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Abstract: This study explores methodologies for the data integration of antimicrobial use (AMU) and
antimicrobial resistance (AMR) results within and across three food animal species, surveyed at the
farm-level by the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS).
The approach builds upon existing CIPARS methodology and principles from other AMU and AMR
surveillance systems. Species level data integration involved: (1) standard CIPARS descriptive and
temporal analysis of AMU/AMR, (2) synthesis of results, (3) selection of AMU and AMR outcomes
for integration, (4) selection of candidate AMU indicators to enable comparisons of AMU levels
between species and simultaneous assessment of AMU and AMR trends, (5) exploration of analytic
options for studying associations between AMU and AMR, and (6) interpretation and visualization.
The multi-species integration was also completed using the above approach. In addition, summarized
reporting of internationally-recognized indicators of AMR (i.e., AMR adjusted for animal biomass)
and AMU (mg/population correction unit, mg/kg animal biomass) is explored. It is envisaged that
this approach for species and multi-species AMU–AMR data integration will be applied to the annual
CIPARS farm-level data and progressively developed over time to inform AMU–AMR integrated
surveillance best practices for further enhancement of AMU stewardship actions.

Keywords: integration; summarized reporting; antimicrobial use; antimicrobial resistance; stewardship;
metric; indicator

1. Introduction

Disease mitigation strategies, such as infection prevention and control (IPC), good
management practices (GMP) and enhanced disease detection, are utilized in Canadian
food animal species, including broiler chickens, grower-finisher (GF) pigs and turkeys. Per-
tinent species-specific diseases are monitored through provincial and regional networks of
private practitioners, animal disease diagnostic laboratories and government partners [1–4].
For the prevention or treatment of these diseases, there are approved antimicrobials [5,6],
however, the global call for antimicrobial use (AMU) reduction to contain antimicrobial re-
sistance (AMR) [7] has limited antimicrobial options for the prevention of bacterial diseases
in the Canadian poultry industry. Managing the clinical and economic implications of these
pathogens in animal production settings through IPC [7] or GMP, including biosecurity, in
addition to enhanced monitoring and surveillance of AMU and AMR, are recommended
to reduce the need for antimicrobials and the containment of AMR [7–9].
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Antimicrobial stewardship pertains to “the multifaceted approaches required to sus-
tain the efficacy of antibiotics and minimize the emergence of resistance” [10]. Surveillance
of AMU is indispensable for tracking the impact of AMU stewardship measures in animal
production. Analyzing, reporting and communication of surveillance data has advanced in
the last decade. This is, in part, due to the development of AMU metrics (technical units of
measurements such as frequency of use, mg of antimicrobial active ingredients and number
of defined daily doses in animals (DDDvet)) and AMU indicators (a metric in relation to a
denominator, such as population and weight or days at risk) [11–13]. Internationally, there
are recognized weight-based indicators for describing AMU. These include the European
Surveillance for Veterinary Antimicrobial Consumption’s (ESVAC) mg of antimicrobial
active ingredient per population correction unit (mg/PCU), [14] used for the harmonized
reporting of AMU in the European Union/European Economic Area (EU/EEA), and the
OIE’s mg/kg animal biomass [15], used for reporting the global AMU data. Dose-based
indicators such as Treatment Incidence [TI100 and TI1000], DDDvet per PCU and other
derivatives of these indicators (e.g., annualized estimates such as DDDvet/Year) are also
utilized by regional and national AMU monitoring systems and in AMU research [13,16–23].
Unfortunately, there is no single AMU metric or indicator that can address all the objec-
tives of an AMU surveillance program or study. For example, surveillance objectives
may include the need to monitor trends over time, to compare AMU between animal
species and between geographical locations, to evaluate AMU reduction or stewardship
measures, to understand the impact of AMU in relation to AMR or to compare AMU and
AMR with international surveillance systems. As such, AMU monitoring systems have
developed AMU indicators to appropriately fit their circumstance, including the type of
data available (qualitative vs. quantitative), the stage in the AMU distribution chain where
data are collected (farm, veterinary practice, feed mills), the mechanism for data collection
(voluntary vs. mandatory reporting), and the AMU objectives of the program. The Cana-
dian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) sentinel farm
surveillance [24], and several researchers, have compared how AMU indicators relate to
each other and how input parameters could change the interpretation [17,25–27]. In order
to describe the various aspects of AMU and address various AMU surveillance objectives,
it is therefore necessary to include multiple complimentary indicators.

Across Canada, CIPARS routinely monitors trends in AMR in select bacteria isolated
from humans, animals and animal products along the food chain and AMU in human,
animal and food sources across Canada. CIPARS Farm Surveillance focuses on surveillance
of food animal species through a network of sentinel veterinarians and producers [28]. The
CIPARS farm component was designed to collect annual data from a network of sentinel
veterinarians and producers (i.e., longitudinal data collection) and started in GF pigs in
2006, and progressively expanded to broiler chicken (2013), turkey (2016) and feedlot beef
(2019, not included in this paper). The animal species surveyed are essential to Canadian
food security and economy. In terms of per capita consumption, chicken ranks first, pork
second, beef third and turkey fourth [29].

CIPARS reports trends in AMR in select bacterial species (% resistance, number of
classes in resistance patterns), trends in AMU in mg/PCU and number of defined daily
doses in animals using Canadian standards (nDDDvetCA) per 1000 animal-days at risk
(TI1000) [28]. Recently, CIPARS explored how AMU indicators (routine and exploratory
indicators) relate to each other, and discovered a high correlation between the different
weight-based (mg/PCU vs. mg/kg animal biomass) indicators and the different dose-based
indicators (nDDDvetCA/1000 animal-days at risk vs. nDDDvetCA/PCU), respectively [24].
CIPARS also previously explored the utility of AMR indicators for AMU–AMR data
integration using routine AMR outcomes (% resistance) and % resistance adjusted for
PCU [30]. Percentage of resistance adjusted for PCU accounts for species-specific AMR
prevalences and the fluctuations in animal biomass over time and is used for summarized
reporting of AMR findings in the EU/EEA [31,32]. This indicator is not currently used by
CIPARS, since the biomass from sentinel farms has been relatively stable.
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CIPARS species-specific questionnaires collect AMU, select biosecurity, diseases di-
agnosed and preventive health information. Despite obtaining a variety of data, trends
in clinical impressions of the veterinarians completing the questionnaires on common
diseases and relevant preventive health measures in relation to AMU have not yet been
fully explored. It is envisaged that incorporating health information into AMU–AMR
surveillance analysis could contribute to the enhancement of commodity-specific AMU
stewardship programs. In the context previously described, the objective of this study is to
further develop various aspects of AMU and AMR integration methodologies within each
species. This objective incorporates several steps including (a) assessment of AMU and
AMR surveillance findings through routine analysis, synthesis and the identification of
AMU and AMR outcomes based on public and animal health importance, (b) the selection
of the most appropriate AMU indicator for comparison of AMU between species (trends
and levels of AMU) and for assessing potential AMU and AMR associations, (c) the inves-
tigation of analytic options for evaluating the relationship between AMU and AMR and
(d) the exploration of the utility of animal health data to understand potential implications
of changes in AMU trends. Through taking this structured approach for data integration,
the study will inform surveillance analysis and best practices on how to better synthesize
and report diverse information collected from farm programs. For the purposes of this
paper, integration pertains to the reporting of at least two surveillance data types (e.g.,
AMU–AMR, AMU-animal health) and summarized reporting pertains to the combined
data from across the three animal species. Here we present the methodology (existing and
exploratory) by thematic areas (AMU, AMR, AMU–AMR analysis, animal health context)
and discuss the rationale for the preferred approaches. In Section 2, the methodology
development for species-level AMU–AMR data integration is described and the utility
of syndromic data discussed. In Section 3, methodology development for multispecies-
level AMU–AMR, summarized reporting and analytical methods derived from Section 2
are presented.

2. Methodology Development for Species-Level AMU–AMR Data Integration

The methodological steps (routine and exploratory) for AMU and AMR data integra-
tion are outlined in Figure 1. From this point forward, each subsection provides a brief
description of the method used, the results from either exploratory analysis or expansion
of current CIPARS methodology (i.e., the basis for the selection of a new approach or analy-
sis) and the rationale as to why a particular method or analysis was selected for further
data integration. The selection of AMU/AMR outcomes for species-level integration and
visualization, AMU–AMR association analysis and the utility of animal health outcomes
for contextualizing the AMU–AMR findings are also highlighted. Broiler chicken and GF
pig data collected between 2015 and 2019 and turkey data collected between 2016 and
2019 were the data sources for this study. All input parameters included in the various
analysis/exercise are summarized in Appendix A by year of study. For the purposes
of this paper, synthesis pertains to the method of synthesizing results from the CIPARS
Farm AMU–AMR surveillance program and interpreting these results within the context
of national and global recommendations to contain AMR.

2.1. General Surveillance Methods
2.1.1. Study Design, Data and Sample Collection

Overview: The CIPARS farm component is a sentinel-based surveillance program that
collects samples and data from a network of veterinary practices and their producers [28].
In GF pigs, the same sampling units (farm, barns or pens) are visited every year. However,
in broiler chicken and turkey farms, the same sampling units may not be available for
sampling every year because of logistical reasons (i.e., rapid turnover of flocks and avail-
ability of the same barn/pen at the time of sampling). In this case, the veterinary practices
collect samples/data from other farms within their practice/producer network. An average
of 17 poultry veterinarians and 20 swine veterinarians participate in the CIPARS farm
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AMU/AMR surveillance program each year. Flocks and herds are located in major poultry
(five provinces) and swine (four provinces) producing provinces in Canada. A species-
specific questionnaire, developed in consultation with sectoral representatives, is used to
collect AMU, farm-level demographics, biosecurity and the animal health status of the
flock or herd. Data to complete the survey may be obtained from a variety of sources, such
as on-farm food safety records or observations at the time of farm visit. The veterinarian or
veterinary field staff administers the questionnaire to the producer or farm staff during the
sampling visit.

Figure 1. Approach to species-level integration of farm-level antimicrobial use and resistance data and utility of the
syndromic health data for context. AMU-antimicrobial use; AMR-antimicrobial resistance. Arrows indicate the directionality
of the shifts in the national, five year AMU, AMR and animal health data used in this study. Bold and underlined items
represent exploratory analysis. * Candidate indicators included those that are routinely used by CIPARS and exploratory
AMU indicators. ** Species-level status of AMU and AMR.

The number of flocks or herds required for each commodity being studied (i.e., broiler
chickens, turkeys and GF pigs) within the surveillance system was determined using the
methods described elsewhere [20] and the WinEpi program [33].

• Broiler chickens: during the first surveillance year (2013), 100 flocks were allocated
nationally and distributed across the five major broiler chicken producing provinces
where the number of flocks allocated per province was based on the provinces’ relative
contribution to national chicken production. However, in subsequent years, the
number of flocks per province was adjusted to satisfy a requirement of collaborative
surveillance system, FoodNet Canada, to have a minimum of 30 flocks within a



Pathogens 2021, 10, 1492 5 of 35

FoodNet Canada Sentinel site [34]. This adjustment resulted in >135 flocks being
sampled per year. Quantitative AMU methodology was developed within the first
three years of surveillance (i.e., mg/PCU); these AMU estimates enabled validation
of national flock allocations. From the 2705 (national three-year (2013–2015) mean)
broiler chicken producers in Canada [35], approximately 133 broiler chicken flocks
were required per year based on the three-year (2013–2015) mean mg/PCU of 147 [36],
an accepted error of 5% and a 90% confidence interval (CI).

