteins form the background. Therefore, it
is of considerable interest to be able to analyse the spatial
distribution of such signalling molecules under different
physiological conditions, for instance in the presence or absence of
hormones that might stimulate a cellular response such as
migration or cell division. In recent years, fluorescence microscopy
has developed to the point that individual molecules can be imaged
in the plasma membrane of cells growing on a glass surface. There
are different super-resolution microscopy techniques such as
universal Point Accumulation for Imaging in Nanoscale
Topography (uPAINT) (Greg and Hosy [6]) or binding activated
localization microscopy (BaLM) (Burnette et al. [7]). Furthermore,
there is mCherry which can also be used for two-colour
fluorescence microscopy, see, e.g. Subach et al. [8]. Here, we will
use data which is obtained by photo-activated localisation light
microscopy (PALM) (Betzig et al. [9]) and Stochastic Optical
Reconstruction Microscopy (STORM) (Huang et al. [10]). When
using PALM, proteins can be localised by using rapidSTORM (a
preprocessing algorithm) with an accuracy of around 20 nm at the
bottom plasma membrane of the cell. The result is a list of protein
localisations that can be analysed employing clustering or spatial

statistical approaches, with the aim of finding and quantifying
clusters.

To detect these protein clusters, one can choose different
methods of the extensive toolbox of cluster methods, where some
are standard methods for such data and some are common cluster
methods. One standard method is Ripley's K-function including all
transformations such as the L-function (Ripley [11]) which
estimates the cluster radius. Another method based on the K-
function is the Getis–Franklin method (see, e.g. Rubin-Delanchy et
al. [12]). Other standard methods are, for example, pair- or cross-
correlation (Sengupta et al. [13]), the SR-Tesseler method which
uses Voronoï diagrams (Levet et al. [14]) or the density-based
spatial clustering of applications with noise (DBSCAN) (Ester et
al. [15]). These methods are more for cluster identification.

However though standard, non-spatial cluster methods could be
used to find these protein clusters, e.g. hierarchical clustering (see,
e.g. Hartigan [16], Jain et al. [17] or Kaufman and Rousseeuw
[18]). In this paper, we will focus on the proportion of proteins in
clusters and will show that standard methods as well as cluster
methods will estimate that proportion well, but there can be
differences in computation time or simplicity of application (due to
parameter choices).

Therefore, we will compare the following five methods for the
analysis of PALM data of Ras proteins: the standard hierarchical
clustering, a graphical method named average-shifted histogram
(ASH, see Scott and Sain [19]), the model-based extensible
Markov models (EMMs, see Dunham et al. [20]), the standard
clustering method DBSCAN (Ester et al. [15]) as well as the
gammics methods (Schäfer et al., [21]). We chose these five
methods to get a survey of different methods, thus we use a
standard cluster method (hierarchical clustering), a graphical
method (ASH), a Bayesian method (EMM), a standard method for
spatial clustering of microscopie data (DBSCAN) and a new
approach especially developed for this application field (the
gammics method). Finally, we will propose in this paper a new
approach on how to combine the different (known) methods in an
efficient way and develop a scheme for this procedure. Owing to
this scheme, one first choose regions of interest (ROIs) for finding
suitable parameter estimates, then applying faster methods for the
whole cell or even larger regions. This leads to a considerable
reduction of computation time. In addition, we not only adapt this
new approach to experimental data but also to (simulated) dual
colour data.

IET Syst. Biol., 2018, Vol. 12 Iss. 1, pp. 7-17
This is an open access article published by the IET under the Creative Commons Attribution-NonCommercial-NoDerivs License
(http://creativecommons.org/licenses/by-nc-nd/3.0/)

7



This paper is structured as follows: in Section 2, we introduce
the simulation study as well as the experimental data, concluding
with a short description of the different methods. In Section 3, we
will compare the different methods on simulated single colour data
and develop a new approach on how to combine the different
methods to analyse such protein data. In Section 4, we will employ
the new approach to experimental single colour data as well as in a
dual colour simulation study. Finally, Section 5 contains
concluding remarks including a short outlook.

2௑Material and methods
In this section, an introduction to the simulation study as well as a
description of the experimental data are given. Furthermore, we
shortly describe the methods.

2.1 Simulation study

We conduct a simulation study similar to the one described in
Schäfer et al. [21], which is based on a generalisation of a Matérn
cluster process. We adapted this approach to simulate dual colour
data.

In these simulations not all points (corresponding to proteins)
are clustered, but a given fraction of the points are the so-called
monomers or singletons. In a first step, parent points are created
using a Poisson process. Normally, in a Matérn cluster process,
each parent point would be replaced by a cluster of radius r, but
here only a fraction of parent points is replaced. Thus, we create an
image of points, where some of which are in a cluster and some
not.

For a single colour simulation, we create only one data set with
the parameters given in Table 1. An example for such a simulation
is shown in Fig. 2. For a simulation of dual colour data, we create
two of these data sets, one for each protein. The first one contains
the green proteins and the second one the red ones, where the two
different colours are a result of the different tagging. These two
data sets are merged into a single one considering three different
scenarios:

S1: The proteins tagged with the two colours are independent: the
two data sets are simulated separately.
S2: The cluster centres of the two proteins are correlated: the
cluster centres of the first data set will be shifted and used as
cluster centres for the second data set. The monomers are simulated
separately.
S3: The clustered proteins are correlated: the clustered points are
translated and the monomers are again simulated separately.

2.2 Experimental data

The cell communicates via the cell membrane and signalling
proteins with its environment. To understand the communication of
a cell, it is important to analyse the signalling proteins, e.g. Ras one
important signalling protein, which can be located (amongst others)
in the cell membrane. For measuring these proteins in the cell
membrane, the experimental set-up is shown in Fig. 1. Here,
images of a cell expressing Ras tagged with mEos2 (Ras-mEos2)
in the basal plasma membrane (see Figs. 1a–c) were obtained by
total internal reflection fluorescence (TIRF) microscopy. The TIRF
microscopy ensures that only the proteins located in the cell
membrane are measured. The data of the Ras-mEos proteins are
obtained by photo-activated localisation microscopy (PALM,
Betzig et al. [9]), an imaging method that can be summarised as
follows: the fluorescent tag mEos2 (see Fig. 1b) is green in its
native state, but can be converted to a red form by ultraviolet (UV)
light (see Fig. 1h). Using an UV laser, a sparse subset of the mEos2
fluorophores can be converted to the red form, which can then be
imaged using TIRF microscopy as individual spots. The spots
result from reflected light bundles from the fluorophore. Thereby,
the light reflects in all directions, but only the light which is caught
by the objective is seen on the image (see Fig. 1g). These spots
then can be localised with a precision of around 20 nm by fitting a
two-dimensional (2D) Gaussian profile to each spot in the image.
Prolonged imaging of the red form of mEos2 leads to bleaching of
the red fluorophores, and eventually these spots are not visible
anymore. At this point, a new set of fluorophores is photo-
converted and localised by the same procedure. This is done
repeatedly until all proteins are imaged, resulting in a list of protein
localisations. 

