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INTRODUCTION

Imaging plays a pivotal role in the evaluation of various 
liver diseases, including screening, surveillance, diagnosis, 
and prognostication of diffuse liver disorders and hepatic 
neoplasms. Recent advances in computer science have 
enabled the clinical application of computer-assisted 
analysis in imaging examinations; of which radiomics and 
deep learning are currently the most actively investigated 
techniques. Although they involve completely different 
technical processes, both radiomics and deep learning 
utilize high-dimensional features extracted from images 
for diagnostic and predictive tasks. Radiomics and deep 
learning may also expand the role of imaging in the 
assessment of various liver diseases beyond the domain of 
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traditional visual image analysis, by obtaining additional 
diagnostic information from images, assessing image 
features in a comprehensive and objective manner, and 
facilitating labor-intensive tasks such as liver segmentation. 
Hence, the goal of our article is to review the basic 
technical aspects of radiomics and deep learning and to 
summarize recent investigations on the application of these 
techniques in assessing liver disorders. 

Radiomics 

Radiomics refers to a set of techniques for extracting a 
large number of quantitative features from medical images 
(1) and subsequently mining these features to retrieve 
clinically useful diagnostic and prognostic information. 
Radiomics has gained considerable attention in the field 
of oncology as a method for supporting clinical decision-
making and precision medicine. This methodology is based 
on the hypothesis that a radiologic phenotype may reflect 
genetic alterations in carcinogenesis and tumor biology and 
may thus be predictive of the biologic behavior of the tumor 
(1, 2). Radiomics is also an effective method for assessing 
the morphologic and textural changes of the liver that are 
associated with various disease processes. Unlike visual 
assessments of clinical images, it may allow for objective 
and comprehensive assessments of these changes based on 
quantitative indices. 
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(mean), dispersion (standard deviation), asymmetry 
(skewness), peakedness or flatness (kurtosis), randomness 
(entropy), uniformity (energy and uniformity), and 
dispersion relative to the magnitude (coefficient of variation) 
of gray-level pixel values. These histogram features describe 
the distribution pattern of gray-level pixel values within a 
VOI as a whole, but cannot address the spatial relationship 
among pixels or the textural pattern (4-6) (Fig. 2). 

Textural Features
Textural features are a key component of radiomics 

features and describe the spatial relationship between 
each individual pixel and its neighboring pixels. Two 
commonly used matrices for textural analysis are the gray-
level co-occurrence matrix (GLCM) and the gray-level run-
length matrix (GLRLM). The GLCM is a matrix describing 
the frequency of two neighboring pixels with certain gray-
level pixel values, while the GLRLM describes the length of a 
continuous pixel with a certain gray-level pixel value. Both 
the GLCM and GLRLM are dependent on direction. To improve 
directional invariance, textural features are calculated by 

Radiomics Features
A number of radiomics features can be extracted from a 

given volume of interest (VOI) drawn on two-dimensional 
(2D) images or three-dimensional (3D) volume data. 
Radiomics features can be divided into morphologic features, 
histogram features, textural features, and higher-order 
features. 

Morphologic Features
Morphologic features describe the size, volume, and shape 

of the VOI, usually for tumors. Unlike a visual assessment 
of tumor morphology by radiologists, morphologic features 
are expressed as statistical values in radiomics (Fig. 1). For 
example, the circularity on a 2D image describes the ratio of 
the area to the perimeter of a given VOI, reflecting how close 
the VOI is to a complete circle (3, 4). 

Histogram Features
A histogram is a plot displaying the pixel frequency 

in accordance with pixel values. Multiple features can be 
calculated from a histogram, which describe the magnitude 
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Fig. 1. Schematic description of morphologic features. Area and perimeter are calculated from ROI drawn on image. Ellipse fitted to given 
ROI is obtained. Then, major and minor axes of ellipse and convex area are calculated. Based on these values, morphologic features (circularity, 
roundness, aspect ratio, solidity, compactness, and others) are calculated according to equations shown in Figure 1. Values of morphologic 
features for angular and rod shapes are compared with those for complete circle, which has value of 1 for all morphologic features. ROI = region 
of interest
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Fig. 2. Schematic description of histogram features. From ROI drawn on image, histogram of gray-scale pixel values is obtained. Then, 
multiple features are calculated from histogram to describe pattern of distribution of gray-level values within ROI. CV = coefficient of variation, 
ENT= entropy, SD = standard deviation

aggregating information from different directional matrices 
using several 2D or 3D-based methods (4, 5, 7) (Fig. 3).

