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Protein-protein interaction (PPI) prediction is meaningful work for deciphering cellular
behaviors. Although many kinds of data and machine learning algorithms have been used
in PPI prediction, the performance still needs to be improved. In this paper, we propose
InferSentPPI, a sentence embedding based text mining method with gene ontology (GO)
information for PPI prediction. First, we design a novel weighting GO term-based protein
sentence representation method to generate protein sentences including multi-semantic
information in the preprocessing. Gene ontology annotation (GOA) provides the reliability of
relationships between proteins and GO terms for PPI prediction. Thus, GO term-based
protein sentence can help to improve the prediction performance. Then we also propose
an InferSent_PN algorithm based on the protein sentences and InferSent algorithm to
extract relations between proteins. In the experiments, we evaluate the effectiveness of
InferSentPPI with several benchmarking datasets. The result shows our proposed method
has performed better than the state-of-the-art methods for a large PPI dataset.
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INTRODUCTION

Protein-protein interaction (PPI) plays a vital role in cellular systems of organisms (Zhao et al.,
2020). Most biological processes within a cell are induced by a variety of interactions among the
proteins, such as signal transduction, immune response, and cellular organization (Sun et al., 2017).
PPI detection is very important for researchers to study the properties of cellular systems and
improve the understanding of disease and provide a basis for the development of novel therapeutic
approaches (Liu et al., 2020).

Due to the importance of PPI in the field of biology, a variety of computational methods based on
various sources of biological information have been proposed for PPI prediction. Researchers have
been predicting PPIs using a protein sequence (Hashemifar et al., 2018; Li et al., 2018; Yao et al.,
2019) and PPI network information (Liu et al., 2020; Yang et al., 2020). For example, in DeepFE-PPI
(Yao et al., 2019), a new residue representation method named Res2vec is designed for protein
sequence representation, combining effective feature embedding function and powerful deep
learning technology to infer PPI. Research results of previous works (Hashemifar et al., 2018; Li
et al., 2018; Yao et al., 2019; Liu et al., 2020; Yang et al., 2020) show that protein sequence and PPI

Edited by:
Tao Huang,

Shanghai Institute of Nutrition and
Health (CAS), China

Reviewed by:
Ning Sun,

Hohai University, China
Gele Aori,

University of Toyama, Japan

*Correspondence:
Meijing Li

mjli@shmtu.edu.cn

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal
Frontiers in Genetics

Received: 02 December 2021
Accepted: 24 January 2022
Published: 28 March 2022

Citation:
Li M, Jiang Y and Ryu KH (2022)
InfersentPPI: Prediction of Protein-
Protein Interaction Using Protein
Sentence Embedding With Gene

Ontology Information.
Front. Genet. 13:827540.

doi: 10.3389/fgene.2022.827540

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 8275401

ORIGINAL RESEARCH
published: 28 March 2022

doi: 10.3389/fgene.2022.827540

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.827540&domain=pdf&date_stamp=2022-03-28
https://www.frontiersin.org/articles/10.3389/fgene.2022.827540/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.827540/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.827540/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.827540/full
http://creativecommons.org/licenses/by/4.0/
mailto:mjli@shmtu.edu.cn
https://doi.org/10.3389/fgene.2022.827540
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.827540


network information based PPI prediction model can achieve
high predictive accuracy, but they have high time complexity
because computation is complicated by protein vectorized
representations based on protein sequence information (Liu
et al., 2020).