• Turkeys: 56 flocks from a national total of 548 turkey producers (2010 data) [37]
were required per year based on the first three-years (2013–2015 pilot project) mean
mg/PCU of 67 [30], accepted error of 5% and a 95% CI. These flocks were allocated
in the four major turkey producing provinces. Similar to broiler chickens, additional
flocks were added in FoodNet Canada sentinel sites which increased the total number
of flocks to greater than 90 per year.

• GF pigs: herds were distributed across the five major pork producing provinces in
proportion to each province’s contribution to the number of GF operations nationally.
Participating veterinarians were directed to enroll herds that were representative of
the demographics of their swine practice with respect to size and management type.
Unless they withdrew from the program, enrolled herds participated in subsequent
years. Between 2006 and 2019, the number of herds participating nationally ranged
from 85 to 108. In 2017, questionnaire and database refinements yielded more complete
quantitative AMU data (i.e., inclusion of water and parenteral AMU in addition to
feed), thereby allowing total AMU to be calculated and validation of enrolled herd
numbers to be performed. Based on the three-years mean of 101 mg/PCU and mean
of 7973 swine herds nationally [38] with an accepted error of 5% and 95% CI, 96 herds
were required per year.

In poultry species (from this point forward, poultry pertains to both broiler chickens
and turkeys), four pooled samples were collected from the randomly selected sampling
unit (i.e., barn, floor or pen) within a sentinel farm. One pool comprised of at least
10–15 droppings from individual birds (40 to 60 total/flock). As described elsewhere [39],
the total number of birds per sampling unit was based on the formula for detection of AMR
(e.g., tetracycline) in a population of 1000 or more individuals (n = ln α/88 ln (1-minimum
expected AMR prevalence), α = 0.05) [40]. This barn-level sampling strategy was based
on two studies in Ontario, Canada: (1) baseline study of Salmonella and Campylobacter
prevalence [41] and (2) AMU–AMR pilot study comparing antibiotic-free, organic and
conventional broiler chicken flocks [42].

In GF pigs, pooled fecal samples were collected from five quadrants in each of six
pens of close-to-market pigs (>80 kg) on each sentinel herd in order to both maximize
the number of individual pigs represented in the composite samples as described by
Dunlop [43] and to assess resistance in animals as close as possible to the total days of risk
for antimicrobial exposure.

2.1.2. Statistical Analysis

All statistical analyses were performed in SAS Version 9.4, Stata/SE Version 16.1 or
Microsoft Excel (Microsoft Office Professional). All input parameters used in this paper are
summarized in Appendix A.

2.2. AMR Data Component

Overview: the CIPARS farm component follows a standardized approach for sample
collection on farm as previously described. All samples are shipped in refrigeration temper-
ature and tested at the National Microbiology Laboratory (NML) in St. Hyacinthe, Québec.
Farm samples are processed according to routine CIPARS microbiological methods on bac-
terial recovery, further characterization of bacterial isolates (e.g., serotyping of Salmonella,
speciation of Campylobacter) and antimicrobial susceptibility testing [28]. Antimicrobial
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susceptibility testing is methodologically similar to that of the United States’ National
Antimicrobial Resistance Monitoring System (NARMS) [44,45].

2.2.1. Bacterial Isolation and Susceptibility Testing

The recovery of E. coli and Campylobacter from fecal samples was performed according
to routine CIPARS/FoodNet Canada methodology described elsewhere [28]. For AMR test-
ing, the minimum inhibitory concentration (MIC) values for E. coli and Campylobacter were
determined by automated broth microdilution using the Sensititre system (SensititreTM

Trek Diagnostic Systems Ltd., West Sussex, UK) and the United States National Antimi-
crobial Resistance Monitoring System (NARMS) Gram-negative (CMV4AGNF containing
fourteen antimicrobials belonging to eight classes) and CAMPY plates (nine antimicrobials
belonging to seven classes), respectively [28].

2.2.2. AMR Indicator Analysis

For this paper, the term indicator pertains to the AMR measurements used including:
(1) % resistance (number of resistant isolates divided by total bacteria recovered), and (2) %
resistance adjusted for species-specific total resistant isolates, total bacteria recovered and
animal biomass (described in detail in Section 3). For studying AMR outcomes (outcome ex-
amples are resistance to single or homologous antimicrobials such as gentamicin resistance
(GEN-R), susceptibility to all antimicrobials tested, or resistance to ≥three antimicrobial
classes included in the panel), the indicator organism, E. coli was selected, which is consis-
tent with many other surveillance systems. E. coli was chosen for this purpose because of
the robustness of the data and its reliability for ongoing AMR monitoring. In the CIPARS
dataset, recovery of E. coli was consistently >99%. Campylobacter was the second bacterial
species used because of the importance of a specific AMR outcome, ciprofloxacin resistance
(CIP-R) and azithromycin resistance (AZM-R). For the sake of completeness, it should be
noted that CIPARS also routinely tests Salmonella spp. for antimicrobial susceptibility, but
because of the impact of serovar variations on AMR, this organism was not included in
this study.

Bacterial isolation and AMR data for E. coli and Campylobacter were extracted from the
Public Health Agency of Canada’s data repository (Data Extraction and Analysis System
(DEXA)). For analysis of % resistance, isolate-level data in the CIPARS AMR datasets
were dichotomized into susceptible or resistant using current CIPARS breakpoints [28].
Minimum inhibitory concentration breakpoints can be found in Appendix B. As per routine
CIPARS AMR analysis, to account for multiple isolates per farm, prevalence of individual
and the two additional AMR outcomes (susceptible and resistance to ≥three antimicrobial
classes (multiclass resistance)) were adjusted for clustering at the flock or herd level. Details
of these analyses have been described elsewhere [28]. As an alternative to the routine
methodology for estimating AMR prevalence, the flock- or herd-averaged AMR results
were also determined. For each flock or herd, the total number of isolates classified as
resistant to an antimicrobial of interest was divided by the total number of isolates for the
flock/herd (one to four isolates depending on the recovery rates for poultry and one to six
depending on the recovery rates for GF pigs) for that organism (E. coli or Campylobacter) for
a specified year. The averaged AMR is interpreted as the proportion of flocks or herds with
at least one isolate resistant (or susceptible) for the antimicrobial outcomes of interest.

In E. coli and Campylobacter, respectively, percentages of resistance to the antimicro-
bials tested during the study timeframe using isolate-level and averaged flock or herd
estimations are summarized in Appendix C. The prevalence levels and directionality of the
shift in AMR (Appendix C Tables A4 and A5) informed the selection of AMR outcomes for
integration (Table 1).
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Table 1. Summary of temporal trends in antimicrobial resistance and antimicrobial use outcomes in the animal species and
considerations for integrated reporting.

AMR Outcomes AMU Outcomes
Considerations for Inclusion in

Data IntegrationIncreased Stable or
Decreased Increased Stable or

Decreased

SusceptibleEcoli|Total
antimicrobials Br *, GFP, Tk Br, GFP *, Tk * Primary indicators

≥3 MCREcoli|Total antimicrobials Br *, GFP *, Tk Br, GFP *, Tk * Complementary indicators
CRO-REcoli|3rd gen.
cephalosporins Tk Br *, GFP, GFP, (Br) WHO’s HP-CIA; HC-VDD Cat.1

GEN-REcoli|Aminoglycosides Br, GFP, Tk Tk * Br * WHO’s CIA’s; HC-VDD Cat.2
SXT-REcoli|Trimethoprim-sulfas Br GFP, Tk Br, GFP Tk WHO’s HIA’s; HC-VDD Cat.2
TET-REcoli|Tetracyclines Tk Br *, GFP, Tk Br, GFP * WHO’s HIA’s, HC-VDD Cat.3
CIP-RCampy|Fluoroquinolones Br *, GFP * Tk (Br/GFP/Tk) WHO’s HP-CIA; HC-VDD Cat.1
AZM-RCampy|Macrolides Br, GFP Tk Br *, GFP, Tk * WHO’s HP-CIA’s; HC-VDD Cat.2

* Species where statistically significant temporal changes between 2015 and 2019 (p ≤ 0.05) were detected; in parentheses–rarely used.
Br–broilers; Tk–Turkeys; GFP–grower-finisher pigs; Susceptible-isolates that were susceptible or had intermediate susceptibility to the
panel of antimicrobials used; ≥3 MCR-short for multiclass resistant isolates that exhibited a minimum inhibitory concentration above
the breakpoints in antimicrobials belonging to at least 3 classes. R–resistant; CRO–ceftriaxone, GEN–gentamicin, SXT–trimethoprim
sulfamethoxazole, TET–tetracycline, CIP–ciprofloxacin, AZM–azithromycin. AMR–antimicrobial resistance expressed in percentage of
resistance; AMU–the antimicrobial use indicator, nDDDvetCA/kg animal biomass; WHO–World Health Organization; CIA–Critically-
important antimicrobials; HIA–Highly important antimicrobials; HC-VDD–Health Canada’s Veterinary Drugs Directorate Categorization
System (1 to 3).

For simplicity in describing the prevalence of resistance throughout the paper, the
terms used in the EU/EEA for the reporting of AMR data were followed as a guide [32]:
rare: <0.1%, very low: 0.1% to 1.0%, low: >1.0% to 10.0%, moderate: >10.0% to 20.0%,
high: >20.0% to 50.0%, very high: >50.0% to 70.0% and extremely high: >70.0%. These do
not pertain to MIC values and we caution our readers that these values are intended only
as reference points and for descriptive purposes [32]. The authors recognize that certain
antimicrobials, such as those that are categorized as highest priority critically important
(HP-CIA’s) by the World Health Organization (WHO), even at rare or very low levels,
could signify an emerging public health concern.

2.2.3. Temporal Changes in AMR

The aim of temporal analysis was to provide insight on the directionality of the shifts
and extent of the changes in resistance over specified time points. The relative change
in the percentage resistance between two time points was determined (e.g., % GEN-R in
2019 minus % GEN-R in 2015). As per routine CIPARS temporal analysis [28], changes
in AMR were determined with resistance (or susceptible) as binary outcome variable
(Yes/No) with year as the independent categorical variable and p ≤ 0.05 was considered
significant. An OR > 1 and OR < 1 indicates that probability of resistance increases or
decreases, respectively, between the specified time points.

2.2.4. AMR Outcomes for Integration and Rationale for Selection
2.2.4.1. Homologous or Single Resistance Outcomes

Of the twelve and nine antimicrobials included in the NARMS Gram-negative and
CAMPY plate configuration for E. coli and Campylobacter, respectively, six homologous
antimicrobials were selected for inclusion in this analysis as summarized in Table 2.