2.3 Statistical methods

As mentioned in Section 1, we will compare and combine five
different methods, where some of them are spatial and/or model
based. Table 2 only gives a short overview of the methods we use
to analyse the simulated as well as the experimental data. A
detailed description is given in the supplement in Appendix 1. 

3௑Results of a first simulation study
In this section, we will employ the methods first for one setting of
the single colour simulation study. More precisely, in a first step we
will have a look at the method performance for one simulated
single colour image and the estimation of the proportion of
clustered points for the single colour simulation study. In a second
step, we will investigate the performance of methods and their
parameters, which worked well for the first simulated setting, on a
pool of different settings. Here, we can see if the methods also
work well for other proportions of clustered proteins as well as
other setting parameters. Finally, we will discuss the results and
develop a new approach for analysing spatial protein data. Most
computations run on R [22] with the packages cluster, ash,
rEMM, spatstat and fpc [23–28], only the gammics method
operates on MATLAB (7.10.0 [29]).

3.1 Method performance

In a first step, we will consider the performance of the methods we
introduced in Section 2.3 for a single colour data set. The data set
was simulated with an overall proportion of points in clusters of
40%, a mean cluster size of 4 points, a mean cluster radius of 15 
nm, an overall point density of 125 points/μm2 and a detection

Table 1 Simulation parameters
Parameter Values
overall proportion of points in clusters p 0.4, 0.8
mean cluster size μ 4, 8
mean cluster radius r 15, 30
overall point density λ 125
proportion of points in metaclusters p

⌣ 0
detection error σ 20

 

Fig. 1௒ Schematic representation of the cell construction and the
experimental set-up
(a) Ras protein in the plasma membrane, (b) mEos2 (photoactivatable fluorescent
protein), (c) Plasma membrane, (d) Cell nucleus, (e) Cytoplasm, (f) Object slide, (g)
Emission light, which is reflected by the fluorophore, (h) Light for stimulation, (i)
Objective/object lens
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error of 20 nm. The resulting distribution is shown in Fig. 2. The
data contain 195 clusters (mean proportion of clustered points of
ca. 39.2%) and 1976 points altogether. First, we employ classical
hierarchical clustering with average linkage. To find the optimal
number of clusters, the silhouette width is used. The resulting
dendrogram and curve of the silhouette width is shown in Fig. 3. It
can be seen that the optimal number of clusters is 451. If we cut the
dendrogram such that the resulting number of clusters is 451, we
only get 34 singletons and an estimated proportion of proteins in
clusters of 98.3%, much higher than the true value of 40%. If we
assume that all clusters with at most five points are a singleton, we
achieve 331 singletons and an estimated proportion of 83.2%,
which is still too high. To solve this problem, we tried to get prior
information about the number of clusters by the use of ASHs. The

resulting plot of ASH is shown in Fig. 4. With this plot in mind, we
guessed that there are round about 150 clusters in this data set. If
we assume that the average number of proteins in a cluster is 5
(received as prior information), there are 1976−(150×5) = 1226
singletons. With these prior information the estimated proportion is
ca. 37.9%. The resulting clustering is shown in Fig. 1 in the
supplement Appendix 2. In summary, it is difficult for hierarchical
clustering to distinguish between singletons and clustered proteins,
though the proportion is fitted well. Note that hierarchical
clustering is mainly used for classification of the points into the
clusters here, and that the estimation of the proportion is computed
without using hierarchical clustering. We just use the prior
knowledge of an average number of 5 points in a cluster and 150
(300) clusters for 40% (80%) points in clusters, estimated by ASH. 

For the EMM, a threshold has to be chosen which refers to the
dissimilarity and determines if a point is associated to a cluster or
not. Thus, here it represents some kind of size of the clusters and
we decided to use two different thresholds: 25 and 55 (small and
medium cluster sizes). The estimated proportion of singletons for
the EMM is the number of singletons divided by the total number
of points, thus the proportion of clustered proteins is one minus the
proportion of singletons. For a threshold of 25, the estimated
proportions of clustered proteins are ca. 35.2% and for a threshold
of 55, the estimated proportion is ca. 70.9%. Hence, a threshold of
25 works better than 55 and is roughly the diameter. In Fig. 2, in
the supplement Appendix 2 the resulting clustering is shown. It can
be seen that it is also difficult for EMM to differentiate between
singletons and clustered proteins by EMM. However, the clustering
with a threshold of 25 fits the data better than the clustering with a
threshold of 55. In summary, EMM depends on prior information
of the value of the threshold and when knowing the radius or the
diameter we can choose a good value for the threshold.

To obtain prior information about the radius, one can employ
Ripley's K-function. For our data the K-function overestimated the
radius, such as we did not pursue this approach.