Gene ontology (GO) information is applied to PPI prediction
(Smaili et al., 2018; Duong et al., 2019; Zhong et al., 2019). GO
(Consortium, 2004) is a standard ontology that describes
biological entities and relationships between them. It is
organized as a directed acyclic graph (DAG), named GO
graph. In a GO graph, each node is a GO term, and each edge
between the nodes is the relationship between the terms. Since
these GO terms are used to annotate biomedical entities, a protein
is represented by a set of GO terms. Therefore, the semantic
similarity between GO terms can reflect the properties of
relationship between proteins to some extent. GO based
methods can make accurate predictions at a lower cost, and
they analyze the relationship between two proteins by comparing
the similarity between GO terms (Consortium, 2017). Previous
methods (Resnik, 1995; Lin, 1998; Pekar and Staab, 2002; Wang
et al., 2007) compute the semantic similarity between two GO
terms according to the structure of a GO graph. According to the
similarities between two terms in GO, the semantic similarity
between two proteins is calculated by AVG (Xu et al., 2008), Max
(Pesquita et al., 2009), best match average (BMA) (Li et al., 2010),
and so on. The structure-based methods are roughly divided into
two types: node-based or edge-based. Node-based methods such
as Resnik (Resnik, 1995) and Lin (Lin, 1998) focus on the
information content (IC) of the most informative common
ancestor (MICA). Edge-based methods such as Pekar (Pekar
and Staab, 2002) consider the longest path from the nearest
common ancestor to root, the longest path between GO terms
and their common ancestor. Wang and others (Wang et al., 2007)
developed a hybrid method to calculate semantic similarity using
the topology of GO graph structure, and they consider the
different kinds of relationships in GO graph. However, GO
structure-based methods mainly consider the locations of GO
terms in the GO graph, they did not fully mine information of the
GO graph and gene ontology annotation (GOA). GO graph
includes the term-term relations of GO terms, while GOA
includes the term-protein annotations between GO terms and
proteins (Zhong et al., 2019). Each GOA record also contains
evidence from published experiments or inferences using
computational methods (Liu and Thomas, 2019). By fully
mining the GO graph and GOA, relevant information can be
captured from term-term relationships and term-protein
annotations relationships to predict PPI. Therefore, in order to
make reliable PPI predictions, we need to fully mine relevant
information of the GO structure and GO annotation at the same
time (Mazandu et al., 2017).

Text mining techniques have been applied to extract protein
information and construct PPI networks (Ma et al., 2019). A text
mining method can make full use of a great quantity of literature
to reveal potential protein-related knowledge. Deep learning
architecture can utilize multiple hierarchical layers to extract
effective features (Jin et al., 2020). Recently, some researchers
used word embedding techniques to represent proteins with word

vectors based on a large scale of corporation and predicted PPIs
based on the protein vectors (Smaili et al., 2018; Duong et al.,
2019; Zhong et al., 2019). When they generate the protein vectors,
the relations between GO terms (for short, named GO-GO
relations) or relations between proteins and GO terms (for
short, named protein-GO relations) were considered. But they
did not fully utilize the protein-GO relations, GO-GO relations,
and protein-protein interactions together to construct the PPI
prediction model.

In this paper, we propose InferSentPPI, an efficient
supervised sentence embedding based PPI prediction method
by capturing information of GO structure and GO annotation.
Comparing with the normal corpus-based approach,
InferSentPPI considers three kinds of relationships together,
which are protein-GO relations, GO-GO relations, and protein-
protein interactions. To utilize protein-GO relations,
InferSentPPI regards a protein as a sentence, and it
represents protein with GO terms. Its related GO term’s
vectors are the words that make up the sentence. To utilize
semantic relations between GO terms, the GO term vectors are
created by Word2vec from the GO graph structure.
InferSentPPI uses the modified supervised sentence
embedding model InferSent (Conneau et al., 2017), which
can capture associations between GO terms annotating the
proteins in the PPI datasets. Therefore, our method can fully
mine the information of GO graph, GO annotation, and PPI
information to obtain high quality protein vector
representations for reliable PPI prediction.

The main contributions of this study are as follows:

(1) A new protein sentence embedding based PPI prediction
method with GO information was designed and
implemented.

(2) Three kinds of biological relationships are applied to PPI
prediction together, which are protein-GO relations, GO-GO
relations, and protein-protein interactions. It fully mines the
information of GO graph, GO annotation, and PPI
information to obtain high quality protein vector
representations for improving the performance of PPI
prediction.

(3) An efficient GOA preprocessing method, generation of
weighted protein-GO annotation axioms for protein
sentence representations based on the reliability, is
proposed for improving the performance of PPI prediction.