2.2.4.2. Additional Composite AMR Outcomes

Two composite AMR outcomes were also determined and used in AMU–AMR integra-
tion (Table 3): These complementary AMR outcomes are valuable for their simplicity (i.e.,
instead of reporting all homologous AMR outcomes) and provide a general indication on
how the populations of bacteria, from resistant to susceptible, are shifting within the species
or overall [31,32,46,47]. A strong inverse correlation between these two AMR outcomes
was detected, which was consistent with the literature [31,32,46,47]. Alternate terminology
for describing susceptible isolates includes “no resistance”, as seen in the US NARMS
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interactive data display [48], or its inverse value, resistance to at least one antimicrobial (i.e.,
used in some CIPARS communication products). Any of these AMR outcomes could be
used to describe AMR trends for monitoring the progress of AMU stewardship initiatives.
Susceptible and multiclass resistance outcomes were paired with total AMU to visually
assess how susceptible isolates and multiclass resistance shifted in relation to total AMU
over time.

In summary, the criteria for selection of AMR outcomes included public health im-
portance, veterinary significance and the relevance of the measurement to total AMU and
AMU stewardship. The rationale for selection for integration is synthesized in Tables 1–3.
Temporal changes in AMR and the directionality of the shift between 2015 and 2019 are
shown in Table 1.

Table 2. Single or homologous antimicrobial resistance outcomes selected for integration.

AMR Outcome About This AMR Outcome

Ceftriaxone
resistance
(CRO-R)

Organism: E. coli
Indicator for resistance to: 3rd generation cephalosporins *
Prevalence levels **: Low to moderate
Rationale for inclusion: monitoring of Step 1 of the AMU reduction strategy in the poultry industry [49,50] ***.
Closely monitored by other integrated surveillance system because of its public health
significance [31,32,46,47].

Ciprofloxacin
(CIP-R)

Organism: Campylobacter spp.
Indicator for resistance to: fluoroquinolones *
Prevalence: Moderate to high
Rationale for inclusion: the detection of CIP-R E. coli was relatively very rare in the CIPARS farm AMR dataset.
Therefore, CIP-R Campylobacter is used in routine monitoring and AMU–AMR data integration. Used for
monitoring of the AMU reduction strategy in the poultry industry [49,50]. Closely monitored by other
integrated surveillance system because of its public health significance [31,32,46,47]. Initial contamination of
CIP-R could lead to a self-perpetuating cycle of CIP-R within farms [51].

Gentamicin
resistance
(GEN-R)

Organism: E. coli
Indicator for resistance to: Aminoglycosides and aminocyclitols
Prevalence: Low to high
Rationale for inclusion: A compensatory increase in GEN-R because of aminoglycosides/aminocyclitol use in
poultry was noticed following the voluntary elimination of the preventive use of ceftiofur in poultry in
Canada. Flocks that used these antimicrobials were catgorized as high users of antimicrobials [24]. This
antimicrobial class is included as part of a voluntary AMU reduction strategy in the poultry industry [49,50].

Trimethoprim
and sulfamethox-
azole
(SXT-R)

Organism: E. coli
Indicator for resistance to: trimethoprim and sulfonamides combination (inhibitors of folate synthesis) *.
Prevalence: Low to moderate.
Rationale for inclusion: flocks that used antimicrobials belonging to this antimicrobial class combination were
categorized as high users of antimicrobials [24]. Resistance is monitored because the antimicrobial class is
deemed as extra-label use in poultry [5,6].

Tetracycline
resistance
(TET-R)

Organism: E. coli
Indicator for resistance to: tetracyclines
Prevalence: High to very high
Rationale for inclusion: commonly used in poultry and swine; flocks that used antimicrobials belonging to this
class were categorized as high users of antimicrobials [24].

Azithromycin
resistance
(AZM-R)

Organism: Campylobacter spp.
Indicator for resistance to: macrolides (plus lincosamides and streptogramin B).
Prevalence: Low to very high
Rationale for inclusion: correlates with erythromycin resistance. Macrolides are also part of the voluntary
AMU reduction strategy in the Canadian poultry industry [49,50].

* The use of these antimicrobials is deemed as extra-label drug use (ELDU) in any poultry species in Canada. ** Please refer to Appendix C
for prevalence estimates. *** Chicken Farmers of Canada. AMU strategy, a prescription for change [49] and Turkey Farmers of Canada.
Guidelines for antimicrobial use in the turkey industry [50].
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Table 3. Composite antimicrobial resistance outcomes selected for integration.

AMR Outcome About This Composite AMR Outcome

Susceptible
E. coli *

This includes isolates that exhibited susceptibility to all of the 14 antimicrobials included in the NARMS
CMV4AGNF panel.
For brevity, the term ”susceptible” is used to refer to these isolates.
Rationale for inclusion: used for monitoring the progress of regulatory and voluntary changes in AMU in the
food animal sector. As described in the literature, susceptible E. coli are an indicator used to assess the
development of AMR in relation to total AMU in food-producing animals and are reflective of the overall AMR
situation, including the status of E. coli carrying plasmid-mediated AMR genes [46].

Multiclass
resistant E. coli
(≥3 multiclass
resistance)

Isolate resistant to individual antimicrobial classes was summed to provide the total number of classes that the
isolate was resistant to.
For brevity, the term “multiclass resistance” is used to refer to these isolates and represents isolates with
resistance to ≥3 antimicrobial classes.
Rationale for inclusion: complementary to the indicator above. As described in the literature, multiclass
resistance is reflective of simultaneous actions of multiple antimicrobials on the indicator organism, therefore
this outcome is also equally informative in detecting emerging AMR issues and is routinely used for AMR
reporting in surveillance systems [31,32,46,47,52].

* It is important to note that isolates that exhibited susceptibility to antimicrobial concentration one dilution above the minimum inhibitory
concentration breakpoint (i.e., deemed as isolates with reduced susceptibility/intermediate) were categorized as susceptible in the CIPARS
AMR dataset.

2.3. AMU Data Component

Overview: As previously described, AMU data, including general farm-level demo-
graphics, biosecurity and animal health information, are captured in the questionnaires.
These questionnaires were designed to generate high resolution data for reporting of com-
plementary AMU metrics and indicators and to adapt to the evolving AMU reporting and
communication methodologies.

2.3.1. AMU Data Preparation

AMU indicators routinely used for the reporting of CIPARS farm-level AMU, as
well as exploratory AMU indicators, were estimated at the flock- and herd-level prior to
analyses and modelling exercises:

• Count-based: the percentage of use was determined (number of flocks or herds using
an antimicrobial divided by the total flocks or herds multiplied by 100). The count-
based AMU results were examined in relation to animal health data.

• Quantitative: the numerator and denominator input parameters are summarized
in Appendix A and the formulae can be found in Appendix D. Throughout this
manuscript, relevant descriptive statistics were used in the analyses and exploratory
exercises. Description of the five candidate AMU indicators are summarized in Table 4.

2.3.2. Temporal Analysis

• Count based: The first step involved visual inspection and the relative changes be-
tween two time points similar to AMR findings (i.e., percentage of flocks medicated
with antimicrobial A in 2019 minus the % of flocks medicated with antimicrobial A
in 2015) were determined. The second step involved temporal analysis using logistic
regression models developed with AMU (Yes/No) as the binary outcome variable
with year as a categorical independent variable and using p ≤ 0.05 for significance as
previously described [28].

• Quantitative: trends in national-level AMU in the three species studied using the
general AMU indicator used by CIPARS, mg/PCU, were visually inspected for levels
of use and summarized in Appendix A Figure A1, organized by antimicrobial class.
This provided an overall picture of the diversity of antimicrobial classes used and
variations in temporal trends and quantity of use by antimicrobial class between the
animal species in Canada. Relative changes in AMU quantity between two time points
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were descriptively assessed and summarized in Table 1 (directionality of the shift
between 2015 and 2019).

Table 4. Description of the antimicrobial use indicators used.

AMU Indicator About This AMU Indicator

Count-based

Frequency Percentage of flocks using a particular antimicrobial, or any antimicrobials for a specific disease
syndrome or etiologic agent. Temporal trends were used to assess in parallel with animal health data.

Quantitative,
weight-based

mg/PCU
This is the general AMU indicator routinely used by CIPARS for reporting of AMU data (farm,
national sales and distribution data). The PCU is based on the population size and average weight at
treatment using either ESVAC weights [14] or Canadian weights at treatment.

mg/kg animal biomass
This indicator is used by the OIE for reporting global AMU data [15]; however, for this study, the kg
animal biomass pertains to live weights documented immediately prior to the expected slaughter
date and may differ from other biomass estimation methodology.

Quantitative, dose-based

nDDDvetCA/1000 animal
days at risk or Treatment
Incidence 1000 (TI1000):

This is the dose-based indicator routinely used by CIPARS. The TII000 is determined by species. This
indicator expresses the number of doses a thousand animals would receive per day over the
observation period. The observation period for CIPARS data is the grow-out period and denotes the
days at risk. If instead of dividing by 1000, the nDDDvetCA is divided by 100 animal days at risk, the
TI becomes TI100. This indicator is interpreted as the number of days an animal was treated with
antimicrobials per 100 days, or the percentage of days treated [12,13]. The DDDvetCA values were
developed for each of the species and the methodology and DDDvetCA standards are described
elsewhere [29,53].

nDDDvetCA/PCU This indicator is the total number of DDDvetCA’s adjusted for PCU. Interpreted as the mg adjusted
for DDDvetCA standard for every PCU.

nDDDvetCA/kg
animal biomass

This indicator is similar to nDDDvetCA/PCU where PCU is replaced with the kg animal biomass,
and is interpreted as the mg adjusted for DDDvetCA standardfor every kg of live pre-slaughter
weight. An alternate data source for the denominator is the final slaughter live weights obtained
from processing plants.

AMU-antimicrobial use. PCU-population correction unit. ESVAC-European Surveillance for Veterinary Antimicrobial Consumption.
nDDDvetCA-number of defined daily doses in animals using Canadian standards.

Equation (1). Relative change in antimicrobial use quantity:

AMU quantity in 2019− AMU quantity in 2015
AMU quantity in 2015

× 100 (1)

In addition to the national data analysis (sum of AMU quantity adjusted for species
biomass by year), the flock or herd level specific AMU values were determined and
distributions of AMU were visually inspected. The asymmetrical shape of the AMU
distribution curve was similar from year to year and across the three animal species
studied. The analysis of the five candidate AMU indicators (not shown) yielded a similar
shape which was also described in a previous study [24]. The skewed distribution signified
various AMU practices reflective of changing production systems (i.e., zero AMU was
organic, antibiotic free or raised without antibiotic flocks or herds). It is important to
note that this asymmetrical distribution of flock or herd AMU is a relatively common
observation in farm-level AMU surveillance systems across food animal species regardless
of the AMU indicator used [22,54–56]. For visualization, only the mg/kg animal biomass,
to harmonize with the OIE methodology, is presented in Figure 2A–C. Because of the
shape of the AMU distribution, the nonparametric Wilcoxon rank sum test for comparing
samples from relatively similar distributions was used. This approach evaluated the AMU
distribution as a whole and ranked the number of flocks or herds according to their level of
AMU (i.e., no use, moderate users and high users) then detected how these relative rankings



Pathogens 2021, 10, 1492 11 of 35

shifted between time points. The procedure (RANKSUM in Stata SE/V16) returned the
exact p values where ≤0.05 indicated statistical significance between two time points. In
the example shown (between 2018 and 2019), the shape of the distribution curve of mg/kg
remained similar between 2018 and 2019 and the p≥ 0.05 indicated no significant difference
between these years of surveillance. An alternate nonparametric test, the test of median
(MEDIAN procedure in Stata SE/V16) noting the χ2 and p values, was also explored, but
because the results were comparable, the Wilcoxon rank sum test was deemed adequate
for our circumstance and was used for further analysis.