Table 2 Short description of the used methods and specification of the corresponding literature; detailed description is given in
the supplement Appendix 1
Method Literature Short description
hierarchical
clustering

Hartigan [16] • groups data into homogenous groups
• puts similar objects into one cluster, where similarity is defined by a distance measure
• e.g. silhouette width may be used to get optimal number of clusters

ASH Scott and Sain [19] • data divided into k bins Bk = [tk, tk + 1), where ck indicates number of observations in Bk and n is number of
total observations

• if all bins are equally spaced with width ω, density histogram is given by f
^
(x) =

ck

nh

• how to choose t0 and ω? → assume t0 as a nuisance parameter

→ m SHs, which are all shifted by distance δ =
h

m

⇒ Bk
⋆ = [t0 + kδ, t0 + (k + 1)δ) with corresponding ck's

⋅ then ASH is given by f
^

ASH =
1
nh

∑
i = 1 − m

m − 1

1 −
|i|
m

ck + i ∀x ∈ Bk
⋆

EMM Dunham et al. [20] • EMM is a Markov chain which can vary over time → can be interpreted as a directed graph
• for every point of time, the EMM consists of Markov chain with nodes Nn and algorithm that alters the
Markov chain
→ algorithm consists of the following three steps: EMMCluster (matching incoming data to existing cluster,
EMMIncrement (updating Markov chain, e.g. adding nodes) and EMMDecrement (removing nodes if
necessary)

DBSCAN Ester et al. [15] • algorithm for finding clusters in a data set {x1, …, xn} using a key parameter based on distances between
two points
• to that end: Ester et al. introduced the theory of density-reachability and density connection w.r.t. two
parameters: → ϵ and MinPts

gammics Schäfer et al. [21] • finding clusters in point patterns via a model-based algorithm
• the gammics method models squared distances between points and their second-nearest neighbour
based on a mixture of two gamma distributions, not point pattern itself
• hierarchical Bayesian model and MCMC methods are employed to compute mean size, mean radius and
proportion of clustered proteins

 

Fig. 2௒ Simulated image with overall proportion of points in clusters of
40%, a mean cluster size of 4 points, a mean cluster radius of 15 nm, an
overall point density of 125 points/μm2 and a detection error of 20 nm (the
black points are clustered ones)
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Furthermore, we analyse the simulated data using the DBSCAN
method. Analogue to the EMM we have to choose again
parameters, here ϵ and MinPts. Here, we use the default for MinPts
which is 5, whereas choose four different values for the parameter
ϵ which determines whether two points are in one neighbourhood
(see also Section 8.4 of Appendix 1): 25, 50, 75 and 100. Owing to
the default value for MinPts, we decided to use also higher values
for ϵ than the threshold of the EMM. The resulting clustering is
shown in Fig. 3 in the supplement Appendix 2. As one can see, it
fits best for ϵ = 50 which is similar to the estimated proportion of
clustered proteins, see Table 3. 

Finally, we apply the gammics method for analysing the
simulated data. Here, three characteristics: the proportion, the mean
radius and the mean size of clusters can be estimated
simultaneously. For this example, we get an estimated proportion
of points in clusters of ca. 41.5%, a mean radius of 9.9 and a mean
size of 3.7. Considering the given simulation adjustment values for
the proportion of 40%, for the radius of 15 (where the simulation
resulted in a mean cluster radius of 9.9) and a cluster size of 4, the
gammics method works well.

3.2 Proportion of clustered points for different simulation
parameter settings

Now, all methods with a good performance and good working
parameters are adopted for different simulation settings. Therefore,
the DBSCAN method with ϵ = 25 is excluded.

For each simulation setting, we simulate four images, where
only three parameters (left column) are variable, p, μ and r. In
Table 4, the average estimated proportions of points in clusters for
the different methods and parameter settings of all simulations are
shown. 

The remaining columns contain the following estimators:

• p^ prior: The estimated proportion of clustered points, where we
assume 150 clusters for p = 0.4 and 300 for p = 0.8.

• p^ ash: The estimated proportion of clustered points for
hierarchical clustering, where we determine the number of
clusters by using ASH.

• p^ EMM25: The estimated proportion of points in clusters by using
the EMM with a threshold of 25.

• p^ EMM55: The estimated proportion of points in clusters by using
the EMM with a threshold of 55.

• p^ db50: Estimated proportion of clustered points using DBSCAN
with ϵ = 50.

• p^ db75: The estimated proportion of clustered points using
DBSCAN with ϵ = 75.

• p^ db100: The estimated proportion of clustered points using
DBSCAN with ϵ = 100.

• p^ gammics: The estimated proportion of clustered points using the
gammics method.

Again, note that DBSCAN with ϵ = 25 did not work well in the
example before.

The estimated proportions p^ prior are near the true values if we
use 150 and 300 clusters as prior knowledge, respectively. For a
low proportion of points in clusters (here 40%) the ‘hierarchical
clustering’ also works well, if prior information is provided by
using ASH (i.e. the estimated number of clusters). However, it can
be difficult to estimate the number of clusters for a higher
proportion of points in clusters (Table 1 in supplement Appendix 3
contains all estimates by ASH). In Fig. 4, in the supplement
Appendix 2 the resulting plot for a setting with proportion of 40%
on the left and with 80% on the right is shown. One can see that the
number of clusters on the right seems to be at most as high as on
the left. In case of the EMM method, the estimated values are close
to the true proportions for a good choice of the threshold, e.g. for
settings with a proportion of clustered points of 40%, the estimated
values fit well for a threshold of 25, whereas the estimated
proportions fit well in settings with 80% points in clusters for a
threshold of 55.

The DBSCAN method works well, but depends on the choice of
the parameter ϵ. For example, DBSCAN with ϵ = 50 works well
for all settings with p = 0.4, with the exception of setting p = 0.4,
μ = 4, r = 30. For a simulated proportion of 80% points in clusters,
ϵ = 75 works well (just as well as ϵ = 50 for the settings with p = 
0.8 and μ = 8).

Furthermore, note that there is a change in the estimated
proportion for the DBSCAN method with ϵ = 50 whether the mean
size is 4 or 8.

The gammics method estimates the proportion of points in
clusters very well. Also, the evaluated values of the mean radius
and the mean size are similar to the realised values in the
simulations.

3.3 Discussion and new approach

We analyse simulated data and as a result one can say that ASH,
the EMM and DBSCAN work well for estimating the proportion of
points in clusters if provided prior information (e.g. total number of
clusters) is available, or if the (tuning) parameters of the procedure
are chosen properly, whereas the gammics method works well even

Fig. 3௒ Left: dendrogram of the hierarchical clustering with average
linkage and right: curve of the average silhouette width values

 

Fig. 4௒ Upper left: simulated cell image [same as in Fig. 2 with clustered
points (black dots) and background points (grey dots); upper right: contour
plot of the ASH for the simulated data; bottom left: contour plot of the ASH
for part 1, the marked rectangle (top left) in the upper right contour plot;
bottom right: contour plot of the ASH for part 2, the marked rectangle
(down right) in the upper right contour plot

 
Table 3 Estimated proportion of points in clusters for
DBSCAN
Value of ϵ Estimated proportion of points in clusters, %
25 2.6
50 30.6
75 60.9
100 83.8
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in absence of prior knowledge. Table 5 gives an overview of the
methods in terms of computing time, stability and number of
stages. 