Higher-Order Features
Higher-order features refer to textural features extracted 

from filtered images. Various filters have been used to 
emphasize the characteristics of images. A Gaussian filter 
is a smoothing filter that reduces the sensitivity to image 
noise. A Laplacian filter is an edge-enhancing filter. Since 
the Laplacian filter enhances any rapid intensity changes 
on an image, it may amplify image noise as well as edges. 
A Laplacian of Gaussian filter is a combination of both 
filters (1) and, thus, is frequently used to enhance edges 
while preventing amplification of image noise. Wavelets 
transform images using a matrix of complex linear or radial 
waves, allowing for the separation and emphasis of a high-
frequency component (i.e., edge part) or low-frequency 
component (i.e., smooth part) of the images (5, 7, 8) (Fig. 4). 

Process of Radiomics Analysis
The radiomics analysis of medical images involves multiple 

processes, including image preprocessing, segmentation, 
feature extraction, feature selection, and classification. 

Image preprocessing is an important step for achieving 
valid and reproducible radiomics features. Image 
normalization may be required to standardize the gray-
scale pixel value, and it can be performed based on the 
histogram distribution of pixel values or internal reference 
values (i.e., spleen signal value). Since textural and higher-
order features are dependent on pixel dimensions, images 
with non-isometric pixels or variable resolutions may lead 
to invalid results. In these cases, the image resolution 
should be standardized by the resampling the images at a 
fixed isometric resolution. After image preprocessing, the 
segmentation of VOIs is performed manually or by using an 
automatic segmentation algorithm to select the volume or 
area for which the radiomics features are extracted. 

Radiomics features can be extracted in 2D or 3D using in-
house software (6, 9-13) or commercial software (14, 15). 
The number of extracted features can be variable, largely 
depending on the number of textural features and the 
number of filters used for extracting higher-order features. 
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A larger number of extracted features do not necessarily 
indicate better-quality measurements. Since radiomics 
features are highly correlated with each other (16), the 
analysis of high-dimensional features may lead to problems 
of multicollinearity and overfitting. A recent phantom study 
revealed that the information provided by multiple radiomics 
features could be summarized using only 10 features 
because of redundancy (16). 

Feature selection is a process performed to reduce the 
dimensionality of features by selecting informative and 
reliable features and excluding redundant features among the 
extracted features. Classification is a process used to build 
a classifier or prediction model using the selected feature 
to perform a given classification or prediction task. Feature 
selection and classification can be performed together as 
a single process or separately using different algorithms. 
Unreliable features may be excluded prior to feature 
selection and classification, based on the results of inter- 
or intra-observer agreement or test-retest repeatability 

analyses (6, 11, 17-21). To reduce redundancy in the 
features, informative features showing a high dynamic 
range may be selected among the correlated features 
in hierarchical feature clustering (18, 22). Traditional 
statistical methods may not be successful in dealing 
with high-dimensional radiomics features (i.e., too many 
variables relative to the number of observations). A number 
of machine learning methods have therefore been used for 
feature selection and/or classification (10, 21, 23, 24). 
Among the methods for feature selection and classification, 
regression with Ridge, least absolute shrinkage and 
selection operator (LASSO), and elastic net regularization 
have been commonly used (6, 10-13, 17, 19, 25, 26), likely 
because these algorithms allow for the development of a 
regression model that is more familiar to radiologists than 
other machine learning classifiers. These regression analyses 
incorporate regularization and penalization algorithms 
for correlated variables; the LASSO regression method is 
robust for feature selection, but the Ridge regression is 
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Fig. 3. Schematic description of textural feature extraction assuming 3 x 3-pixel image with three different gray-scale levels. 
GLCM describes frequency of two neighboring pixels having certain gray-level pixel values, while GLRLM describes length of continuous pixel 
having certain gray-level pixel value. After aggregating different directional matrices, secondary features are calculated from matrices to describe 
textural pattern of given image, including CON, ENT, CORR, and HOM, and others from GLCM and SRE, LRE, LGRE, and HGRE, and others for GLRLM. 
CON = contrast, CORR = correlation, ENT= entropy, GLCM = gray-level co-occurrence matrix, GLRLM = gray-level run-length matrix, HGRE = high 
gray-level run emphasis, HOM = homogeneity, LGRE = low gray-level run emphasis, LRE = long run emphasis, SRE = short run emphasis
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more effective in dealing with multicollinearity. Elastic net 
regression takes advantage of both methods (6, 27). Other 
commonly used classification methods include regression, 
support vector machine (SVM), decision tree, and random 
forest. In machine learning, hyperparameters to control the 
machine learning process need to be optimized to different 
data patterns. Following hyperparameter optimization, 
the machine learning algorithm is trained through the 
learning process using given training data (28). Figure 5 
schematically depicts the development process of a radiomics 
classification model.