METHODS

Overview
InfersentPPI includes three main stages: preprocessing, protein
sentence representation, and InferSent_PN as shown in Figure 1.
In preprocessing, we exact the protein-GO annotation axioms
and GO term vectors from GO graph and GOA separately, which
are supposed by GO resource. We also extract PPIs from the PPI
database. In protein sentence representations, protein is
represented by its related GO term vectors first. Then protein
sentence corpus is generated, which is composed of pairs of
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protein sentences and PPI labels. In the third stage, we apply
InferSent_PN model to predict PPIs, which is constructed based
on protein sentence embedding. Finally, we get relationships
between proteins, PPI positive or PPI negative.

Preprocessing
Preprocessing consists of three parts: annotation axiom
generation, GO term vector generation, and protein screening
process. Annotation axiom generation is a task to extract the

FIGURE 1 | The workflow of InferSentPPI method.

FIGURE 2 | The workflow of the annotation axiom generation.
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relationship between protein and GO terms and represent protein
with its related GO terms. GO term vector generation is a word
embedding based task to mine semantic information between GO
terms from GO structure. The protein screening process is a task
to find the available PPIs from the PPI databases.

Annotation Axiom Generation
GOA includes the term-protein annotations between GO terms
and proteins. Therefore, we extract the reliable annotation
relationship between GO terms and proteins from GOA.

To obtain reliable protein-GO annotation axioms, we filter
GOA records according to reliable evidence. The record of
protein-GO annotation axioms from GOA is defined as the
following: Protein_GO_record (GO, protein) = {GO ID, protein
ID, Evidence Code}.

The specific generation steps are as shown in Figure 2. First, only
the reliable protein-GO annotation axioms are needed; thus, we
delete the annotation records without reliable evidence whose
“Evidence Code” field value is “IEA” or “ND”, and obtain the
reliable GOA record file. The evidence code “ND” indicates that
biological data of the gene or gene product being annotated is not
available. The evidence code “IEA” indicates the protein-GO relation
is not manually reviewed and cannot generally be traced to an
experimental source. Here, reliable protein-GO relations from an
experiment directly supporting or it is manually reviewed. So,
evidence code can reflect the reliability of protein-GO relations
effectively. Second, based on the reliability, we give a weight to the
protein-GO annotation axioms. We keep the protein-GO
annotation axioms that appear many times in the GOA record
file and note the repeated times as theweight. If an annotation record
appears many times, it means that the correlation between them can
be proved many times in different papers. Therefore, the number of
repetitions can be used as a quantitative index to evaluate the reliable
evidence of the annotation record. The final protein-GO annotation
axioms with different weights are called “PGAA_ Weight”. We also
generate protein-GO annotation axioms without the weight, named
“PGAA_ noWeight”.

GO Term Vector Generation
GO graph includes the semantic relationships between GO terms.
Thus, we apply the Word2vec (Mikolov et al., 2013) algorithm to
generate the GO term vectors learning the network structural
information from GO-GO relations. GO term vectors imply
semantic relationships between GO terms because vectors are
generated based on GO graph. Learned vectors can be applied to a
variety of bioinformatics applications, such as predicting protein-
protein interactions. This method is already used by other papers
to generate the semantic GO term vectors and proved to be useful in
predicting protein-protein interactions, such asOnto2vec (Smaili et al.,
2018). GO term vector GOV can be specified in the following form:

GOV � (v1, v2, v3, ......, vn)
where v1, v2, v3, . . . ,vn are the components of GOV.

Protein Screening Process
To obtain available PPI datasets for constructing the
Infersent_PN model, first we select the PPIs whose protein

can map UniProt ID because proteins without UniProt ID
cannot find their related GO terms. Then we select the PPIs
whose proteins have their related GO terms and can be
represented by GO terms.

Protein Sentence Representation
Protein is annotated by several GO terms. Therefore, protein can
be represented by a set of vectors of a GO term. An n-dimensional
protein vector P can be specified in the following form:

P � (GOV1,GOV2,GOV3, .......,GOVn)
where GOV1, GOV2, GOV3, . . . ,GOVn are the GO term vectors.