Generally, ASH is a (useful) method to obtain prior
information. For example, ASH is a good method to get an
overview over the data, e.g. where the clusters or ROIs are.
Furthermore, one can estimate the proportion of points in clusters
employing ASH and obtain prior information about the average
number of proteins in one cluster.

The EMM, DBSCAN and the gammics method work well for
estimating the proportion of points in clusters. For the EMM, one
has to define a threshold which is approximately the mean diameter
of the clusters. DBSCAN also needs a parameter which has to be
determined by the user. Only the gammics method needs no special
prior information, though this still could be helpful. A disadvantage
of the gammics method is its high demands in terms of
computation time. Please note that we classified the computation
time only in three classes, because the computation time depends
on the complexity of the data. We here just wanted to give a first
impression of the computation time to the reader.

Hence, our advice is to first analyse the data by using ASH to
find small ROIs which can then be analysed with the gammics
method. If one has prior information how to choose ROIs, one can
skip the ASH step and start directly with the gammics method.
Note that the size of the first ROIs depend on the complexity of the
data [in the simulation settings, we used an overall point density
(points/μm2) of 125]. Afterwards, the whole cell can be analysed
using again ASH (if not used yet), EMM or DBSCAN, where for
the DBSCAN, different choices for ϵ can be carried out because of
its low computing time. This is also shown in Fig. 5. 

4௑Results of the new approach
In this section, we will employ the new approach to real single
colour data as well as a dual colour simulation study. Again, most
computations run on R [22] with the packages cluster, ash,
rEMM, spatstat and fpc, only the gammics method operates on
MATLAB (7.10.0 [29]).

4.1 Application of the new approach to real single colour data

In this section, we analyse the experimental data as shown in Fig. 6
on the left, which is also used in Schäfer et al. [21]. We first
analyse four arbitrary chosen ROIs using the gammics method. The
results are shown in Table 6, where the mean estimator is marked
by a bar and the median estimator is marked by a tilde. The
estimated values for the radius and the average size can be used as

Table 4 Average estimations of the proportion of points in clusters
Simulation parameter p^ prior p^ ash p^ EMM25 p^ EMM55 p^ db50 p^ db75 p^ db100 p^ gammics

p = 0.4, μ = 4, r = 15 0.37 0.35 0.37 0.74 0.34 0.64 0.86 0.41
p = 0.4, μ = 4, r = 30 0.37 0.32 0.37 0.73 0.32 0.64 0.85 0.47
p = 0.4, μ = 8, r = 15 0.37 0.23 0.43 0.73 0.47 0.62 0.81 0.40
p = 0.4, μ = 8, r = 30 0.37 0.21 0.42 0.72 0.47 0.63 0.82 0.42
p = 0.8, μ = 4, r = 15 0.73 0.27 0.53 0.85 0.53 0.79 0.89 0.79
p = 0.8, μ = 4, r = 30 0.72 0.31 0.48 0.84 0.50 0.77 0.91 0.80
p = 0.8, μ = 8, r = 15 0.71 0.29 0.67 0.86 0.83 0.88 0.92 0.81
p = 0.8, μ = 8, r = 30 0.72 0.34 0.62 0.84 0.78 0.87 0.92 0.80

 

Table 5 Overview of used methods; here we used in terms of computation time only the classification ‘low’, ‘middle’ and ‘high’,
since the computation time depends on the complexity of the data and we just want to give a first impression of the computation
time in our settings
Method Computation time Requirements Number of stages
hierarchical clustering low user has to define optimal number of clusters two stages

→ definition by using silhouette width or ASH hierarchical clustering +
silhouette width or ASH

ASH low user has to define degree of smoothing one step
EMM low middle user has to define threshold one to two stages

(threshold;diameter) (if necessary: estimation for radius)
DBSCAN low user has to define ϵ one stage
gammics high no prior knowledge necessary, but can be helpful one stage
 

Fig. 5௒ Flowchart of the ‘feedback analysis’ of combining cluster methods
to analyse single or dual colour protein data
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input for other methods, e.g. the EMM. To get a first overview of
the data and regions with high density of points, we analyse the
data employing ASH. The resulting density plot is shown on the
right-hand side in Fig. 6. One can see that the four chosen ROIs do
have different point densities and reflect (mainly all) different parts
of the cell. For EMM, we showed in Section 3 that the threshold
parameter is nearly equal to the diameter. As can be seen in
Table 6, the average mean of the radius varies between 17 and 22 
nm, thus we use 30, 35 and 40 for this parameter since it should be
roughly the diameter. Owing to memory constraints we split the
spatial distribution of the cell in four parts, as shown in Fig. 5 in
the supplement Appendix 2. The estimated values of the proportion
for the four parts are shown in Table 7. As one can see, the
estimated values are all similar, but much higher than the estimated
values of the different ROIs employing the gammics method. The
DBSCAN method works well on the whole cell image. The
estimated proportions which depend on the chosen value of
parameter ϵ ∈ {25, 50, 75, 100} are p^ 25 = 0.5888, p^ 50 = 0.8155,
p^ 75 = 0.8825 and p^ 100 = 0.9190. 

The estimated proportions for the EMM method are similar to
those of the DBSCAN method with ϵ ∈ {50, 75}. That confirms
the results above.

4.2 Dual colour simulation study

Another field of application for the mentioned methods is dual
colour data. Here, the data set consists of the localisations for light
dots of the ‘green’ proteins as well as the localisations of the ‘red’
ones. These two images can be separated easily and then analysed
as a single image, see Section 3. Here, we will show only results
for simulated data. To that end, the ‘green’ image is simulated as

above and the ‘red’ one is simulated as described in Section 2.1
with respect to (w.r.t.) the different settings.

To get an idea of what such a simulation looks such as, see
Fig. 6 in the supplement Appendix 2: obviously, there are
differences between the upper images and the lower ones. As one
can see, the regions with high point density are located on different
areas in (a) and (b). The regions with high point density in (c) and
(d) are similar and only shifted in comparison with those in (a).
The upper ones are independent and together represent setting 1.
The ones below are the two different depending ‘red’ settings, such
that images (a) and (c) create setting 2 and (a) and (d) represent
setting 3, as described in Section 2.1.