Clinical Application of Radiomics in Liver 
Disease

Radiomics has been used to evaluate the severity of 
chronic liver disease and assess the prognosis of malignant 
liver tumors. The study methodology and the results of some 
representative reports are presented in Table 1.

Chronic Liver Disease
Chronic liver disease is accompanied by changes in liver 

volume, morphology, and texture. Several recent studies 
have shown the potential value of radiomics as a method for 
comprehensive and objective analysis of such changes in the 
liver using imaging examinations. Park et al. (6) developed 
a radiomics fibrosis index based on radiomics features 
extracted from gadoxetic acid-enhanced hepatobiliary 
phase magnetic resonance (MR) images. They demonstrated 
that the radiomics fibrosis index had a high diagnostic 
performance in staging liver fibrosis (area under the receiver-
operating curve [AUROC], 0.89–0.91) and significantly 
outperformed the normalized liver enhancement and serum 
fibrosis indices. Liu et al. (12) reported the feasibility of 
CT-based radiomics analysis for the diagnosis of clinically 
significant portal hypertension. These authors devised a 
model based on texture features, morphologic features, 
and the liver and spleen volumes with the hepatic 
venous pressure gradient as the reference standard. The 
performance of this model was significantly better than 

Gaussian Laplacian

LOG

Wavelet (low frequency) Wavelet (high frequency)

Higher-order 
features

Fig. 4. Example images depicting effects of image filters. Portal venous phase CT image was transformed by using Gaussian, Laplacian, 
and LOG filters and using wavelet transformation of high-frequency and low-frequency parts. Higher-order features are histogram and textural 
features extracted from these transformed images. LOG = Laplacian of Gaussian
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were those of models using liver stiffness measurements 
as well as other radiologic and clinical indices (12). 
Several exploratory studies have indicated the potential of 
radiomics of multiparametric ultrasound (21) and histogram 
features of CT images (29, 30) in staging liver fibrosis and 
in diagnosing nonalcoholic steatohepatitis. However, the 
results of these studies were not conclusive because of the 
small study populations and the lack of proper validation 
(21, 29, 30).

Prognostication of Malignant Liver Tumors
Radiomics has been applied to determine the prognosis of 

hepatocellular carcinoma (HCC) after radiofrequency ablation 
(31, 32), surgical resection (13, 22, 25, 31, 33), and liver 
transplantation (20). Zheng et al. (13) developed nomograms 
incorporating CT-based radiomics and clinical variables 
to predict recurrence-free and overall survival outcomes 
after surgical resection of solitary HCC and reported that 

these nomograms had better prognostic performance than 
traditional staging. Kim et al. (22) devised radiomics models 
for predicting the early and late post-surgical recurrence 
of HCC using gadoxetic acid-enhanced MRI, incorporating 
variable extents of peritumor border extension. In that 
study, a radiomics model with 3-mm or 5-mm peritumoral 
border extension showed a higher prediction performance 
than the models without a border extension, indicating 
that the features of a peri-tumor liver parenchyma are 
important for predicting early or late recurrence in HCC 
patients. Since microvascular invasion (MVI) is one of the 
most important prognostic factors for HCC after surgery 
(34-36), several studies have evaluated the potential of 
using radiomics to predict it (10, 24, 26, 37). Xu et al. 
(24) developed a prediction model combining a CT-based 
radiomics score, radiologist image analysis, and laboratory 
findings and demonstrated a high accuracy (AUROC, 0.889) 
for predicting MVI in a test dataset. In their study, however, 
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Fig. 5. Schematic description of development process for radiomics classification model. Model for staging liver fibrosis using 
gadoxetic acid-enhanced hepatobiliary phase magnetic resonance images is assumed for demonstration purposes. Input images undergo 
preprocessing, including normalization of gray-scale pixel values and image resampling to standardize image resolution. Radiomics features 
are then extracted, which may include shape, histogram, texture, and high-order features. Feature selection is performed to reduce feature 
dimension, and classification model is then developed using selected radiomics features. Final radiomics model is used for classification of new 
input images. LASSO = least absolute shrinkage and selection operator
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subsequent decision curve analysis failed to demonstrate 
the incremental value of the radiomics score in comparison 
with conventional visual image analysis. Two prior studies 
have reported the incremental value of a CT-based radiomics 
model in predicting lymph node metastases in patients 
with cholangiocarcinoma, and noted that incorporating 
a radiomics signature into the CT-reported lymph node 
status improved the detection of lymph node metastasis 
(11, 17). A recent study (9) has also demonstrated the 
potential role of radiomics features extracted from gadoxetic 
acid-enhanced hepatobiliary MR images in assisting with 
precision immunotherapy of HCC. This study showed that a 
model combining radiomics and clinical variables accurately 
predicted the immune-score, which is known to be associated 