1 
 

 

 
 
 

Figure 2. Cont.
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Figure 2. Case examples: visual inspection of the distribution of flock or herd level milligrams/kg animal biomass between
two surveillance years (2018 and 2019). Broiler chickens (A). Grower-finisher (GF) pigs (B). Turkeys (C). Black lines pertain
to the median mg/kg animal biomass. Two nonparametric tests were used to compare flock/herd distribution between two
time points, and statistical measures are shown in the boxes underneath the figures.

2.3.3. AMU Outcomes Selected for Integration and Rationale

The total flock- or herd-level AMU and the six classes corresponding to the previously
described AMR outcomes (3GC’s, FQs, AMGL-AMCL, MACR, TMPS and TET) in Table 2
were selected outcomes for integration. These antimicrobial classes are used for the pre-
vention and treatment of the most frequently occurring diseases diagnosed in terrestrial
food animals in Canada. As described in the AMR section, the elevated public health
significance of the 3GCs and FQs also warrants closer monitoring of AMU in these classes.
Total AMU has relevance for overall AMU stewardship (i.e., setting reduction targets).
Considerations for inclusion in routine data integration are summarized in Table 1.

2.3.4. AMU Indicator Selection

As part of integration, five candidate AMU indicators were evaluated for their util-
ity for simultaneous evaluation of the trends in the AMU–AMR combined data, and to
study the strength of the linkages between AMU and AMR by species. Three exercises
were conducted.

2.3.4.1. How the AMU Indicators Relate to Each Other

Two of the candidate AMU indicators were exploratory to CIPARS, the weight-based
mg/kg animal biomass and the dose-based nDDDvetCA/kg animal biomass, which are
derivatives of the mg/PCU and nDDDvetCA/PCU, respectively. To assess their relevance
and ensure that these aligned with AMU indicators currently used by CIPARS, the pairwise
correlation matrix was expanded from the previous constructed matrix [24] to include
these two exploratory indicators. The correlation matrix was constructed for each species
separately. This step was necessary to inform further selection of a candidate AMU
indicator for the purposes of data integration, simultaneous assessment of AMU levels in
the different species and the study of AMU–AMR associations. The correlation matrices
analysis (Appendix D Table A6), regardless of the species, showed statistically significant
high correlation between the two weight-based indicators, mg/PCU and mg/kg animal
biomass (pairwise correlation coefficient, pcc = 0.86 to 0.99) and between the three dose-
based indicators, nDDDvetCA/1000 animal-days at risk [TI1000], nDDDvetCA/PCU and
nDDDvetCA/kg animal biomass (pcc = 0.83 to 0.99). These results indicated alignment
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of the exploratory AMU indicators with those routinely used by CIPARS for reporting
and research.

2.3.4.2. AMU Indicator for Comparison of Use between Species

Comparability of the AMU unit of measurement (metrics) between populations is
a requirement if the intent of the study is to compare AMU levels between species [11].
Although a vast majority of the internationally recognized AMU indicators available to
date are formulaically the same, certain metric/s (i.e., components of the formulae for
an AMU indicator/input parameter) could impact the analytic outcomes and interpreta-
tion. To have a full picture of longitudinal trends and overall AMU levels in the species
currently surveyed, and to guide in the assessment of the five candidate AMU indicators
for their utility for integrated surveillance across species, spline curves patterned from
the Netherlands annual AMU report in agricultural livestock [22] were constructed for
each of the candidate AMU indicators. A smoothing spline was initially constructed with
eight degrees of freedom; the number of degrees of freedom was chosen in order to allow
approximately 1–2 knots per year of data, which optimized the visualization of longitudinal
trends. Then, the spline was used to predict the AMU indicator over the five-year (broilers,
GF pigs) or four-year (turkey) study timeframe. The number of degrees of freedom did
not markedly sacrifice certainty around these predictions, which is represented as 95% CI
banding around the spline curve; these data were plotted with flock or herd level mean
and standard deviation around the mean (Figure 3). These constructed spline curves of
flock or herd level data of the five AMU indicators showed that temporal trends varied
depending on the species and the AMU indicator.
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deviation around these means. The surrounding ribbons represent the 95% CI around the curves. Readers are also 
encouraged to refer to Figure 2, which shows the flock and herd variations in AMU quantity. 

Figure 3. Cont.



Pathogens 2021, 10, 1492 14 of 35

Pathogens 2021, 10, x FOR PEER REVIEW 16 of 39 

(A) (B) 

 

(E) 

Figure 3. Spline curves for: visual inspection of the five candidate antimicrobial use (AMU) indicators to guide in the 
assessment of AMU indicators to be used for data integration. Milligrams per population correction unit (A). Milligrams 
per kg animal biomass (B). Number of defined daily doses using Canadian standards (nDDDvetCA) per 1000 animal-days 
at risk (C). nDDDvetCA/PCU (D). nDDDvetCA/kg animal biomass (E). National data collection for turkeys commenced 
in 2016. The plotted data points represent the annual flock or herd level means and the error bars indicate the standard 
deviation around these means. The surrounding ribbons represent the 95% CI around the curves. Readers are also 
encouraged to refer to Figure 2, which shows the flock and herd variations in AMU quantity. 

Figure 3. Spline curves for: visual inspection of the five candidate antimicrobial use (AMU) indicators to guide in the
assessment of AMU indicators to be used for data integration. Milligrams per population correction unit (A). Milligrams per
kg animal biomass (B). Number of defined daily doses using Canadian standards (nDDDvetCA) per 1000 animal-days at risk
(C). nDDDvetCA/PCU (D). nDDDvetCA/kg animal biomass (E). National data collection for turkeys commenced in 2016.
The plotted data points represent the annual flock or herd level means and the error bars indicate the standard deviation
around these means. The surrounding ribbons represent the 95% CI around the curves. Readers are also encouraged to refer
to Figure 2, which shows the flock and herd variations in AMU quantity.

All of the AMU indicators examined established that GF pigs had the highest mean
value, except in the nDDDvetCA/1000 animal-days at risk (Figure 3C), where broiler chickens
exhibited higher values. For all AMU indicators, turkeys had the lowest mean values. The
magnitude of the differences between species was highest in the nDDDvetCA/1000 animal-
days at risk, as exhibited by the distinct separation of the broiler data from GF pig and turkey
data. This could be explained by the differences in the input parameter, days at risk. This
measurement is equivalent to the entire growing period (i.e., interpreted as the flocks or herds
are at risk of being treated each day of the growing cycle that they are in the barns) [12]. The
species with the shortest life span, broiler chickens (mean 35 days growing period), had the
highest range of values for this indicator compared to GF pigs (mean 114 days) or turkeys
(mean 89 days). As such, the days at risk in the input parameter for this AMU indicator
resulted in substantial variations in the mean and range of nDDDvetCA/1000 animal-days
at risk estimates between species. Attributes of the numerator input parameters (i.e., mg
adjusted by the defined daily doses specific for each antimicrobial and animal species [53,57])
and denominator measurements (i.e., species-specific weights and number of animals per
flock or herd) enabled better comparability of the annual mean and range of flock/herd
AMU between species, thus nDDDvetCA/PCU and nDDDvetCA/kg animal biomass were
the logical candidates for the simultaneous assessment of AMU levels and trends between
species. Variations in the diversity of antimicrobials used depending on the species (which
could impact total or class-specific nDDDvetCA’s) and the proportion of antimicrobial classes
used have been described elsewhere [53]. The DDDvet/PCU has been utilized in several
AMU research studies [17,24,58] and has been useful when other input parameters (i.e., the
days at risk) for other more popular dose-based indicators, nDDDvetCA/1000 animal-days
at risk, as above (TI1000), or the alternate indicator, TI100, are unavailable. Ultimately, for
our study, the nDDDvetCA/kg animal biomass was selected for other study objectives (e.g.,
AMU–AMR association) and was preferred over nDDDvetCA/PCU to reduce the analytic
burden of obtaining denominator data (i.e., average weight at treatment). Furthermore,
slaughter live weights (alternate to pre-slaughter weight collected from farms as previously
described) could also be conveniently obtained from processing plant records. In terms of
communication to stakeholders, the kg animal biomass better aligns with other farm level
production or economic parameters (total kg meat or live weight produced, total kg feed
consumed). Additionally, this approach could be useful for estimation of dose-based AMU
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indicators in other food animal species where input parameters, such as weight at treatment,
may not be easily accessed (beef, dairy, layer chickens) or may vary a great deal over the
feeding period. In the Netherlands, a derivative of this indicator using annualized data
(DDDA/Year) is used to compare the trends and levels of AMU across all the animal species
in the country [22,59] and the AMU indicator used to study AMU–AMR associations [21].

2.3.4.3. AMU Indicator for Studying the Relationship between AMU–AMR

Multiple AMU indicators have been utilized for investigating the relationship between
AMU and AMR, including the weight-based indicators, mg/kg animal biomass [39,60],
mg/PCU [46,61], and the dose-based indicator, TI100 [62–64]. CIPARS currently utilizes
some of these measurements for annual reporting of national AMU and descriptive assess-
ments of AMU trends in relation to AMR.

For this exercise, two homologous AMU–AMR pairs were used as examples (Figure 4A,B).
A homologous resistance (e.g., TET-R) was matched simultaneously with the five TET specific
AMU indicators in turkeys. Resistance (Yes/No) to the specific antimicrobial of interest was
the outcome variable, and one of the five AMU indicators of interest was the predictor variable.
A new model was generated for each indicator. Forest plots were constructed to visualize the
changes in the logistic regression outputs (OR’s, 95% CI’s and p values, referred to as effect
estimates from this point forward). The model used is described in Section 2.4 (mixed effects
logistic regression model with random slope for flocks/herds).

Figure 4. Case examples evaluating five antimicrobial use indicators for studying the potential associations between
antimicrobial use and antimicrobial resistance using mixed effects logistic regression models. Tetracycline resistance (TET-R)
and tetracyclines used in Turkeys (A). Trimethoprim and sulfamethoxazole resistance (SXT-R) and trimethoprim and
sulfonamides use (TMPS) in grower finisher pigs (B) nDDDvetCA-number of defined daily doses in animals using Canadian
standards. PCU-population correction unit. Red dotted vertical lines indicate an OR = 1 (no association between the
antimicrobial use and resistance pairs). Horizontal lines indicate 95% Confidence Intervals around the OR (depicted by
black solid dots).