The results for the gammics method are shown in 2 in the
supplement. Note that the estimators work as well as for the single
simulation in chapter 3. In summary, the results are similar to those
in Section 3 for the three settings. Hence, to get prior information
the gammics method is a valid method.

However, note that for setting 2, the mean radius of the ‘red’
proteins is underestimated for all simulations (mostly between 1
and 5 nm instead of 15 and 30 nm). In case of setting 1, the
estimated values are similar to those for the ‘green’ proteins, the
estimated values in setting 3 tend to overestimate the mean radius
in cases of r = 15 nm and underestimate in cases of r = 30 nm.

The estimated values for the proportion of points in clusters
using the other methods are shown in Tables 3–5 in the supplement
Appendix 3 for all three settings. In summary, the EMM and
DBSCAN work well for a good choice of parameter.

Thus, it is auxiliary to follow the work flow in Fig. 5. At this
point of a real data analysis, new ROIs could be defined. These
ROIs could be analysed again by using the gammics method, the
EMM and DBSCAN. Subject to the size of the ROIs they can be
analysed by the gammics method directly; otherwise, one has to
choose smaller regions or divide them into smaller ones.

5௑Conclusion and outlook
Proteins are an important component of the cell. They can regulate
different mechanisms and also the transfer of other molecules
through cells. For these reasons, it is important to understand the
behaviour of proteins. Here, we concentrate on the clustering
behaviour of proteins and the corresponding cluster characteristics.

To get the locations of proteins, fluorescence microscopy can be
used, e.g. TRIF microscopy. Here, we analysed simulated data as
well as a real data set.

We compared five different methods for analysing such data
sets: hierarchical clustering, ASH, EMM, DBSCAN and the
gammics method. Hierarchical clustering did not work well, but we
showed that ASH is a good method to get a first overview of the
data and also for estimating the proportion of points in clusters if
prior information is available. For estimating the proportion of
proteins in clusters, we employed a standard method (DBSCAN) as
well as new methods (EMM and the gammics method). All three
methods worked well. EMM and DBSCAN require the
specification of an additional parameter, but run very fast. In
contrast, the gammics method needs higher running time, but
additionally estimates the mean radius and the mean size.

Thus our advice is to apply the new ‘feedback analysis’. After
getting an overview of the data and perhaps prior information,
employing ASH and/or the gammics method analyse the whole cell
to estimate the proportion of clustered points, e.g. adopting EMM
and DBSCAN, respectively. The scheme of this proposed new
approach is shown in Fig. 5.

Table 6 Average (labelled by ¯) and median (labelled by ~) estimators for real data analysed by the gammics method
ROI p^̄ (p

~̂
) μ^̄(μ

~̂
) r^̄(r

~̂
)

1 0.7528 (0.7573) 4.6297 (4.8022) 21.9653 (23.3396)
2 0.6631 (0.6621) 4.4658 (4.3965) 19.6638 (19.2250)
3 0.6583 (0.6580) 5.1815 (5.4357) 17.4426 (18.7699)
4 0.5944 (0.5923) 4.3179 (4.4116) 16.4657 (18.0482)
overall mean 0.6672 (0.6674) 4.6487 (4.7615) 18.8844 (19.8457)
 

Fig. 6௒ Resulting density plot using ASH for the real data; left: plot of the
experimental data, where each dot is a measured protein and right: the
resulted contour plot of this experimental data

 
Table 7 Estimated proportions of points in clusters using
EMM
Part of the cell p^ 30 p^ 35 p^ 40

a 0.8001 0.8369 0.8636
b 0.8131 0.8481 0.8742
c 0.8232 0.8561 0.8808
d 0.8056 0.8417 0.8694
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For future research, the identification of points in clusters is an
interesting starting point and should be the next step. We showed
that the estimation of the proportion of points in clusters employing
EMM (and also hierarchical clustering) works well, but the
identification of the points in clusters needs to be improved. If we
can identify the points in clusters, we can compare the clusters and
corresponding points for dual colour data. This would open up the
possibility to have a closer look at the points in neighbouring
clusters with different colours and draw conclusions of the (spatial)
correlation of the two proteins.

Furthermore, we did not have a look at the robustness of our
new approach or the applicability to other application fields. This
should be done in a next step to analyse the performance of the
flowchart for other types of data and settings.
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8௑Appendix 1: Methods
௑
In this section, a detailed description of the clustering methods we
used is given.

Cluster analysis is used to find structures in data xi, i = 1, …, n,
e.g. groups of the same kind. Hence, one assumes that the data can
be grouped into h homogeneous clusters. To ensure the
homogeneity, the cluster should only contain similar objects. To
that end, the similarity of two points is measured by the distance.
The goal of the cluster analysis is to classify n objects or
observations into h groups, the clusters, in which every cluster
should contain at most one and maximal all possible objects.
Popular distance measures d(xi, xj) are the Manhattan block matrix
or the Lq norm, where for q = 2 it is the Euclidean distance (for
detailed information about distance measures see Johnson [30]).

8.1 Hierarchical clustering

To find clusters using hierarchical clustering, there are two possible
approaches: the agglomerative one and the divisive one. The
agglomerative approach starts with the finest partition, i.e. each
object forms one cluster. In the following iterations, the two
‘nearest’ clusters are merged until there is only one big cluster. The
divisive approach starts with one cluster containing all
observations and iteratively splits the most inhomogeneous cluster.

The distance of two clusters and the homogeneity of a cluster,
respectively, can be computed in different ways as described in
Hartigan [16], e.g. based on the average-linkage approach.

To find the optimal number of clusters, one can use the
silhouette width. It represents the goodness of fit for each
observation for a given clustering. The silhouette width for
observation xi is given by

s(i) =
b(i) − a(i)

max {a(i), b(i)}
, (1)

where a(i) is the average distance between xi and all other
observations in the same cluster and b(i) is the minimum of all
distances of xi and all other clusters. Thus, the silhouette width s(i)
takes a value between −1 and 1. Observations with a silhouette
width value near 1 are represented well, and observations with s(i) 
< 0 are not.