with the therapeutic response to an immune checkpoint 
blockage (9). 

Pitfalls of Radiomics 

There are some disadvantages to using radiomics 
approaches. These methods are labor-intensive and time-
consuming as they involve segmentation, feature extraction, 
and machine learning or modeling processes. Hence, a 
radiomics study will only produce real clinical value if it 
generates incremental diagnostic information beyond that 
obtained with classic visual image interpretation. Radiomics 
features are also highly dependent on the imaging protocol, 
VOI selection, and feature extraction methods. All of these 

Table 1. Representative Studies on Clinical Application of Radiomics in Liver Disease

Reference Task Imaging 
Training 
Group

Test Group
Validation 
Method*

Test Performance 

Park et al., 
2019 (6)

Liver fibrosis staging Gadoxetic acid-
enhanced MRI

329 
patients

107 
patients

Internal 
(split-sample)

AUC of radiomics-based model for 
fibrosis staging, 0.89–0.91 

Liu et al., 
2018 (12)

Detection of portal 
hypertension

Contrast-
enhanced CT

222 
patients

163 
patients

External 
(geographic, 
multi-center)

AUC of radiomics-based model for 
detecting clinically significant 
portal hypertension, 0.85 

Zheng 
et al., 
2018 (13)

Prediction of post-
operative prognosis 
in HCC 

Contrast-
enhanced CT

212 
patients

107 
patients

Internal 
(split-sample)

AUC of radiomics-based nomogram 
for predicting overall survival, 0.71 

Kim et al., 
2019 (22)

Prediction of early 
and late recurrence 
of HCC after curative 
resection

Gadoxetic acid-
enhanced MRI

128 
patients

39 
patients

External 
(temporal)

AUC of combined clinicopathologic 
radiomics model, 0.72 

Yuan et al., 
2019 (32)

Prediction of early 
recurrence of HCC 
after curative 
ablation

Contrast-
enhanced CT

129 
patients

55 
patients

Internal 
(split-sample)

AUC of combined clinicopathologic 
radiomics model, 0.76

Xu et al., 
2019 (24)

Prediction of MVI in 
HCC

Contrast-
enhanced CT

350 
patients

145 
patients

Internal 
(split-sample)

AUC of combined clinicopathologic 
radiomics model, 0.889 

Hu et al., 
2019 (26)

Prediction of MVI in 
HCC 

Contrast-
enhanced US

341 
patients

141 
patients

External 
(temporal)

AUC of combined clinical and 
radiomics nomogram, 0.73

Ji et al., 
2019 (17)

Prediction of lymph 
node metastasis in 
biliary tract cancers

Contrast-
enhanced CT

177 
patients

70 
patients

External 
(temporal)

AUC of combined clinical and 
radiomics nomogram, 0.80 in test 
group

Ji et al., 
2019 (11)

Prediction of lymph 
node metastasis in 
IHCC

Contrast-
enhanced CT

103 
patients

52 
patients

External 
(temporal)

AUC of combined clinical and 
radiomics nomogram, 0.89

Chen et al., 
2019 (9)

Prediction of 
immunoscore of HCC 

Gadoxetic acid-
enhanced MRI

150 
patients

57 
patients

Internal 
(split-sample)