In this work, a protein is regarded as a sentence; a GO term is
regarded as a word; a sentence corpus PC is composed of protein
sentences and relationship label between protein pairs. PC can be
specified in the following form: PC=(Pi, Pj, L) where Pi and Pj are
any two proteins, and L is the relationship label.

To get the protein sentence corpuses used in the InferSent_PN
model, the following three steps as shown in Figure 3 need to be
completed: 1) Step 1, we combine the annotation axioms generated by
preprocessing module with the PPI dataset for the experiment to get
the PPI data with GO term notes. Obviously, we take PPI data with
GO term notes as sentence corpus. 2) Step 2, we sample the same
number of positive and negative protein interaction pairs from PPI
datawithGO termnotes to be used in next step. 3) Step 3, we combine
the representations of GO terms generated by the preprocessing
module with PPI with GO term notes to obtain the training data
of InferSent_PN, which is composed of pairs of protein sentence
representations and relationship labels between protein pairs.

InferSent_PN
To detect the relationship between PPIs, we proposed a new
prediction method InferSent_PN, which is based on the
InferSent algorithm (Conneau et al., 2017). InferSent (Conneau
et al., 2017) is a classification model based on neural network
structure for Natural Language Inference (NLI) tasks, and the first
layer is the word vectors of all the words in the train set. Comparing
with original InferSent algorithm, the structure of the model is
modified for PPI prediction. Conneau used GloVe (Pennington
et al., 2014) word vector in InferSent, but we use GO term vectors
to train Word2vec for InferSent_PN model because GO term
vectors imply more semantic biological information. Conneau
tried different encoder models for construction of InferSent,
such as LSTM, GRU, BiLSTM with mean/max pooling, self-
attentive network, and hierarchical ConvNet. Among them,
BiLSTM has the best performance. In this work, InferSent_PN
model utilizes the convolutional neural network (CNN) as the
sentence coder since the order of words has little effect on the
results of the model, and the performance of CNN is better than
BiLSTM. InferSent classifies data into three classes with labels of
‘Entailment’, ‘Contradiction’, or ‘Neutral’. However, InferSent_PN
classifies data into two classes, ‘positive’ and ‘negative’.

InferSent_PN method regards protein as sentence, protein
sentence P, and vector representations of GO terms as word
vector (GO term vectors GOV). Training data of InferSent_PN
is composed of pairs of protein sentences and relationship label
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FIGURE 3 | The workflow of the protein sentence representation.

FIGURE 4 | The workflow of the InferSent_PN model.
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between protein pairs. The workflow of InferSent_PN model is
shown in Figure 4. First, a pair of the sets of GOVs annotating
proteins input InferSent_PN model, sets of GOVs are encoded
by the sentence encoder to obtain protein sentence embedding
Pi and Pj. Pi and Pj embedding goes through the middle layer of
extracting the features of these two vectors, and finally outputs
the probability of belonging to every category in the output layer
for PPI prediction.

The formula for predicting PPI is as following Eq. 1:

InferSent PN (Pi , Pj) � Probability(positive)
>Probability(negative) ?positive: negative (1)

The input of InferSent_PN is (a set of GOVs, a set of GOVs) as
(protein i, protein j). In Section 2.2.1, we introduced two versions
of a method to generate annotation axioms of InferSentPPI.
Based on the two methods, we have implemented two versions
of the InferSentPPI method. Using “PGAA_noweight” in the
InferSentPPI method is named as the “InferSentPPI_ noweight_
PGAA” method, and using “PGAA_Weight” in the InferSentPPI
method is named as “InferSentPPI _ weight_ PGAA".

RESULTS AND DISCUSSION

Datasets
To test the efficiency of a proposed method, seven benchmark
datasets were applied in the experiments. The seven benchmark
datasets are a yeast (S. cerevisiae) dataset and a human dataset
from the STRING database (Damian et al., 2017), a yeast (the S.
cerevisiae core) dataset, an E. coli dataset, aHomo sapiens dataset,
and a mice dataset (Hashemifar et al., 2018) from a database of
interacting proteins (DIP), and a human dataset from the human
protein references databases (HPRD).