Now, the average silhouette width for all observations for a
given numbers of clusters can be computed. The optimal number of
clusters hopt is given by the number h of clusters that maximises the
average silhouette width.
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8.2 Average SH

Assume the data to be divided into k⋆ bins, labelled 0, …, k
⋆ − 1.

Let the kth bin be defined by the interval Bk = [τk, τk + 1) and ck is
the corresponding number of observations in this interval. Then,
the density histogram is given by f

^
(x) = (ck /n(τk + 1 − τk)), where n

is the total number of observations. Often the bins are equally
spaced, thus ω = τk + 1 − τk ∀k and τ0 = 0. The density histogram
then results in f

^
(x) = (ck /nω) . In this case, there is only one

unknown parameter ω. That is why it is often called ‘non-
parametric’ (Scott and Sain [19]).

If τ0 is unknown, there is the unknown parameter pair (ω, τ0). In
this case, τ0 can be seen as a ‘nuisance’ parameter which can be
purged by m ASH, where each histogram is shifted by a factor
δ = (ω/m) from the previous histogram.

Let the intervals Bk
⋆ = [τ0 + kδ, τ0 + (k + 1)δ) all be equal spaced

with width δ and ck the corresponding counts. Then the ASH is
constant over all intervals and

f
^

ASH =
1

nω
∑

i = 1 − m

m − 1

1 −
|i|
m

ck + i, for x ∈ Bk
⋆ . (2)

In addition to equal weights for the SHs, any other choices for
f
^

ASH = (1/nω)∑i = 1 − m
m − 1

wm(i)ck + i, for x ∈ Bk
⋆ is possible, e.g. a

weight defined by a kernel ker(x). Since m → ∞ the ASH
approximates the ‘kernel estimator’

f
^

ker =
1

nω
∑
i = 1

n

ker
x − xi

ω
=

1
n

∑
i = 1

n

kerω(x − xi), (3)

where kerω(x) = (1/ω)ker[(x/ω)].
For vector-valued data, the extension of ASH estimators is

straight forward. An alternative to these estimators are mixture
models, which are fitted using the expectation-maximization (EM)
algorithm. More information can be found in Scott and Sain [19].

8.3 Extensible MMs

An EMM is a Markov chain which is varying in time. This Markov
chain can be interpreted as a directed graph (with fixed structure).
The EMM has the following properties.

The EMM is built up of a Markov chain with nodes Nn at every
point in time and an algorithm which alters the Markov Chain. This
algorithm consists of the three parts: EMMCluster, EMMIncrement
and EMMDecrement.

Thereby EMMCluster assigns an object to a cluster at a given
time t which is represented by the nodes. If the object is not close
enough to the other clusters, this object is assigned to a new cluster.
Whether the object is close enough to an existing cluster is
determined by a threshold defined by the user. This step can be
described as a kind of ‘nearest-neighbour’ algorithm.
EMMIncrement computes transition probabilities of the Markov
chain by retaining the counts as an indicator how many ‘visitors’
the node has. Moreover finally, EMMDecrement can reduce the
size of the EMM if it gets too large.

The EMM still learns during the application phase and is
‘generic incremented model whose nodes can have any kind of
representative’ (Dunham et al. [20]). It is possible to match states
during clustering. Furthermore, it is allowed to add new nodes and
also delete present nodes. Finally, the EMM can be applied to
online data.

Detailed information of the EMM can be found in Dunham et
al. [20].

8.4 DBSCAN

DBSCAN is a commonly adopted algorithm for finding clusters in
a data set {x1, …, xn} and employs the distance between two points
as a key number for indicating a cluster. The distance function is
arbitrary, but it defines the shape of the neighbourhood, e.g. in 2D

with a Manhattan distance, the shape is rectangular. Therefore,
Ester et al. [15] introduced the theory of density-reachability w.r.t.
two key parameters, ϵ and MinPts. A point xi is density-reachable
for xj if the distance between xi and xj is at most ϵ and if there are
at least MinPts points in the ϵ neighbourhood of xj, i.e. within a
distance ϵ of xj.

Furthermore, a set of points x1, …, xm, m ≤ n, is density
connected, if for each pair of points xi and xj, i, j ∈ {1, …, m},
there is a permutation xi = x1

⋆, …, xm
⋆ = xj, a set of density-

collected points (i.e. a set in which x(i + 1)
⋆  is directly density-

reachable from xi
⋆).

Accordingly, if the two parameters ϵ and MinPts are given (or,
ideally, known) the algorithm can start with an arbitrary point x⋆

and search for all density-reachable points of x⋆ w.r.t. to parameters
ϵ and MinPts. If x⋆ is a kernel point (of a cluster), DBSCAN finds a
cluster w.r.t. the parameter ϵ and MinPts. Is the point a boundary
point, i.e. x⋆ lies on the boundary of a cluster, there are no density-
reachable points of x⋆ and the algorithm chooses another point.

Since ϵ und MinPts are global parameters, several problems can
occur, e.g. two ‘near’ clusters with different densities can be
merged or a boundary point can belong to two different clusters.
On account of such problems, another run of DBSCAN can be
necessary. Moreover, there are also modifications of the DBSCAN
algorithm such as the ordering points to identify the clustering
structure (OPTICS) method or Bayesian DBSCAN (bDBSCAN)
(Ankerst et al. [31] and Argiento et al. [32]). However, in this
paper we will use the original DBSCAN algorithm.

8.5 Gammics

The gammics method (Schäfer et al. [21]) is another method for
finding clusters in a point pattern, where a cluster has to consist of
at least two objects. A nice feature of this method is the possibility
of estimating the proportion, the cluster size and the cluster radius
simultaneously.

To achieve this, the gammics method does not model the point
pattern itself, but rather the squared distances between a point and
its κth nearest neighbour, here we use κ = 2. The cluster radius and
size are then estimated algorithmically.