AUC of combined clinical and 
radiomics model for predicting 
immunoscore, 0.93

*Validation methods were classified as internal (i.e., cross-validation, bootstrapping, and split-sample validation) or external (temporal 
and geographic validation). AUC = area under curve, HCC = hepatocellular carcinoma, IHCC = intrahepatic cholangiocarcinoma, MVI = 
microvascular invasion, US = ultrasound
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factors may be sources of variation in terms of extracted 
radiomics features (16, 38, 39). Radiomics models or 
classifiers thus have inherent limitations in terms of 
generalization. Optimal image preprocessing, including 
gray-level normalization and resolution standardization, 
may partly overcome the imaging protocol dependency of 
radiomics features. Recently, an algorithm has been proposed 
that reduces the variation in radiomics features according 
to different CT protocols, and thus facilitates radiomics 
analysis using multicenter image data (40). Further research 
is warranted to develop an optimal method of minimizing 
the variations in radiomics features. Textural features are 
also dependent on settings for feature extraction, such as 
bin size (i.e., the size of gray-level discretization). Research 
papers on radiomics should therefore clearly state the 
methods used for radiomics feature extraction so that they 
can be replicated. The lack of a standardized method for 
radiomics feature extraction has been an important cause of 
the poor generalizability of radiomics studies. To overcome 
this problem, the Image Biomarker Standardization Initiative 
recently published consensus guidelines to standardize 
the methods for image processing, the nomenclature and 
definitions of radiomics features, and the reporting methods 
(4). A recent review article has further suggested some 
strategies for reproducible and generalizable radiomics 
analysis (39). These methodological guidelines may be 

useful for improving the generalizability of radiomic studies.

Deep Learning

Deep learning is a subset of machine learning, which is 
based on a neural network structure inspired by the human 
brain (41, 42). Unlike radiomics and traditional machine 
learning, which rely on predefined, hand-engineered features, 
deep learning is based on representation learning in which 
the algorithm learns the best features to carry out a given 
task on its own by navigating the provided data. 

Convolutional Neural Network
Convolutional neural network (CNN) is the most popular 

type of deep learning architecture in medical imaging 
analysis (41, 42). A CNN consists of an input layer, hidden 
layers, and the output layer. The hidden layers may include 
convolution and pooling layers and fully connected 
layers. Convolution and pooling layers extract high-
dimensional manageable features from given images, which 
is conceptually similar to the feature extraction process 
used in radiomics analysis. Convolution operations generate 
feature maps using a group of filters, followed by activation 
functions typically using a rectified linear unit. Activation 
functions add nonlinearity to the outputs of convolutions, 
allowing the selection of features to pass through to the 
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Fig. 6. Schematic depiction of training CNN. From input images, Conv layer extracts feature maps, and pooling layer downsizes feature 
maps. ReLU is usually followed by Conv layer as activation function. High-level features are extracted through multiple Conv and pooling layers, 
and then fed into fully connected layer. Fully connected layers integrate all features to perform classification task. In this schematic diagram, 
liver fibrosis staging using CT images is presented as classification task for demonstration purposes. Using softmax function, fully connected 
layer returns probability of each class as output. During training phase, output of CNN is compared with ground truth to calculate errors using 
loss function. Error is then back propagated, and weights of network are adjusted to decrease loss and thereby maximize accuracy of CNN for given 
classification task. CNN = convolutional neural network, Conv = convolution, ReLU = rectified linear unit
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next layer. Pooling operations reduce the resolution of the 
feature maps to gain computational performance, obtain 
spatially invariable features, and reduce the chance of 
overfitting (41, 43). The fully connected layers integrate 
and transform all of the features fed from the convolution 
and pooling layers into a vector form. The output layer 
then returns a categorical distribution for class probability 
through a softmax function. The details of deep learning and 
CNN can be understood further from previous review articles 
(41, 42). Figure 6 schematically presents the architecture 
and training process of a CNN algorithm. 

Training of a Deep Learning Algorithm
The training of a deep learning algorithm is usually 