As demonstrated in the comparative analysis using the homologous pair, TET-R and
TET use in turkeys (Figure 4A), all of the models resulted in significant associations and
comparable p values (from 0.002 to 0.005), although the effect estimates substantially dif-
fered depending on the AMU indicator. For example, the nDDDvetCA TET/kg animal
biomass and nDDDvetCA TET/PCU yielded higher OR with wider 95% CI’s, whereas
the remaining indicators, nDDDvetCA TET/1000 animal-days at risk, mg TET/kg animal
biomass and mg TET/PCU had comparable OR’s (1.02 to 1.05). Similarly (Figure 4B), using
the data from GF pigs for SXT-R and TMPS use, the effect estimates varied depending on
the AMU indicator. In this example, the dose-based indicators, nDDDvetCA TMPS/kg
animal biomass and nDDDvetCA TMPS /PCU, yielded the highest OR’s with relatively
wider 95% CI’s. These findings indicate that the interpretation of potential AMU–AMR
relationships could change depending on the AMU indicator. However, we caution our
readers that these observations are based only on the AMU indicators examined in this
study. Furthermore, other AMU exposure parameters plausibly impacting AMR develop-
ment including treatment duration (i.e., could vary by flock or herd and antimicrobial),
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route of administration and health of the animals at the time of treatment, were not deter-
mined in these exercises or not deemed as parameters in any AMU indicators used. These
AMU attributes could be explored in more detail in future studies. Based on the forest
plots and range of the OR estimates, the exercises confirmed that the nDDDvetCA/kg
animal biomass also has utility for studying AMU and AMR associations. As described
above, this indicator is methodologically similar with the indicator used by the Netherlands
(annualized data) for monitoring levels of AMU and for investigating AMU and AMR
across the different animal species [21,22]. Also, because dose-based indicators adjust for
the average daily dose specific to the antimicrobial active ingredient and species, their
utility for evaluating AMU–AMR has been suggested [11].

In total, eight AMU–AMR pairs (informed by the synthesis of results from routine
surveillance as summarized in Table 1) were evaluated for potential AMU and AMR
associations. The analysis of the association between the AMU–AMR pairs is beyond that
which CIPARS routinely monitors (e.g., CRO-R and 3GC use). Assessment of multiple
AMU–AMR pairs is indispensable, as this may signal potential compensatory use of an
antimicrobial that could increase resistance to antimicrobials important to human health.
For example, the elimination of the preventive use of 3GC’s led to the compensatory use
of alternative antimicrobial classes including AMGL and aminoglycoside–lincosamide
combination products. This shift in use resulted in increased isolation of GEN-R E. coli
along the farm to retail continuum [65].

Box 1. Decision: Which antimicrobial use indicator is appropriate for data integration within and
across animal species?

Are the 5 AMU candidate AMU indicators related? Yes, significantly moderate to high pair-
wise correlation coefficient (pcc) between weight based, and high pcc between dose-based
AMU indicators.

(1) For simultaneous evaluation of AMU levels (and trends) between species: Recommended:
unit of measurement/s comparable between species (11) *; dose-based (11) **. Assessment:
Descriptive statistics by species (mean, 95% CI). Candidate AMU indicators:
1) nDDDvetCA/kg animal biomass
2) nDDDvetCA/PCU

(2) For evaluating relationships between AMU and AMR Recommended: unit of measurement
reflective of the level and duration of exposure; dose-based. Assessment: mixed effect logistic
regression model, evaluation of effect estimates (OR’s, 95% CI) by AMU indicator across species
and forest plots visualization. Candidate AMU indicators:
1) nDDDvetCA/kg animal biomass
2) DDDvetCA/PCU

(3) nDDDvetCA/1000 animal-days at risk Option selected for 1 and 2: nDDDvetCA/kg animal
biomass Other considerations for using this AMU indicator:

(a) Reduced analytic burden in cases where input parameters such as the days at risk and
average treatment weight (Option 3) are unavailable.

(b) The denominator, average pre-slaughter weight, can be accessed from farm records or
production summary reports. Alternate denominator such as processing weight and final
birds/pigs slaughtered can be obtained from processing plant records.

(c) Preferred for ease of communication with stakeholders (familiarity with the contextualizing
denominator, e.g., kg live weight vs. PCU).

* adjusts for number of animals treated and weight ofanimals.
** adjusts for average daily dose per kg per day.

2.4. Development of Analytic Methods for AMU and AMR Integration

Overview: This section describes the integration of AMR and the quantitative AMU
indicator selected from the exercises in Section 2.3 as described in Box 1 (nDDDvetCA/kg
animal biomass). The flock or herd level AMU indicator was paired with the isolate-level
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AMR data, % resistance in E. coli and % resistance in Campylobacter, depending on the
AMU–AMR pairs indicated in Table 1.

In recent years, various research studies have explored the association between
AMU and AMR. While the binary AMR measurements, % phenotypic resistance, were
relatively common for the AMR component, various AMU data structures were used
across different studies, for example, the use of binary AMU data [66–69] or continuous
AMU data [21,39,60–64]. The high-resolution data collected by CIPARS enabled flexi-
bility in AMU options, but for the purpose of this paper, the preferred AMU indicator
nDDDvetCA/kg animal biomass (Box 1) was used for developing the methodology for eval-
uating AMR and AMU associations. Two logistic regression models were used to assess the
strength of association between nDDDvetCA/kg animal biomass and the corresponding
AMR outcomes.

• Option 1. Generalized linear model. The outcome of interest was the flock or herd level
AMR for the antimicrobial and organism of interest. The strength of the association
was evaluated using a generalized linear model (i.e., GLM procedure in Stata/SE
V16.1; family–binomial distribution), with the flock- or herd-level AMR as the outcome
variable (number of resistant isolates per flock and herd, accounting for the total
isolates recovered per flock or herd), and the flock- or herd-level nDDDvetCA/kg
animal biomass as the continuous predictor variable. The models were fitted for each
animal species and adjusted for year (categorical variable).

• Option 2. Mixed effect logistic regression analysis. The second approach used the
isolate-level AMR data matched with the corresponding flock or herd level AMU
indicator, nDDDvetCA/kg animal biomass, as above. The models were fit for each an-
imal species. For these data combinations, the strength of association was determined
using mixed effect logistic regression (i.e., MELOGIT procedure in Stata/SE V16.1)
adjusted for year, with a random intercept to account for the correlation of resistance
within the same flock or herd.

Effect estimates (i.e., ORs, 95 CI’s and p values) were noted for each model and a
p ≤ 0.05 was considered significant. An OR > 1 and an OR < 1 meant that AMR was
positively or negatively associated with AMU, respectively. As an example, in the model
using susceptible isolates as the outcome variable, an OR < 1 indicated that the probability
of detecting isolates exhibiting susceptibility to all antimicrobials tested increased with
lower AMU. For the broiler chicken data, all eight AMU–AMR pairs were modelled,
but model convergence and unreliably wide 95% CI ranges were not achieved for some
AMU–AMR pairs using the two modelling options above (i.e., due to rare outcomes or
predictors). In succeeding species models, AMU–AMR pairs that had AMU values ≤0.1
nDDDvetCA/kg animal biomass or that had AMR levels categorized as rare or very low
were not determined.

This exercise aimed to compare the utility of these two approaches to inform the
methodology that could be routinely applied to farm-level surveillance data. To demon-
strate how the two models explored in this study changed the effect estimates (i.e., OR’s,
95% CI’s and strength of association), forest plots were constructed (Figure 5). It is impor-
tant to note that GLM and MELOGIT models yielded similar OR estimates but varied in
the level of significance, as shown in Figure 5. In both approaches, antimicrobials with
relatively low (<0.1) nDDDvetCA/kg animal biomass yielded unreliably wide 95% CI’s
using either of the modelling procedures explored in this study, which was consistently
observed in both broiler chickens and turkeys (e.g., GEN-R and AMGL). We caution our
readers that some significant results may not be biologically important (e.g., persistence
of resistance to certain antimicrobials in the absence of AMU selection pressure). On the
other hand, nonsignificant results may have elevated public and animal health importance.
As such, a review of complementary data (e.g., whole genome sequencing or detection of
resistance determinants) and an in-depth assessment of other farm-level risk factors may
also be conducted in parallel to these analyses. Additionally, exploration of other modelling
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approaches may be necessary for certain AMU–AMR pairs (i.e., very low quantity of use
or rare AMR occurrence).

Figure 5. Case examples evaluating two analytic methodologies, generalized linear model (GLM) and mixed effects
logistic regression model, for studying the potential associations between antimicrobial use and antimicrobial resistance.
Broiler chickens using GLM (A). Broiler chickens, using mixed effects logistic regression model (B). Turkeys using GLM
(C). Turkeys using mixed effect logistic regression models (D). GEN-R-gentamicin resistance, AMIN-Aminoglycosides,
TET-R-tetracycline resistance, TET-tetracyclines, SXT-R-trimethoprim-sulfamethoxazole resistance, TMPS-trimethoprim and
sulfonamides. Red dotted vertical lines indicate an OR = 1 (no association between the antimicrobial use and resistance
pairs). Horizontal lines indicate 95% Confidence Intervals around the OR (depicted by black solid dots).

Both models have utility for further investigation of aspects of AMU exposures and
farm-level factors that potentially have an impact on AMR, since the models could be
expanded to include other risk factors for AMR. Mixed effects logistic regression was used
for further analyses. In the future, inclusion of potentially relevant variables in the mixed
effect logistic regression model, such as veterinary practices (i.e., potential random effects
of veterinary practices) and geographical locations (i.e., similarities in production inputs
such as hatcheries or poultry companies). As in other integrated surveillance systems [70],
the methodologies explored in this present study could be refined over time to adapt to the
rapidly evolving changes in AMU practices, where multiple modelling approaches or more
than one AMU indicators may be necessary depending on the model fit/data available. In
some cases, transformations of the data, for example, conversion of the mg antimicrobial to
mg/1000 kg animal biomass [60] or log and quadratic transformations, may be necessary
to obtain reliable effect estimates [70]. In this current study, the lognormal transformed
nDDDvetCA/kg animal biomass indicated that OR estimates only changed slightly com-
pared to the actual nDDDvetCA/kg animal biomass values, and model convergence was
similarly not achieved in models with rare outcomes or predictors (e.g., CRO-R and 3GC
pairs) or estimates in certain AMU–AMR pairs (e.g., GEN-R and AMGL). Other models,
such as simple logistic regression models (LOGISTIC procedure in StataSE/V16), were also
explored in this current study, and analyses yielded similar results (data not shown).

The strength of the CIPARS farm-level data is that both AMU and AMR data compo-
nents were collected annually from the same epidemiological unit. Therefore, the isolates
are more reflective of the actual farm-level AMU exposures, which is an advantage com-
pared to other national surveillance programs. The data collection design (longitudinal
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in sentinel flocks and herds) is appropriate for measuring both the selection and spread
of AMR [11]. Additionally, the high-resolution data collected from farms could be used
to investigate other farm-level or industry-level operational factors that could impact
AMR. Examples of studies using a subset of the farm-level data have been described else-
where [39,71,72]. Future studies could also focus on an in-depth assessment of the impact
of specific AMR mechanisms as they pertain to the different exposure characteristics, such
as the spectrum of activity of the antimicrobials used, dosing requirements, the duration
of exposure and the route of administration [11]. In summary, our proposed approach
for species integration of AMU–AMR to be applied annually to the CIPARS farm data is
indicated in Box 2.

Box 2. Proposed methodology for species-level integration of AMU and AMR data.

(1) Visual inspection, descriptive analysis of the percentages and directionality of the shift in
AMU and AMR, followed by temporal analysis

a. Simple logistic regression model: AMR percentages, count-based AMU and animal
health indicators

b. Nonparametric, Wilcoxon rank sum test: quantitative AMU indicators.

(2) Identify the AMU-AMR pairs:

a. public health importance
b. animal health significance
c. relevance to broader AMU stewardship and monitoring of AMU reduction efforts or

other interventions

(3) Determine the strength of AMU-AMR association

a. mixed effect logistic regression approach

(4) Visualize the trends in AMU and AMR.
(5) Examine animal health data for context (are trends in reported disease syndromes reflective of the

trends in AMU?).