The STRING S. cerevisiae dataset contains 6,392 proteins and
2,007,135 interactions, and the DIPS. cerevisiae core contains
5,594 positive protein pairs and 5,594 negative protein pairs. The
STRING human dataset contains 19,577 proteins and 11,353,057
interactions, and the HPRD human dataset is made up of 3,899
positive protein pairs and 4,262 negative protein pairs.
Interaction pairs with reliable GO annotation records were left
through the preprocessing step. Then, the dataset used for the
experiment is shown inTable 1.

Evaluation Metrics
To evaluate the performance of PPI prediction, we used six
measures, including Accuracy, Precision, Recall, F1, Area Under
the ROC curve (AUC_ ROC), and area under PR curve (AUC_ PR).
Accuracy is the ratio of the number of samples correctly classified by

the classifier to the total number of samples. Precision calculates the
proportion of the number of positive samples for correct prediction
to the number of samples whose prediction is positive. Recall
calculates the proportion of the number of samples whose
prediction is positive and correct to the number of samples that
are actually positive. ROC curve and PR curve are widely used to
evaluate the performance of classification and prediction tasks (A
and B, 2018). ROC curve is defined by the relationship between true
positive rate (TPR) and false positive rate (FPR). PR curve is defined
by the relationship between Precision and Recall. Recall is the
abscissa and Precision is the ordinate.

Model Construction and Parameter Setting
We randomly selected 90% of yeast dataset and human dataset to
train the InferSentPPI model. The selection of batch size has some
influence on the training of the InferSentPPI model. By setting
batch size = 2 in model training, InferSentPPI has the best
performance on the yeast test set. In addition, by setting batch
size = 1 in model training, InferSentPPI has the best performance
on the human test set. So, we set the batch size to one for the yeast
dataset and set the batch size to two for the human dataset.

The similarity between GO terms is calculated by three exiting
methods, Resnik (Resnik, 1995), Lin (Lin, 1998), and Pekar
(Pekar and Staab, 2002). The semantic similarity between two
proteins are calculated based on the similarities between related
GO terms by three methods, average value (AVG) (Xu et al.,
2008), maximum value (Max) (Pesquita et al., 2009), and best
match average (BMA) (Li et al., 2010). Compared with AVG and
Max, BMA achieved the best performance. Thus, we select BMA
to calculate the similarity between proteins.

According to the similarities between two terms in GO, the
semantic similarity between two proteins is calculated by AVG
(Xu et al., 2008), Max (Pesquita et al., 2009), and best match
average (BMA) (Li et al., 2010), which are defined by Eqs 2–4:

FunAVG(p1, p2) � 1

|T1||T2| ∑ IC({t1, t2})(t1 ∈ T1, t2 ∈ T2) (2)
FunMAX(p1, p2) � MAX{IC({t1, t2})}(t1 ∈ T1, t2 ∈ T2) (3)

FunBMA(p1, p2) � 1
2
( 1

|T1| ∑ IC({t1, t2}) + 1

|T2| ∑ IC({t1, t2}))
× (t ∈ T1, t2 ∈ T2)

(4)
wherep1 and p2 are the pair of proteins,T1 andT2 are the set of GO
terms that annotate the proteinp1 and p2, respectively. The
information content (IC) is a similarity measurement method
between two terms in ontology, and the detailed calculation
formula is shown in the Supplementary Material file.

TABLE 1 | The number of PPIs in seven test datasets after the preprocessing.

Database STRING DIP HPRD DIP

Label #Yeast #Human #Yeast #Human #E.coli #H.sapiens #M.musculus

Positive 414,240 435,209 5,436 536 1,112 981 100
Negative 414,240 435,209 5,436 536 — — —

Total 828,480 870,418 10,872 1,072 1,112 981 100
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Comparison With Existing GO
Structure-Based Methods
To evaluate the effectiveness of proposed methods, we compare
InferSentPPI with representative GO structure-based PPI
prediction methods (Resnik, 1995; Lin, 1998; Pekar and Staab,
2002; Wang et al., 2007). In the experiment, we used DIP yeast
dataset and HPRD human dataset to evaluate the performance
InferSentPPI method. We randomly selected 10% of the data as
the test set, which is independent of train data.