performed with supervised learning using labeled training 
data. A deep learning algorithm typically requires large 
volumes of high-quality ground truth training data, although 
the amount of required data may vary for different deep 
learning algorithm tasks: an algorithm for a segmentation 
task may require a smaller dataset, while a classification 
task requires a much larger dataset (44). When a training 
dataset is not sufficiently large, data augmentation may be 
used to enlarge it artificially, which is performed through 
random transformation of original images by adding random 
noise, flipping, or rotation (41). Data augmentation may 
also be required to overcome the potential problems of data 
imbalance. If the size of the training data is imbalanced 
across different classes, a classification algorithm may have 
poor classification accuracy for the minority classes (45). 
This may be prevented by data augmentation for those 
classes. Datasets for the development and validation of 
a deep learning algorithm typically consist of training, 
validation, and test datasets. The data available for the 
development of the algorithm may be divided into training 
and validation datasets. The validation dataset is used for 
monitoring the performance of the algorithm during the 
training process and/or comparing multiple models based 
on different CNN architectures or hyperparameters. Once 
the final model is selected and all its parameters are fixed, 
its performance is evaluated in the test dataset. The test 
dataset is used only at the final step of the study to report 
the final model performance (41). A deep learning algorithm 
is trained by adjusting network weights. Starting from a 
random initial configuration, parameters are adjusted to 
find a set of parameters that perform best on the training 
dataset. During the training phase, the output of the 
algorithm is compared with the ground truth by using a 

loss function that quantitatively measures the error in the 
prediction in comparison with the ground truth. The error is 
then back propagated to optimize network weights (Fig. 6). 
The training phase continues until the loss function reaches 
a minimum. 

Application of Deep Learning in Liver Disease

Deep learning has been widely applied to liver imaging for 
various tasks, including organ segmentation, staging liver 
fibrosis, tumor detection, or classification, and improving 
image quality. The study methodology and the results of 
some representative studies are summarized in Table 2.

Liver Segmentation
Liver segmentation has direct clinical applications, 

including liver volume measurement, which is important 
in pre-operative planning for liver resection (46, 47), 
determination of the radiation dose in liver tumor 
radioembolization, and measurement of quantitative indices 
such as the proton density fat fraction (PDFF) from the 
whole liver (48). Notably, however, liver segmentation 
is labor-intensive and time-consuming, which limits its 
usage in clinical practice. Thus, deep learning has been 
applied for automated segmentation of the liver. The U-net 
architecture is most commonly used for segmentation tasks 
(49) and consists of a series of contracting and expanding 
layers that extract and process features from input images 
and return a pixel-wise probability map. The segmentation 
performance is typically evaluated using the Dice similarity 
score (DSS), defined as 2 x true positive pixels / [2 x true 
positive pixels + false negative pixels + false positive pixels]. 
Some prior studies have reported the use of deep learning 
algorithms for automated liver segmentation on CT or MRI 
(50-54), and some have utilized a deep learning algorithm 
combined with image processing methods (50, 52). All of 
these studies reported high performance values in liver 
segmentation, with the reported DSS values ranging from 0.92 
to 0.95 (50-54). Recently, Wang et al. (48) demonstrated 
the feasibility of generalized CNN, which can be used for 
liver segmentation on CT scans and various MRI sequences 
using the transfer learning technique. They reported DSS 
values ranging from 0.92 to 0.95 for liver segmentation on 
CT and MR images. Furthermore, these authors demonstrated 
a close agreement between the PDFF values measured using 
deep learning-based automatic liver segmentation and 
those measured by manual liver segmentation, indicating 
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the potential role of deep learning-based liver segmentation 
for automatic measurement of quantitative indices from 
the whole liver. Despite these promising results, however, 
further clinical validation may be required for the actual 
clinical application of deep learning algorithms for 
automated liver segmentation. For example, algorithm 
performance should be evaluated in a healthy liver, fatty 
liver, and in chronic liver disease and liver cirrhosis. With 
continued improvements in deep learning-based organ 
segmentation methods, it is expected that fully automated 
liver segmentation would become clinically available in the 
near future. 

Liver Fibrosis Staging
A few deep learning algorithms for liver fibrosis staging 

have been reported, to date. Liu et al. (55) proposed 
sequential algorithms to diagnose cirrhosis using ultrasound 
images, which first detect liver capsules on the images 
by using a sliding window detector, extract features from 

image patches by using a CNN algorithm, and finally classify 
an image as indicative of cirrhosis or not by using an SVM. 
In that report, CNN was used only for feature extraction 
whereas classification was performed with the SVM because 
of the small amount of training data. Yasaka et al. (56) 
developed CNN algorithms for liver fibrosis staging using 
cropped CT images and cropped gadoxetic acid-enhanced 
hepatobiliary phase MR images (57). They reported area 
under the curves (AUCs) of 0.73–0.76 for the CT-based 
algorithm and 0.84–0.85 for the MRI-based algorithm in 
staging liver fibrosis. However, the use of a small test 
dataset (100 patients) and lack of any external validation 
limited the generalizability of their study results. Choi et 
al. (45) reported the use of a deep learning algorithm for 
fully automated liver fibrosis staging using portal venous 
phase CT images. Using a large training dataset (7491 
patients) and internal and external test data (891 patients), 
these authors reported a high accuracy (AUCs, 0.95–0.97) 
of the deep learning algorithm in liver fibrosis staging, 