2.5. Animal Health Context

Overview: The intent of this exercise was to incorporate the animal health data in
order to provide context to the trends observed in AMU. This approach is meant to help
improve our understanding of the impact of changing AMU practices due to species-
specific voluntary [49,50] or federal regulatory changes, such as enhanced veterinary
oversight [73,74]. It is also meant to identify any evolving preventive health practices with
a so-called sparing effect on AMU, including vaccines/bacterins against specific agents
and non-antimicrobial alternatives.

The CIPARS Farm questionnaire included a section on clinical impressions (i.e., syn-
dromic surveillance) regarding species-specific disease syndromes and etiologic agents,
where responses that were ‘likely positive’ or ‘confirmed positive’ were considered flock
or herd positive for that disease syndrome or etiologic agent. Temporal changes in the
percentages of flocks or herds that experienced any of these syndromes, and utilized pre-
ventive animal health programs (e.g., coccidiosis and necrotic enteritis control in poultry
as shown in the complimentary paper, Part II-application) that may play a role in these
syndromes, were determined to be similar to the AMU count-based indicator and AMR
temporal analysis described in previous sections. The rationale for the selection of certain
disease syndrome/etiologic agents was based on conditions that are commonly occurring
in Canadian flocks and herds and that have economic significance due to the potential
for high morbidity and mortality or reduction in production performance parameters,
such as weight gain, feed conversion or cost of therapeutic AMU. The approach to disease
syndrome/etiologic agents to be included has also been noted elsewhere, for example, a
study in Europe that noted the impact of enteric diseases on flock performance [75]. For
simplicity, in poultry, the disease syndromes/etiologic agents were broadly grouped into
neonatal (caused by avian pathogenic E.coli (APEC)), enteric (Clostridium perfringens and
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Eimeria spp.), respiratory (APEC) and miscellaneous bacterial diseases (Table 5). In GF
pigs, the most important economic disease syndromes/etiologic agents were Streptococcus
suis, Lawsonia spp., E. coli and Swine Influenza Virus. It is acknowledged that laboratory
confirmed data are more informative in understanding the impact of AMU as well as
identifying disease syndromes/etiologic agents requiring preventive health interventions.
The findings that the percentages of flocks or herds with reported clinical conditions sig-
nificantly increased over time is concerning (Table 5). A more in-depth analysis of the
impact of changing AMU practices on animal health and production should be further
explored. Additionally, the characterization of susceptibility profiles in animal health
pathogens, as highlighted in other surveillance systems, such as the United Kingdom’s
Veterinary Antibiotic Resistance and Sales Surveillance Report [76] and Denmark’s DAN-
MAP report [23], would contribute to the understanding of the impact of AMU changes on
clinical pathogens. To substantiate the syndromic information collected from farm-level
questionnaires, provincial and regional disease information [2,3] could be consulted to
compare information on prevalent diseases affecting these species.

Table 5. Utility of animal health data for contextualizing trends in antimicrobial use: summary of temporal trends in animal
health and antimicrobial use outcomes in the animal species using count-based measurements.

Diagnosis Antimicrobial Use

Broad Syndromic
Classifications Examples of Specific Syndromes or Agents Increased Decreased Increased Decreased

Poultry
Neonatal Yolksacculitis, early septicemia Br, Tk * Br *, Tk *

Respiratory Airsacculitis, Br *, Tk * Br, Tk

Enteric Necrotic enteritis, coccidiosis,
nonspecific enteritis Br, Tk * Br *, Tk *

Miscellaneous
bacterial diseases

Vertebral canal osteomyelitis, Staphylococcus
spp. Infection, clostridial dermatitis Br * Tk Br

Swine
Systemic E. coli infections GF pigs * GF pigs

Lawsonia spp. GF pigs * GF pigs *
Streptococcus suis GF pigs * GF pigs

Respiratory Swine Influenza GF pigs * GF pigs

* Species where significant temporal changes (p ≤ 0.05) between 2015 and 2019 were detected. Br-Broilers, Tk-Turkeys, GF pigs-grower
finisher pigs. Antimicrobial use pertains to the response to the question of whether they used any antimicrobial for that flock or herd.

2.6. Summary, Species-Level Integration of Farm Surveillance Data

Section 2 discussed the species-level integration of AMU and AMR and the utility
of the syndromic data for contextual information. The exercises described in this section
will refine the synthesis of existing CIPARS Farm AMU and AMR data and provide better
understanding of the current AMU and AMR situation in the Canadian food animal species
included in CIPARS Farm Surveillance. The methodologies explored here will be applied in
the future for routine assessment of AMU and AMR linkages, complementary to the current
descriptive analysis and visualization of integrated data [57,77]. As in other surveillance
systems [32,46,70], ongoing refinements would be necessary to continue to adapt to the
rapidly changing methodology for data integration, analysis and reporting.

• AMU indicator/s to use: there is no single AMU indicator that can encompass
every analysis objective, in particular for comparison of AMU between species
(Section 2.3.4.2) and for studying AMU and AMR relationships (Section 2.3.4.3) How-
ever, the high-resolution CIPARS farm-level data enabled exploration of the utility of
various AMU indicators for these various analysis objectives. In additi.on to being
able to investigate various methodologies, the other advantage of the CIPARS farm
surveillance design is that the collection of AMU and AMR information is from the
same epidemiological unit (same flocks or herds). This is different than the situation
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in other countries, where data are collected at the national level and only ecological
associations between AMU and AMR can be explored.

• Animal health context: the syndromic data collected from CIPARS farms also helps
provide insights on the potential implications of changing AMU practices on the
health of flocks/herds. More detailed analysis could be conducted in the future to
assess the impact of the shifts in AMU on mortality and flock or herd production
performance parameters, as well as the susceptibility profiles of the clinical pathogens.

• AMU–AMR associations: the analytic options presented here (e.g., GLM and mixed
effects logistic regression models) were appropriate for use in routine annual analysis
and reporting (adjustments to various levels of clustering such as within flocks/herds).
It is important to note that there are many analytic methodologies described elsewhere,
ranging from simple logistic regression analysis to more advanced methodologies
where other relevant variables could also be included in the model (e.g., multilevel
analysis accounting for other sources of variations in the data). Emerging methodolo-
gies could be continuously explored to refine the approach used here.

3. Methodology Development for Multispecies AMU–AMR Data Integration

For this paper, summarized reporting pertains to the use of aggregated AMU and AMR
data from the three species included in this study. The intent of the exercises conducted
in this section was to provide an overview of the current AMR and AMU situation in the
animal sectors combined. Relevant analytic procedures determined from Section 2 were
applied. It is envisaged that this methodology will be used to future CIPARS farm-level
data analysis and will ultimately include other food animal species, currently in the early
implementation or pilot phase (e.g., layer chickens, feedlot beef and dairy). The structured
methodological steps for multispecies AMU-AMR integration is depicted in Figure 6.

3.1. AMR Summarized Indicator

Overview: The AMR levels across the three species by bacterial organism (E. coli
and Campylobacter as summarized in Appendix C) were determined for each year using
two AMR indicators as described below. The purpose of this exercise was to assess if the
methods yield similar trends in resistance.

• % Resistance, multispecies: Overall % resistance in E. coli and Campylobacter, adjusted
for clustering at the species level to account for similarities in AMR within animal
species, was determined. Logistic regression analysis as described previously (i.e.,
isolate-level AMR as binary outcome variable and year as independent categorical
predictor variable, and p ≤ 0.05 for significance) was used to detect temporal changes
in overall % resistance.

• Animal biomass adjusted % resistance: The summarized AMR indicator developed in
the EU/EEA, known as the AMR Indicator Index or Key Outcome Indicator [31,46,70],
was determined. This AMR indicator was previously explored in another study using
poultry data from CIPARS/FoodNet Canada [30], which was modified in this current
study to also include AMR data from GF pigs and using kg animal biomass instead of
PCU in the denominator. As shown in Equation (2), this AMR indicator accounts for
the species-specific AMR results (total resistant isolates/total isolates per species) and
fluctuations in animal biomass over time, such as when new herds or flocks are added
to the sampling frame. Relative changes in the biomass adjusted AMR indicators were
determined between two time points.

Equation (2). AMR weighted by species-specific percentage of resistant isolates
and biomass

RBrY×kg BroilersY
kg animal biomassTotalY

+
RGFPigsY×kg GFPigsY

kg animal biomassTotalY
+

RTkY×kg TurkeysY
kg animal biomassTotalY

= AMRBiomassAdj (2)

where: RBrY-% resistance (or susceptible) in broiler chickens (Appendix C); calculated
per year from 2015 to 2019. RGFPigsY-% resistance (or susceptible) in grower-finisher
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pigs (Appendix C); calculated per year from 2015 to 2019. RTkY-% resistance in turkeys
(Appendix C); calculated per year from 2016 to 2019. kg BroilersY-kg broiler chicken
biomass (number of broiler birds× average annual broiler pre-slaughter weight); calculated
per year from 2015 to 2019. kg GF pigsY-kg grower-finisher pigs’ biomass (number of GF
pigs× average annual GF pigs pre-slaughter weight); calculated per year from 2015 to 2019.
kg TurkeysY-kg turkey biomass (number of turkeys × average annual turkey pre-slaughter
weight); calculated per year from 2015 to 2019. kg animal biomassTotalY-combined animal
biomass from the three species.

Figure 6. Approach multispecies-level integration of farm-level antimicrobial use and resistance data. AMU–antimicrobial
use; AMR–antimicrobial resistance. Arrows indicate the directionality of the shifts in the national, five-year AMU, AMR
and animal health data used in this study. Bold and underlined items represent exploratory analysis. * Candidate indicators
included those that are routinely used by CIPARS and exploratory AMU indicators. ** Two-level random effects model
(included random slopes for flocks or herds and species). *** Multispecies-level status of AMU and AMR.

These exercises, exploring the utility of the two measures of AMR indicators and
visual inspection, indicated that the directionality of the trends was similar regardless
of the method used (as shown in Appendix D Table A7 and described in detail in a
complementary paper, Part II–applications). With the relatively stable sampling frame,
fluctuations in animal biomass may not impact the trends in AMR using the routine formula
(unadjusted for animal biomass), however, with future expansion of the farm program to
other species, the alternate analysis that includes adjusting for animal biomass could be
further explored and may be more appropriate. Detailed assessment of the trends will be
described in a complementary paper (Part II–application).
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3.2. AMU Summarized Indicators

Overview: This section summarized the quantity of antimicrobials from the three
animal species, adjusting for the animal biomass. One of the CIPARS objectives is to
compare data with international surveillance systems that are using similar AMU mea-
surements. For this purpose, mg/PCU [14] and mg/kg animal biomass [15] estimates
during the five-year study timeframe were determined using Equations (3) and (4), re-
spectively. As previously mentioned, the input parameters used in the denominators
for Equations (3) and (4) were based on the actual data collected from the sentinel farms,
as shown in Appendix A and formulae summarized in Appendix D, and differed from
national or regional/global biomass estimation methodologies.