Tables 2 and 3 show the evaluation results of our proposed
models and the compared models on two different datasets,
HPRDhuman dataset and DIPyeast dataset. The best results
on each dataset are highlighted in bold. The six evaluation
indicators performance of InferSentPPI on DIPyeast dataset
and HPRDhuman dataset are better than four other traditional

GO structure-based models, including Resnik, Lin, Wang, and
Pekar. The PPI prediction method uses supervised sentence
embedding technology to regard protein as sentence and
vector representation of GO term as a word vector. So, it can
effectively capture the relationship between proteins from a GO
structure and a GO annotation for reliable PPI prediction.

TABLE 2 | Performance comparison of six methods on the yeast dataset from DIP.

Method Accuracy Precision Recall F1 AUC_ROC AUC_PR

Resnik_BMA 0.6957 0.9953 0.3933 0.5638 0.8275 0.8779
Lin_BMA 0.7794 0.7911 0.7591 0.7747 0.8435 0.8434
Wang_BMA 0.7775 0.9265 0.6029 0.7304 0.8406 0.8815
Pekar_BMA 0.7739 0.9209 0.5993 0.7260 0.8449 0.8828
InferSentPPI_noweight_PGAA 0.9476 0.9371 0.9595 0.9481 0.9868 0.9884
InferSentPPI_weight_PGAA 0.9522 0.9346 0.9724 0.9531 0.9915 0.9921

TABLE 3 | Performance comparison of six methods on the human dataset from HPRD.

Method Accuracy Precision Recall F1 AUC_ROC AUC_PR

Resnik_BMA 0.611 1 0.222 0.3633 0.7661 0.815,999
Lin_BMA 0.7129 0.6666 0.8518 0.7479 0.7918 0.785,539
Wang_BMA 0.6851 0.7941 0.5 0.6136 0.7475 0.799,019
Pekar_BMA 0.75 0.8859 0.574 0.6966 0.8024 0.791,993
InferSentPPI_noweight_PGAA 0.8796 0.8727 0.8888 0.8806 0.9540 0.9544
InferSentPPI_weight_PGAA 0.9444 0.9166 0.9565 0.9361 0.9686 0.9679

FIGURE 5 | ROC curves of five PPI prediction methods on the main dataset. (A) Yeast dataset from DIP. (B) Human dataset from HPRD.

TABLE 4 | AUC_ROC of three GO Information-based methods on yeast and
human dataset from STRING.

Method AUC_ROC

STRING Yeast STRING Human

Onto2Vec 0.7660 0.7593
GO2Vec_mhd_goa 0.8154 0.8046
InferSentPPI_weight_PGAA 0.8745 0.8233
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On the DIP yeast and HPRD human datasets, five leading
evaluation indicators of InferSentPPI_weight_GOA are better
than InferSentPPI_unique_GOA. It means the model’s
performance generated on a corpus with weighted GO
annotations is better than the model generated on a corpus
with weightless GO annotations. The result indicates that the
quantitative index of GO annotation reliability successfully
provides valuable information for PPI prediction.

Figure 5 reports the ROC curves of our model and four
traditional GO structure-based models on DIP yeast dataset
and HPRD human dataset. The AUC_ROC of the two methods
on DIP yeast and HPRD human data sets reached 0.99 and
0.96. From the results, we noticed that the InferSentPPI
method is stable in predicting both positive and negative
datasets. AUC_ ROC is usually applied to evaluate the
model’s classification performance, which is independent of
the selected threshold. The results show that the proposed
method still effectively classifies the datasets under different
thresholds.

Comparison With State-Of-The-Art GO
Information-Based Methods
To evaluate the effectiveness of proposed methods, we compare
InferSentPPI with state-of-the-art GO information-based PPI
prediction methods, Onto2Vec (Smaili et al., 2018) and
GO2Vec (Zhong et al., 2019). In this experiment, we used
yeast and human datasets from STRING to test the
performance of InferSentPPI and other existing methods.