Assume the data to be realisations of a random variable
Xi, i = 1, …, n, in which they are random point coordinates in an
endless region P ⊂ ℝ2. Let Di be the distance between the point Xi

and its nearest neighbour X j with realisations di = d(xi, xj). The
approach is to model a function of Di

2 which indicates if a point Xi

is clustered or not, because the squared distances obviously differ
between clustered and non-clustered points. This function is given
by

Yi(Di
2) =

1 Xi is part of a cluster

0 Xi is not part of a cluster .
(4)

For Di
2, we fit two gamma distributions (with density

p(x) = [1/Γ(α)β
α]xα − 1e−(α/β)), one representing the clustered points

and one the non-clustered. Thus, we can write

Di
2 |Yi = k ∼ gamma(αk, βk) k = 0, 1 (5)

αk |Yi = k ∼ gamma(ak, bk) k = 0, 1 and

1
βk

|Yi = k ∼ gamma(ck, dk) k = 0, 1.
(6)

Furthermore, ‘the implicit allocation of points to one of the
distributions is carried out by means of Y = (Y1, …, Yn)′ ‘(Schäfer
et al. [21]) and we assume the Yi to be Bernoulli distributed. The
mixture proportion is then given by the following beta distribution:

Yi ∼ Bernoulli(pc), (7)
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pc ∼ Beta(e, f ) . (8)

The mixture model underlying the gammics method is given by
(4)–(8). The hyperparameters a0, a1, b0, b1, c0, c1, d0, d1, e and f have
to be defined by the user. In our application, we use a0 = 3, a1 = 2,
b0 = 1, b1 = 1, c0 = 1, c1 = 4, d0 = 0.5, d1 = 1 and e = f = 1.

The estimation of mean cluster radius and mean cluster size
depends on the allocations as well as on the basic group, i.e.
clustered versus non-clustered.

The cluster structure is then derived from the fit of the two
gamma distributions algorithmically, where first the intersection Lc

between the densities is calculated. It can be written as

Lc = {x | pc ⋅ p(x |αy, 1, βy, 1) = (1 − pc) ⋅ p(x |αy, 0, βy, 0)}, (9)

where p is the density of the gamma distribution. Second, the
distance Dq of a point Xq to its nearest neighbour is determined by
q = argmini:Di

2
≥ Lc

Di
2. Thus, two points are clustered in the same

group (even) if the distance is higher than Lc, but there exist other
points between those two, such that no distance between ‘nearest
neighbours’ is more than Lc.

The model is finally fitted by a Gibbs sampling Markov chain
Monte Carlo (MCMC) approach including a Metropolis step for
updating the shape parameters of the gamma distribution.

9௑Appendix 2
௑
See Figs. 7–12. 

10௑Appendix 3
௑
See Tables 8–12. 

Fig. 7௒ Results of clustering using ASH and hierarchical clustering (red
points are clustered, grey points are singletons and the points with black
circles are the real clustered points)

 

Fig. 8௒ Results of clustering using EMM with two different thresholds (red
points are clustered, grey points are singletons and the points with black
contour are the real clustered points); left: EMM threshold = 25 and right:
EMM threshold = 55

 

Fig. 9௒ Result of clustering by DBSCAN with different choices of the
parameter ϵ; top left: ϵ = 25, top right: ϵ = 50, bottom left: ϵ = 75, bottom
right: ϵ = 100

 

Fig. 10௒ ASH for a simulation with p = 0.4 (left) and p = 0.8 (right)
 

Fig. 11௒ Experimental data fragmented into four parts; these parts are
used for the EMM-analysis, because the EMM method cannot analyse the
whole cell in one step. Thus we split the cell in these four parts to analyse
the experimental data by using the EMM method
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Fig. 12௒ Dual colour simulation with parameter settings p = 0.4, μ = 4, r = 15 and all three settings analysed by ASH
(a) Green proteins, (b) Red proteins for setting 1, (c) Red proteins for setting 2, (d) Red proteins for setting 3

 
Table 8 Estimated number of clusters by using ASH, where green = simulation of green proteins, red1=simulation of red
proteins and setting 1, red2 = simulation of red proteins and setting 2 and red3 = simulation of red proteins and setting 3
Simulation parameter Green Ash Red 1 Ash Red 2 Ash Red 3 Ash All 1 Ash All 2 Ash All 3 Ash
p = 0.4, μ = 4, r = 15 202 150 207 150 202 130 202 120 409 400 404 350 404 300
p = 0.4, μ = 4, r = 15 194 120 222 130 194 120 194 130 416 300 388 300 388 250
p = 0.4, μ = 4, r = 15 195 150 208 150 195 180 195 150 403 400 390 350 390 300
p = 0.4, μ = 4, r = 15 196 150 183 100 196 180 196 150 379 350 392 350 392 300
p = 0.4, μ = 4, r = 30 205 150 210 150 205 120 205 150 415 400 410 400 410 350
p = 0.4, μ = 4, r = 30 194 120 205 150 194 150 194 120 399 400 388 300 388 300
p = 0.4, μ = 4, r = 30 205 130 211 100 205 150 205 130 416 300 410 280 410 350
p = 0.4, μ = 4, r = 30 210 130 204 150 210 150 210 200 414 300 420 280 420 300
p = 0.4, μ = 8, r = 15 92 80 102 100 92 100 92 120 194 200 184 180 184 180
p = 0.4, μ = 8, r = 15 114 100 121 100 114 130 114 120 235 200 228 250 228 200
p = 0.4, μ = 8, r = 15 102 90 106 120 102 120 102 120 208 200 204 180 204 180
p = 0.4, μ = 8, r = 15 102 100 96 90 102 100 102 100 198 250 204 200 204 200
p = 0.4, μ = 8, r = 30 89 80 98 90 89 80 89 90 187 200 178 180 178 180
p = 0.4, μ = 8, r = 30 101 90 102 100 101 100 101 90 203 200 202 180 202 180
p = 0.4, μ = 8, r = 30 96 80 89 90 96 100 96 100 185 200 192 200 192 200
p = 0.4, μ = 8, r = 30 103 90 108 90 103 100 103 120 211 180 206 200 206 200
p = 0.8, μ = 4, r = 15 444 100 405 120 444 120 444 130 849 300 888 350 888 300
p = 0.8, μ = 4, r = 15 424 90 468 120 424 100 424 120 892 250 848 250 848 250
p = 0.8, μ = 4, r = 15 402 150 454 170 402 150 402 150 856 300 804 400 804 300
p = 0.8, μ = 4, r = 15 432 100 416 120 432 150 432 120 848 400 864 350 864 400
p = 0.8, μ = 4, r = 30 441 120 426 180 441 150 441 150 867 200 882 250 882 250
p = 0.8, μ = 4, r = 30 428 150 418 150 428 180 428 180 846 350 856 300 856 300
p = 0.8, μ = 4, r = 30 396 150 428 200 396 150 396 180 824 300 792 350 792 350
p = 0.8, μ = 4, r = 30 427 100 411 100 427 150 427 150 838 250 854 200 854 200
p = 0.8, μ = 8, r = 15 211 120 183 130 211 150 211 130 394 300 422 350 422 300
p = 0.8, μ = 8, r = 15 217 100 200 100 217 100 217 130 417 250 434 250 434 250
p = 0.8, μ = 8, r = 15 203 150 188 170 203 150 203 150 391 400 406 350 406 350
p = 0.8, μ = 8, r = 15 211 120 233 130 211 150 211 130 444 300 422 250 422 300
p = 0.8, μ = 8, r = 30 180 150 196 150 180 180 180 170 376 320 360 300 360 350
p = 0.8, μ = 8, r = 30 192 150 214 120 192 120 192 120 406 300 384 280 384 300
p = 0.8, μ = 8, r = 30 197 150 198 120 197 150 197 130 395 300 394 300 394 300
p = 0.8, μ = 8, r = 30 210 120 210 150 210 150 210 130 420 300 420 300 420 280
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Table 9 Average estimators obtained using the gammics method for all parameter choices for the simulations, where r^̄ is the
average estimator for the radius, μ^̄  is the average estimator for the size and p^̄  is the average estimator for the proportion of
points in clusters and also green = simulation of green proteins, red1 = simulation of red proteins and setting 1, red2 =
simulation of red proteins and setting 2, red3 = simulation of red proteins and setting 3
Simulation Green Red 1 Red 2 Red 3