Table 2. Representative Studies on Clinical Application of Deep Learning in Liver Disease
Reference Task Imaging Training Group Test Group Validation Method* Test Performance

Wang et al., 
2019 (48)

Liver 
segmentation 

Gadoxetic acid-
enhanced MRI, 
contrast-enhanced 
CT

10 CT scans 
and 320 
MRI scans

50 CT scans 
and 133 
MRI scans 

Internal and 
external 
(geographic, 
multi-center)

DSS for liver segmentation, 
0.92–0.95

Choi et al., 
2018 (45)

Liver fibrosis 
staging

Contrast-enhanced CT 7491 
patients

891 
patients

Internal and 
external 
(geographic, 
multi-center)

AUC, 0.95–0.97 

Yasaka et al., 
2018 (57)

Liver fibrosis 
staging

Gadoxetic acid-
enhanced MRI

534 patients 100 
patients

Internal  
(split-sample)

AUC, 0.84–0.85 

Wang et al., 
2019 (8)

Liver fibrosis 
staging

US elastography 266 patients 132 
patients

External  
(multi-center)

AUC, 0.97–0.98 

Vorontsov 
et al., 2019 
(61)

Detection and 
segmentation of 
liver metastases

Contrast-enhanced CT 115 scans 26 scans Internal  
(split-sample) 

Per-lesion sensitivity for 
lesions ≥ 20 mm, 0.85; 
DSS for lesions ≥ 20 mm, 0.68

Yasaka et al., 
2018 (63)

Classification of 
liver tumors

Contrast-enhanced CT 460 patients 100 
patients

External 
(temporal)

Mean accuracy for 
classification, 0.84 

Hamm et al., 
2019 (64)

Classification of 
liver tumors

Contrast-enhanced 
MRI 

434 lesions 60 lesions Internal 
(split-sample)

Accuracy for classification, 
0.92

Liu et al., 
2019 (67)

MR image 
reconstruction

Gadoxetic acid-
enhanced MRI

77 scans 16 scans Internal 
(split-sample)

Lower errors and higher 
similarity compared to 
compressed sensing

Tamada 
et al., 2020 
(68)

Motion artifact 
reduction

Gadoxetic acid-
enhanced MRI, 
arterial phase

14 patients 20 patients Internal 
(split-sample)

Significant reduction in 
artifact score 

*Validation methods were classified as internal (i.e., cross-validation, bootstrapping, and split-sample validation) or external (temporal 
and geographic validation). DSS = Dice similarity score
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surpassing that of the serum fibrosis indices and visual image 
analyses by radiologists. A recent multicenter prospective 
study reported a higher accuracy (AUCs, 0.97–0.98) with 
a deep learning algorithm using cropped 2D shear wave 
elastographic images in staging liver fibrosis in comparison 
with liver stiffness measurement results (8). 

Diagnosis of Fatty Liver Disease
The feasibility of using deep learning for the diagnosis 

and grading of fatty liver disease using ultrasound images 
has been evaluated in several previous reports (58-60). 
Although these prior studies demonstrated the technical 
feasibility of deep learning, its clinical applicability has not 
been well proven because of the small size of the test data, 
lack of external validation, and the use of a less reliable 
reference standard (i.e., ultrasound determined fatty liver 
grade). 

Detection, Segmentation, and Classification of Liver 
Tumors

Vorontsov et al. (61) have reported the use of a deep 
learning algorithm for the automatic detection and 
segmentation of malignant liver tumors on CT images. In a 
small test dataset (26 CT examinations) in that study, the 
algorithm showed high accuracy in detecting liver lesions 
larger than 2 cm with a sensitivity of 85% and positive 
predictive value of 94%, whereas it was not accurate in the 
detection of small lesions (sensitivity, 10% for lesions < 1 
cm) or in automatic tumor segmentation (DSS of 0.14–0.68). 
Schmauch et al. (62) also described the technical feasibility 
of applying deep learning to the detection of focal liver 
lesions using ultrasound images. The potential utility of deep 
learning for the classification of focal hepatic lesions has 
now been evaluated in several studies, all of which devised 
deep learning algorithms to classify liver lesions into five 
to six predefined categories based on manually cropped CT 
or MR images containing these lesions (63, 64). Yasaka et 
al. (63) developed an algorithm for classifying liver masses 
using multi-phasic CT images and reported an accuracy of 
84% in the test dataset. Hamm et al. (64) reported the 
results of algorithms based on multiphasic MRI, describing 
an accuracy of 90% for lesion diagnosis and 92% for lesion 
categorization based on the liver imaging reporting and 
data system. The same researchers (54) also demonstrated 
the feasibility of deep learning in identifying individual 
radiologic features of focal hepatic lesions on MR images, 
reporting a sensitivity of 82.9% and positive predictive value 