Equation (3). Summarized (total) mg antimicrobials weighted by overall PCU.

mgBrY + mgGFpigsY + mgTkY

PCUTotalY
=

mg
PCU

(3)

where: mgBrY-total mg active ingredients in broilers; calculated per year from 2015 to 2019.
mgGFpigsY-total milligrams active ingredients in GF pigs; calculated per year from 2015 to
2019. mgTkY-total milligrams active ingredients in turkeys; calculated per year from 2016
to 2019. PCUTotalY-the annual population correction unit in all flocks and herds surveyed,
total population at risk multiplied by the ESVAC average weight at treatment (1 kg broiler
chickens, 6.5 kg turkeys and 65 kg GF pigs); calculated per year from 2015 to 2019.

Equation (4) Summarized (total) mg antimicrobials weighted by overall kg ani-
mal biomass

mgBrY + mgGFpigsY + mgTkY

kg animal biomassTotalY
=

mg
kg animal biomass

(4)

where: mgBrY-total mg active ingredients in broilers; calculated per year from 2015 to 2019.
mgGFpigsY-total milligrams active ingredients in GF pigs; calculated per year from 2015
to 2019. mgTkY-total milligrams active ingredients in turkeys; calculated per year from
2016 to 2019. kg animal biomassTotalY–the annual kg animal biomass, the population at
risk multiplied by the actual average live slaughter weights; calculated per year from 2015
to 2019.

The above measurements (Equations (3) and (4)) are logical choices for comparison
with national sales and distribution data and other surveillance systems (e.g., ESVAC and
OIE) that are using these indicators for annual reporting. It is important to note that these
estimates pertain to the three species studied only, and other relevant food animal species,
including beef, dairy, layers and minor species, were not yet included.

3.3. AMU–AMR Association, Multispecies

The multispecies analysis to study AMU–AMR linkages followed the approach used
in Section 2. The overall AMU-AMU using the merged datasets (all species combined), and
the same eight AMU–AMR pairs and indicators evaluated in the species-specific analyses
were determined using mixed effects logistic regression, adjusted for year, and included
a random intercept for species and flocks or herds. (i.e., MELOGIT procedure, two-level
random effects model). The random effects parameters account for similarities in resistance
patterns within the animal species and within flocks or herds (nested within species).
Detailed results are described elsewhere (Part II–application). The multispecies integration
is aimed to provide a synthesis of the data across the species surveyed, reflective of the
AMU and AMR situation in the larger food animal sector.

3.4. Summary, Multispecies-Level Integration of Farm Surveillance Data and Limitations

Section 3 discusses the multispecies-level integration of AMU and AMR reflective
of the current AMU and AMR situation in the animal sectors sampled by CIPARS. The
approach for multispecies integration will be used to assess the progress of the regulatory
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changes in AMU (e.g., enhanced veterinary oversight) implemented in the broader food
animal sector in Canada. However, the data have certain limitations:

• AMU: in terms of comprehensiveness, the data included three food animal species, but
other important commodities in Canada, such as beef and dairy cattle and chicken egg
layers, were not included, as these data were not yet available at the time of the study.

• AMR: data were limited to Gram-negative indicator organisms for many of the analy-
ses. Also, AMR of clinical pathogen data were not available.

• AMU–AMR analysis: other models (i.e., multivariate analyses) evaluating the full
range of potential risk factors for AMR by species were also not completed as they were
beyond the scope of this study; however, they could be explored in future research.

• Animal health: the addition of other production performance parameters that could
substantiate stewardship efforts, such as feed conversion rates and final kg of meat
produced (slaughter data), are not collected by CIPARS, but will be useful to include
to provide a full understanding of the impact of AMU reduction efforts in the health,
welfare and sustainability of the food animal sectors in Canada.

4. Conclusions

This paper explored two levels of AMU–AMR data evaluation, the species level and
multispecies level, discussed the approach for analysis for each of the surveillance data
components and highlighted the utility of syndromic data for providing context to the
AMU trends; therefore, this study demonstrated how surveillance data could be optimized
for informing surveillance best practices and AMU stewardship. It also emphasized that
high resolution farm-level AMU data collection enables a surveillance program to adapt
to rapidly evolving AMU surveillance methodology development, to study associations
between AMU and AMR and to provide useful context for interpreting trends in AMU
and AMR, thereby supporting antimicrobial stewardship activities and informing further
research. Antimicrobial resistance surveillance in clinical pathogens, which is a component
of other surveillance systems remains a gap; inclusion of this component in the CIPARS
farm surveillance program will complement the animal health data collected.
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Abbreviations

AMU Antimicrobial use
AMR Antimicrobial resistance
CIPARS Canadian Integrated Program for Antimicrobial Resistance Surveillance
DDDvetCA defined daily doses using Canadian standards
ESVAC European Surveillance for Veterinary Antimicrobial Consumption
OIE World Organization for Animal Health
PCU population correction unit
nDDDvetCA number of defined daily doses using Canadian standards
TI Treatment Incidence
UK VARSS United Kingdom Veterinary Antibiotic Resistance and Sales Report
AMC Amoxicillin-clavulanic acid
GEN Gentamicin
AMP Ampicillin
MEM Meropenem
AZM Azithromycin
NAL Nalidixic acid
CHL Chloramphenicol
SSS Sulfisoxazole
CIP Ciprofloxacin
STR Streptomycin
CLI Clindamycin
SXT Trimethoprim-sulfamethoxazole
CRO Ceftriaxone
TEL Telithromycin
ERY Erythromycin
TET Tetracycline
FLR Florfenicol
TIO Ceftiofur
FOX Cefoxitin
3GC’s third generation cephalosporins
AMCL aminocyclitol
AMGL aminoglycosides
BAC bacitracins
FQ fluoroquinolones
LINC lincosamides
MACR macrolides
MLSB macrolides, lincosamides and streptogramin B
PEN penicillins
STRE streptogramins
TET tetracyclines
TMPS trimethoprim and sulfonamides combination

Appendix A

Table A1. Antimicrobial use numerator and denominator input parameters and number of isolates from broiler chickens,
grower-finisher pigs and turkeys used for this study, 2015 to 2020.

2015 2016 2017 2018 2019 Mean SD

Broiler chickens
Number of flocks 135 136 137 141 147 139 4

Numerator parameters (AMU quantity)
Total kg 448 396 407 469 495 443 34

Total nDDDvetCA’s (′000) 56,254 59,195 58,248 63,290 55,707 58,539 2461
Denominator parameters

Population, n birds 3,035,442 3,052,498 3,212,784 3,794,167 3,474,669 3,313,912 262,233
PCU (n birds × 1 kg) 3,035,442 3,052,498 3,212,784 3,794,167 3,474,669 3,313,912 262,233

Average pre-slaughter live weight, kg 2 2 2 2 2 2 0
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Table A1. Cont.

2015 2016 2017 2018 2019 Mean SD

Total broiler chicken biomass, kg 6,302,129 6,006,219 6,464,738 7,563,080 7,239,121 6,715,057 536,875
Average days at risk 35 34 34 34 35 35 0
Number of samples 544 544 548 560 588 557 17
Number of isolates

Escherichia coli 539 543 539 547 571 548 12
Campylobacter 117 93 122 122 142 119 16

Grower-finisher pigs
Number of herds 85 91 82 97 107 92 8

Numerator parameters (AMU quantity)
Total kg 1704 1110 984 1235 1197 1246 223

Total nDDDvetCA’s (′000) 292,705 214,175 169,554 183,335 196,013 211,156 39,567
Denominator parameters

Population, n pigs 148,696 147,795 130,829 149,693 169,894 149,381 11,314
PCU (n pigs × 65 kg) 9,665,240 9,606,675 8,503,885 9,730,045 11,043,110 9,709,791 735,411

Average pre-slaughter live weight, kg 124 125 126 127 126 126 1
Total GF-pigs biomass, kg 18,126,786 18,235,934 16,293,023 18,609,944 21,314,478 18,516,033 1,472,631

Average days at risk 113 114 114 114 115 114 0
Number of samples 510 552 492 594 641 558 55
Number of isolates

Escherichia coli 500 544 484 585 628 548 53
Campylobacter 369 483 447 433 48

Turkeys
Number of flocks 72 74 95 98 85 11

Numerator parameters (AMU quantity)
Total kg 219 210 211 374 253 62

Total nDDDvetCA’s (′000) 31,705 32,973 36,719 37,883 34,820 2285
Denominator parameters

Population, n birds 558,396 550,587 608,994 687,360 601,334 48,740
PCU (n birds × 6.5 kg) 3,629,571 3,578,812 3,958,461 4,467,840 3,908,671 316,813

Average pre-slaughter live weight, kg 10 10 10 10 10 0
Total turkey biomass, kg 5,011,422 5,070,026 5,582,249 6,353,551 5,504,312 481,420

Average days at risk 90 89 87 89 89 1
Number of samples 280 292 371 399 336 51
Number of isolates

Escherichia coli 277 287 367 393 331 50
Campylobacter 171 157 191 214 183 21

Combined total
Number of sentinel flocks and herds 220 299 293 333 352 299 41

Numerator parameters (AMU quantity)
Total kg 2151 1725 1600 1916 2066 1891 188

Total nDDDvetCA’s (′000) 348,959 305,075 260,776 283,343 289,603 297,551 26,823
Denominator parameters

Population, n animals 3,184,138 3,758,689 3,894,200 4,552,854 4,331,923 3,944,360 435,009
PCU, total 85 31,796 33,055 36,816 37,990 27,948 12,889

Total animal biomass, kg 1,704 559,505 551,570 610,229 688,557 482,313 245,210
Number of samples 1054 1376 1332 1525 1628 1383 195
Number of isolates

Escherichia coli 1039 1364 1310 1499 1592 1361 189
Campylobacter 117 264 648 796 803 526 283

The input parameters above were surveillance level totals for each data type (AMU or AMR); some analysis used in this study required the
exclusion of a few observations and may differ from values previously reported by CIPARS data (i.e., flocks or herds missing either data
from questionnaires or AMR results).
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Appendix B. Minimum Inhibitory Concentration

Table A2. Resistance breakpoints in E. coli.

Panel Type: CMV4AGNF

Antimicrobial Susceptible Intermediate Resistant

Amoxicillin/Clavulanic Acid 1 ≤8 16 ≥32

Ampicillin 1 ≤8 16 ≥32

Azithromycin 2 ≤16 - ≥32

Cefoxitin 1 ≤8 16 ≥32

Ceftriaxone 1 ≤1 2 ≥4

Chloramphenicol 1 ≤8 16 ≥32

Ciprofloxacin 1 ≤0.06 0.12–0.5 ≥1

Gentamicin 1 ≤4 8 ≥16

Meropenem 1 ≤1 2 ≥4

Nalidixic Acid 1 ≤16 - ≥32

Sulfisoxazole 1 ≤256 - ≥512

Tetracycline 1 ≤4 8 ≥16

Trimethoprim/Sulphamethoxazole 1 ≤2 - ≥4
1 CLSI guideline M100, 31th ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2021. 2 No CLSI
breakpoints. Breakpoints based on distribution of MIC’s and were harmonized with NARMS.

Table A3. Resistance breakpoints in Campylobacter.