r^̄ μ^̄ p^̄ r^̄ μ^̄ p^̄ r^̄ μ^̄ p^̄ r^̄ μ^̄ p^̄

p = 0.4, μ = 4, r = 15 9.16 3.74 0.43 9.08 6.82 0.43 8.48 3.57 0.78 9.39 7.08 0.82
p = 0.4, μ = 4, r = 30 8.98 3.73 0.46 8.61 6.89 0.42 8.31 3.64 0.81 8.76 6.63 0.81
p = 0.4, μ = 8, r = 15 9.80 3.84 0.43 9.60 6.85 0.42 8.45 3.68 0.81 8.94 6.67 0.81
p = 0.4, μ = 8, r = 30 8.43 3.74 0.44 8.40 6.59 0.44 8.24 3.62 0.81 8.17 6.66 0.84
p = 0.8, μ = 4, r = 15 14.71 3.68 0.50 12.80 6.13 0.45 12.84 3.60 0.80 13.27 6.36 0.81
p = 0.8, μ = 4, r = 30 15.20 3.81 0.49 11.61 5.93 0.45 13.07 3.50 0.79 11.95 6.01 0.81
p = 0.8, μ = 8, r = 15 15.01 3.81 0.48 12.87 5.95 0.42 13.34 3.72 0.80 12.31 6.00 0.81
p = 0.8, μ = 8, r = 30 15.34 3.69 0.54 12.78 5.80 0.45 13.44 3.75 0.81 11.92 5.87 0.82
 

Table 10 Average estimations of the proportion of points in clusters for red proteins of dual colour data set, setting 1
(independent proteins)
Simulation parameter p^ prior p^ EMM25 p^ EMM55 p^ db50 p^ db75 p^ db100

p = 0.4, μ = 4, r = 15 0.37 0.39 0.73 0.33 0.63 0.85
p = 0.4, μ = 4, r = 30 0.36 0.35 0.73 0.33 0.64 0.87
p = 0.4, μ = 8, r = 15 0.37 0.43 0.72 0.46 0.61 0.80
p = 0.4, μ = 8, r = 30 0.37 0.40 0.73 0.45 0.62 0.82
p = 0.8, μ = 4, r = 15 0.71 0.55 0.85 0.55 0.79 0.91
p = 0.8, μ = 4, r = 30 0.69 0.48 0.84 0.49 0.79 0.92
p = 0.8, μ = 8, r = 15 0.71 0.66 0.85 0.81 0.87 0.91
p = 0.8, μ = 8, r = 30 0.70 0.63 0.86 0.80 0.89 0.92
 

Table 11 Average estimations of the proportion of points in clusters for red proteins of dual colour data set, setting 2
(correlated cluster centres)
Simulation parameter p^ prior p^ EMM25 p^ EMM55 p^ db50 p^ db75 p^ db100

p = 0.4, μ = 4, r = 15 0.37 0.36 0.67 0.33 0.55 0.74
p = 0.4, μ = 4, r = 30 0.37 0.36 0.67 0.33 0.56 0.74
p = 0.4, μ = 8, r = 15 0.37 0.41 0.66 0.44 0.55 0.71
p = 0.4, μ = 8, r = 30 0.37 0.43 0.66 0.47 0.56 0.70
p = 0.8, μ = 4, r = 15 0.73 0.55 0.83 0.54 0.75 0.86
p = 0.8, μ = 4, r = 30 0.72 0.56 0.84 0.54 0.75 0.86
p = 0.8, μ = 8, r = 15 0.71 0.68 0.85 0.82 0.86 0.89
p = 0.8, μ = 8, r = 30 0.72 0.67 0.84 0.81 0.85 0.89
 

Table 12 Average estimations of the proportion of points in clusters for red proteins of dual colour image, setting 3 (correlated
points)
Simulation parameter p^ prior p^ EMM25 p^ EMM55 p^ db50 p^ db75 p^ db100

p = 0.4, μ = 4, r = 15 0.37 0.34 0.67 0.30 0.54 0.74
p = 0.4, μ = 4, r = 30 0.37 0.31 0.65 0.26 0.54 0.73
p = 0.4, μ = 8, r = 15 0.37 0.39 0.65 0.44 0.55 0.71
p = 0.4, μ = 8, r = 30 0.37 0.38 0.67 0.43 0.57 0.72
p = 0.8, μ = 4, r = 15 0.73 0.50 0.82 0.48 0.74 0.87
p = 0.8, μ = 4, r = 30 0.72 0.45 0.80 0.44 0.74 0.87
p = 0.8, μ = 8, r = 15 0.71 0.64 0.84 0.80 0.87 0.89
p = 0.8, μ = 8, r = 30 0.72 0.59 0.83 0.75 0.85 0.90
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