of 76.5% for the algorithm. Despite these promising results, 
however, all prior studies on the application of deep learning 
to liver lesion detection and characterization are considered 
preliminary. These earlier reports focused mainly on the 
technical feasibility of deep learning, since the algorithms 
used involved data processes not suitable for a real clinical 
workflow (e.g., image cropping by radiologists) and were not 
fully validated using a large-scale external dataset. 

Image Quality Improvement and Image Synthesis
Deep learning has now been used for automatic 

evaluation of image quality (65, 66). Ma et al. (65) reported 
a deep learning algorithm to identify technically optimal 
portal venous phase CT images. Esses et al. (66) described 
an algorithm to discriminate diagnostic and nondiagnostic 
T2-weighted MR images. With further improvements, these 
techniques may be clinically usable for real-time scanning 
optimization through automatic image quality monitoring. 
Recent research findings have further suggested the potential 
utility of deep learning as a method to improve MR image 
quality (67, 68). Tamada et al. (68) presented a method 
to reduce respiratory motion artifacts in gadoxetic acid-
enhanced arterial phase MR images using a CNN algorithm. 
Liu et al. (67) developed a deep-learning-based MR image 
reconstruction algorithm by adopting generative adversarial 
networks (GANs). These authors demonstrated that their 
GAN-based reconstruction algorithm produced superior image 
quality in comparison with a reconstruction algorithm based 
on compressed sensing and parallel imaging. This suggested 
the potential of deep learning-based image reconstruction 
combined with data under-sampling for fast MRI.

Clinical Validation of Radiomics Models and 
Deep Learning Algorithms

Radiomics models and deep learning algorithms are 
subject to the overfitting problem since they are based on 
numerous image-derived parameters. Overfitting refers to 
a condition whereby a model customizes itself too much 
to the training data, to the extent that it explains not only 
generalizable patterns but also noise and idiosyncratic 
statistical variations of the training data (69, 70). An 
overfitted model performs well on the training data but 
poorly on other data, reducing the generalizability of the 
model. Rigorous clinical validation is therefore required 
for all radiomics and deep learning algorithms. Internal 
validation methods such as cross-validation, bootstrapping, 
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and split-sample validation (i.e., splitting the entire dataset 
randomly into training and the validation data) may not 
sufficiently guarantee the generalizability of radiomics 
models or deep learning algorithms (70, 71). External 
validation using a separate dataset is preferred, which may 
be conducted using data collected from a different site (i.e., 
geographic validation) or during a different period from 
the training data (i.e., temporal validation). In addition, 
clinical validation needs to be performed in a relevant 
clinical setting where the radiomics models or deep learning 
algorithms are actually applied. Further details regarding 
the clinical validation of artificial intelligence models 
can be found in previous reviews (70, 72). Guidelines for 
transparent reporting of a multivariable prediction model 
(71, 73, 74) can also be used as references for choosing 
proper methods for model development and validation. 

CONCLUSION

Radiomics and deep learning are promising techniques 
for imaging assessment of liver diseases. Recent research 
findings have demonstrated the potential utility of 
radiomics and deep learning in staging liver fibrosis, 
detecting portal hypertension, characterizing focal hepatic 
lesions, prognosticating malignant hepatic tumors, and 
segmenting liver and liver tumors. However, as reported in a 
recent study (75), most previous investigations have focused 
mainly on the technical feasibility of using radiomics or 
deep learning algorithms, whereas their applicability and 
generalizability to actual clinical practice has not been 
fully evaluated. For radiomics or deep learning algorithms 
to become a valid clinical tool, their performance should 
be validated through properly conducted clinical tests. 
In addition, future research endeavors need to address 
the clinical impact of radiomics and deep learning and 
determine how these techniques can be incorporated into 
real-world clinical practice. 
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