The performance comparison results of the methods are shown
in Table 4. The best result on each dataset is highlighted in bold.
The AUC_ROC of the two methods on yeast and human datasets
from STRING reached 0.8745 and 0.8233. The result shows that
the performance of InferSentPPI is better than two state-of-the-art
GO information-based PPI prediction methods.

Comparison With a State-Of-The-Art
Sequence-Based Method
To deeply evaluate the effectiveness of proposed methods, we
compare InferSentPPI with a state-of-the-art sequence-based
method DeepFE-PPI (Yao et al., 2019). The result is shown in
Table 5. In the experiment, we used the DIP yeast dataset and
HPRD human dataset to evaluate the performance InferSentPPI
method. We also randomly selected 10% of the data as the test set
independent of train data.

The number of PPIs in the DIP yeast dataset used in the
experiment is 10 times larger than the HPRD human dataset. On
the DIP yeast dataset, the four evaluating indicators of the two
methods of the InferSentPPI are better than the sequence-based
PPI prediction method DeepFE-PPI. However, neither of the two
methods of the InferSentPPI outperforms DeepFE-PPI on the
HPRD human dataset, which is much smaller than the DIP yeast
dataset. The experiment result shows that the InferSentPPI
performs better than DeepFE_PPI when there is sufficient
training data.

Performance Comparison on Independent
Species-specific PPI Datasets
To sufficiently evaluate the generalization and robustness of the
InferSentPPI model, the model from the first experiment,
trained on the DIP yeast dataset, is used to predict PPI on
three species-specific PPI datasets (E. coli, H. sapiens, mice)
(Zhou et al., 2011).

On three species-specific PPI datasets, Table 6 reports the
accuracy of the InferSentPPI model, which is trained on the yeast
dataset from the first experiment. In Table 6, the model’s
accuracy is 0.9522 on the yeast test set, and the performance
of this model on the PPI test set of other species is also stable. In
addition, the accuracy of this model on the mouse dataset reaches
0.95, including 100 positive records, which is smaller than the
others. On the E. coli positive dataset, including 1,112 records, the
accuracy of our model also reaches 0.90. The availability of our
model in predicting multiple species is proved. It means that the
InferSentPPI method can obtain a better generalization model
from a single species data set with sufficient data.

CONCLUSION

Accurate prediction of PPI can help us understand the underlying
molecular mechanisms and significantly promote drug discovery.

TABLE 5 | Performance comparison of three methods on the DIP yeast and HPRD human datasets.

Data Method Accuracy Precision Recall F1 AUC_ROC AUC_PR

Human DeepFE_PPI 0.9871 0.9877 0.9854 0.9865 — —

InferSentPPI_noweight_PGAA 0.8796 0.8727 0.8888 0.8806 0.9540 0.9544
InferSentPPI_weight_GOA 0.9444 0.9166 0.9565 0.9361 0.9686 0.9679

Yeast DeepFE_PPI 0.944 0.9652 0.9212 0.9426 0.9821 0.9854
InferSentPPI_noweight_PGAA 0.9476 0.9371 0.9595 0.9481 0.9868 0.9884
InferSentPPI_weight_GOA 0.9522 0.9346 0.9724 0.9531 0.9915 0.9921

TABLE 6 | Performance (accuracy) of InferSentPPI on different independent
datasets.

Dataset Accuracy

Yeast 0.9522
M. musculus 0.95
H. sapiens 0.8974
E. coli 0.9073
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The method based on GO information can be used to make
reliable PPI predictions. In this paper, we apply the modified
supervised sentence embedding model InferSent to mine GO
information and PPI data, used to predict PPIs. We used seven
different datasets to evaluate our method to thoroughly test the
InferSentPPI model. Compared with representative GO
information-based methods and a sequence-based PPI
prediction method, the experimental results show the
effectiveness and generalization of the InferSentPPI method.
The result also indicates that the quantitative index of GO
annotation reliability successfully provides valuable information
for PPI prediction. “PGAA_ Weight” can improve the
performance of PPI prediction.
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