Panel Type: Cmvcampy

Antimicrobial Susceptible Intermediate Resistant

Gentamicin 2 ≤2 4 ≥8

Clindamycin 2 ≤2 4 ≥8

Azithromycin 2 ≤2 4 ≥8

Erythromycin 1 ≤8 16 ≥32

Florfenicol 2 ≤4 - -

Ciprofloxacin 1 ≤1 2 ≥4

Meropenem 2 ≤1 2 ≥4

Nalidixic Acid 2 ≤16 32 ≥64

Tetracycline 1 ≤4 8 ≥16
1 CLSI guideline M45, 3rd ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2016. 2 No CLSI breakpoints.
CIPARS Clinical breakpoints. CLSI: Clinical and Laboratory Standards Institute. NARMS: National Antimicrobial
Resistance Monitoring System. CIPARS: Canadian Integrated Program for Antimicrobial Resistance Surveillance.
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Appendix C. Antimicrobial Resistance Summaries

Table A4. Temporal variations in resistance of Escherichia coli isolates from three food animal species sampled at the farm
level, 2015 to 2019.

Year

Isolate Level Analysis
(Adjusted for Clustering)

Flock or Herd-Level Analysis
(Mean Prevalence)

2015 2016 2017 2018 2019 2015 2016 2017 2018 2019

Broilers
Number of isolates/flocks 539 543 539 547 571 134 136 137 140 147

Ampicillin 42% 40% 38% 32% 32% 47% 48% 50% 46% 40%
Ceftriaxone 12% 9% 10% 7% 7% 12% 9% 10% 7% 7%
Gentamicin 19% 21% 20% 20% 17% 19% 21% 20% 21% 17%

Nalidixic acid 6% 5% 5% 10% 8% 6% 5% 6% 10% 8%
Streptomycin 46% 48% 50% 46% 40% 47% 48% 50% 46% 40%
Tetracycline 54% 48% 48% 42% 39% 54% 48% 47% 42% 39%

Trimethoprim-sulfamethoxazole 16% 16% 17% 12% 15% 16% 16% 18% 12% 14%
Susceptible isolates 22% 24% 28% 32% 34% 22% 24% 28% 33% 34%

Multiclass resistance 40% 37% 39% 33% 31% 40% 37% 39% 34% 31%

GF pigs
Number of isolates/herds 500 544 484 585 628 85 92 80 99 107

Ampicillin 30% 33% 28% 29% 29% 30% 33% 28% 28% 28%
Ceftriaxone 2% 2% 0% 2% 2% 2% 2% 0% 2% 2%
Gentamicin 1% 1% 1% 2% 1% 1% 1% 1% 2% 1%

Nalidixic acid 0% 0% 0% 1% 0% 0% 0% 0% 1% 0%
Streptomycin 45% 42% 42% 43% 38% 45% 42% 42% 43% 39%
Tetracycline 67% 70% 68% 67% 65% 67% 70% 68% 67% 64%

Trimethoprim-sulfamethoxazole 12% 13% 15% 12% 12% 13% 13% 15% 12% 12%
Susceptible isolates 23% 21% 23% 22% 22% 22% 21% 24% 22% 22%

Multiclass resistance 38% 39% 38% 36% 31% 39% 39% 37% 36% 30%
Turkeys

Number of isolates/herds 277 287 367 393 70 73 93 100
Ampicillin 30% 37% 29% 29% 30% 38% 29% 29%
Ceftriaxone 1% 1% 1% 2% 1% 1% 1% 2%
Gentamicin 20% 24% 14% 11% 20% 24% 14% 11%

Nalidixic acid 1% 2% 1% 2% 1% 2% 1% 2%
Streptomycin 48% 51% 38% 39% 48% 51% 38% 39%
Tetracycline 69% 63% 56% 61% 69% 62% 56% 62%

Trimethoprim-sulfamethoxazole 9% 9% 11% 10% 9% 9% 10% 10%
Susceptible isolates 25% 25% 31% 28% 25% 26% 31% 28%

Multiclass resistance 36% 39% 26% 28% 36% 39% 26% 28%

Table A5. Temporal variations in resistance of Campylobacter isolates from three food animal species sampled at the farm
level, 2015 to 2019.

Isolate Level Analysis
(Adjusted for Clustering)

Flock or Herd-Level Analysis
(Mean Prevalence)

2015 2016 2017 2018 2019 2015 2016 2017 2018 2019

Broilers
Number of isolates 117 93 122 122 142

Azithromycin 18% 0% 5% 0% 1% 18% 0% 6% 0% 1%
Ciprofloxacin 16% 13% 18% 12% 24% 16% 13% 18% 12% 24%
Tetracycline 56% 22% 40% 27% 27% 56% 22% 40% 27% 27%

GF pigs
Number of isolates 369 483 447

Azithromycin 44% 40% 41% 43% 40% 40%
Ciprofloxacin 8% 11% 12% 9% 12% 13%
Tetracycline 67% 64% 63% 67% 64% 63%
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Table A5. Cont.

Isolate Level Analysis
(Adjusted for Clustering)

Flock or Herd-Level Analysis
(Mean Prevalence)

2015 2016 2017 2018 2019 2015 2016 2017 2018 2019

Turkeys
Number of isolates 171 157 191 214

Azithromycin 1% 16% 8% 5% 1% 16% 8% 6%
Ciprofloxacin 22% 30% 38% 37% 21% 31% 38% 36%
Tetracycline 43% 49% 41% 43% 43% 46% 41% 43%

Values in red fonts on the right-hand side of the table (grouped AMR data by flock or herd) are prevalence values that deviated by ≥1%
(maximum = 3%) from the isolate-level analysis on the left-hand side of the table.

Appendix D. Methods Used to Calculate Antimicrobial Use for Surveillance Data
Collected from Farms

Measurements Description and Reference Numerator Denominator

Count-Based Indicator, National-Level Values

1. Frequency Yes, No data from
the questionnaire.

No. of flocks or herds
using antimicrobials

Total no. of flocks or herds surveyed

Other count-based measures: disease syndromes reported, vaccines,
preventive health measures

Weight-based indicators, flock or herd level

2. mg/PCU

Generic AMU measurement
developed by ESVAC [14],
used by CIPARS [24,28] in

reporting the farm and
national sales/distribution
data and research studies

Total flock or herd: mg of
all classes

By class: mg
antimicrobial class

Broilers: Birds at risk × 1 kg ESVAC
average weight at treatment

GF pigs: Pigs at risk × 65 kg ESVAC
average weight at treatment

Turkeys: Birds at risk × 6.5 kg ESVAC
average weight at treatment

3. mg/kg
animal biomass

CIPARS exploratory analysis:
used by OIE for reporting the

global OIE AMU
database [15]. Actual
pre-slaughter weights

collected on farm at close to
market were used in the study.

Total flock or herd:
mg of all classes, as in #2

By class: mg
antimicrobial class

Broilers:
Birds at risk × kg broiler biomass

GF pigs: Pigs at risk × kg GF
pigs biomass

Turkeys:
Turkeys at risk × kg turkey biomass

Dose-based indicators, flock or herd level

4.
nDDDvetCA/1000
animal days
at risk

Also known as treatment
incidence (TI1000,) when

values are divided by 100, it is
called TI100; routine

dose-based AMU indicator for
reporting the CIPARS farm
data and research studies

Total flock:
nDDDvetCA’s of all classes

By class:
nDDDvetCAs,

antimicrobial class

Broilers:
Birds at risk × 1 kg ESVAC average
weight at treatment × days at risk

GF pigs: Pigs at risk × 65 kg ESVAC
average weight at treatment × days

at risk
Turkeys:

Birds at risk × 1 kg ESVAC average
weight at treatment × days at risk

Values were multiplied by 1000 or 100 for TI100 [12,13]

5.
nDDDvetCA/PCU

Used in past CIPARS research
and reports [24,30,34] and in
research studies and found to

be highly correlated to the
indicator in 4 above.

As in indicator 4 above As in indicator 2 above.
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Measurements Description and Reference Numerator Denominator

6. nDDDvetCA/kg
animal biomass

Explored previously [24]:
used actual kg live

pre-slaughter weight in the
denominator instead of PCU

As in indicator 4 above As in indicator 3 above.

nDDDvetCA-number of defined daily doses for animals using Canadian standards; this is the mg active ingredient divided by the
DDDvetCA standard developed for each species and antimicrobial active ingredient [53]. ESVAC-European Surveillance for
Veterinary Antimicrobial Consumption. PCU-population correction unit.

Figure A1. Temporal trends in the milligrams of antimicrobial by class per population correction unit by species for the
period of 2015 to 2019 for broiler chickens and GF swine, and from 2016 to 2019 for turkeys.

Table A6. Correlation matrices by species using two weight-based and three dose-based indicators.

mg/PCU mg/kg Ani-
mal Biomass TI1000 nDDDvetCA/PCU nDDDvetCA/kg

Animal Biomass

Broiler chickens
mg/PCU 1

mg/kg animal biomass 0.9115 * 1
TI1000 0.7959 * 0.7933 * 1

nDDDvetCA/PCU 0.8320 * 0.7529 * 0.9758 * 1
nDDDvetCA/kg animal biomass 0.7380 * 0.8126 * 0.9741 * 0.9211 * 1

GF pigs
mg/PCU 1

mg/kg animal biomass 0.9976 * 1
TI1000 0.8943 * 0.8921 * 1

nDDDvetCA/PCU 0.8976 * 0.8943 * 0.9904 * 1
nDDDvetCA/kg animal biomass 0.8970 * 0.8982 * 0.9889 * 0.9976 * 1

Turkeys
mg/PCU 1

mg/kg animal biomass 0.8592 * 1
TI1000 0.7981 * 0.7507 * 1

nDDDvetCA/PCU 0.8310 * 0.6859 * 0.9729 * 1
nDDDvetCA/kg animal biomass 0.6589 * 0.7815 * 0.9263 * 0.8318 * 1

* Significant pairwise correlation coefficient p ≤ 0.005. The nDDDvetCA/1000 animal days at risk or TI1000, when adjusted by 100 (TI100),
showed the same coefficient and p values.
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Table A7. Summarized AMR indicator (combined species data), comparison between routine analysis (% resistance) and
summarized reporting (% resistance adjusted for animal biomass).

AMR Outcome Year % Resistance % Resistance,
Biomass Adjusted

Difference Between AMR Adjusted
and Unadjusted Values

Susceptible 2015 22% 23% 1%

2016 23% 22% −1%

2017 25% 25% −1%

2018 28% 26% −2%

2019 28% 26% −2%

Multiclass resistance 2015 39% 36% −3%

2016 38% 38% 1%

2017 39% 38% 0%

2018 33% 34% 1%

2019 30% 32% 1%

Ceftriaxone 2015 7% 5% −3%

2016 5% 3% −1%

2017 4% 3% −2%

2018 3% 3% 0%

2019 4% 3% −1%

Gentamicin 2015 10% 6% −4%

2016 13% 9% −4%

2017 14% 10% −4%

2018 11% 8% −3%

2019 9% 6% −3%

Trimethoprim–sulfamethoxazole 2015 14% 13% −1%

2016 13% 13% 0%

2017 15% 14% 0%

2018 12% 12% 0%

2019 13% 12% 0%

Tetracycline 2015 60% 63% 3%

2016 61% 65% 4%

2017 59% 62% 4%

2018 55% 59% 4%

Ciprofloxacin 2017 14% 14% 1%

2018 11% 16% 5%

2019 13% 19% 6%

Azithromycin 2017 22% 30% 8%

2018 24% 25% 1%

2019 34% 26% −7%
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