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Brainprints: identifying individuals from
magnetoencephalograms
Shenghao Wu1,2, Aaditya Ramdas2,3 & Leila Wehbe 1,2✉

Magnetoencephalography (MEG) is used to study a wide variety of cognitive processes.

Increasingly, researchers are adopting principles of open science and releasing their MEG

data. While essential for reproducibility, sharing MEG data has unforeseen privacy risks.

Individual differences may make a participant identifiable from their anonymized recordings.

However, our ability to identify individuals based on these individual differences has not yet

been assessed. Here, we propose interpretable MEG features to characterize individual dif-

ference. We term these features brainprints (brain fingerprints). We show through several

datasets that brainprints accurately identify individuals across days, tasks, and even between

MEG and Electroencephalography (EEG). Furthermore, we identify consistent brainprint

components that are important for identification. We study the dependence of identifiability

on the amount of data available. We also relate identifiability to the level of preproces-

sing and the experimental task. Our findings reveal specific aspects of individual variability in

MEG. They also raise concerns about unregulated sharing of brain data, even if anonymized.
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The open science movement is a result of the increasing
awareness of the importance of sharing data and code to
promote scientific reproducibility1. Public repositories

enable researchers to share their neuroimaging data (fMRI, EEG,
MEG, etc.) while making sure to censor out individual
information2. However, data anonymization does not always
preserve privacy3. Combining different types of information
using methods such as record linkage approaches4 may cause
serious privacy violations. This problem is exacerbated when
multiple datasets that happen to contain the same individual are
available, which is rather common in neuroimaging (e.g., Ref. 5).
Hence it is natural to ask if anonymized individuals can be
identified from neuroimaging datasets and if so to what degree.
Specifically, we ask: do individuals have a brainprint, a brain-
activity analog of a fingerprint? If there is evidence for a brain-
print, then researchers may be warned about how easily indivi-
dual information can be inferred, and it may cause them (and the
field) to act with more caution when publishing neuroimaging
data online. For instance, it may pave the way for the adoption of
more sophisticated data-release mechanisms like differential
privacy6 and homomorphic encryption7.

Assume there are two multi-individual neuroimaging datasets
with overlapping participants: a "source" dataset and a "target"
dataset. The question of interest is: can we accurately decide
which individual in the source dataset corresponds to the indi-
vidual in the target set? In other words, is there individual
identifiability between the two datasets? The aforementioned
question could arise naturally in practice: it is very common for
university labs to recruit their own lab members for preliminary
studies; these are anonymously released with an associated pub-
lication. Assume that one year later, lab member A relocates to
city B, and privately volunteers for a study by a public hospital
that tracks the effect of a drug (or some intervention) on patients
in early stages of early-onset Alzheimer’s, while collecting MEG
data. If this data is also anonymously released at a future point,
brainprints could plausibly be used to detect a common partici-
pant, thus identifying that A has Alzheimer’s because only one
member of the lab moved to city B. This would already be a gross
unintended violation of privacy, but one can further imagine that
an insurance company uses this to prove that a condition was
pre-existing at the time of the first scan (before the individual
themselves knew), or use it to decide individual-level pricing.

If high individual identifiability exists even if the source and
target set were recorded in separate sessions for each individual,
there might be essential differences in the patterns of the data
among individuals which is preserved across scanning sessions.
Namely, individual identifiability might be related to variability in
brain structure or function (or other individual characteristics
such as head size). In multi-individual, multi-session neuroima-
ging data, there exists "within-session" variability across indivi-
duals in the same session and "cross-session" variability of the
same individual cross sessions8. For simplicity, consider the four
scenarios in Fig. 1. Low variability in both within-session (indi-
viduals are similar) and cross-session (an individual’s data is
consistent across session) is likely to promote statistical power for
detecting average group effects with fixed sample size, thereby
facilitating reproducibility9,10. High cross-session and low within-
session variability (e.g., individual 1’s data in session 1 is very
different from their data for session 2, but somehow very similar
to individual 2’s data in session 1) may indicate session-specific
artifacts (e.g., the scanner was faulty during the recording of
session 1 for all individuals). High cross- and within-session
variability makes data unreliable. Finally, high within-session
(individuals are different from each other) and low cross-session
variability (individuals are similar to themselves) leads to indi-
vidual identifiability. Individual identifiability in turn indicates

consistent individual differences, which in themselves are an
important topic of scientific enquiry8,11. Understanding sources
of consistent variability can help learn the underpinnings of
disease or more generally to map the relationship of brain
structure and activity to individual behavioral characteristics.

Similar individual identification problems have been studied
using EEG and fMRI for the purpose of biometric authentication
and to investigate individual differences12–18. The term "brain-
print" has also been previously used to represent brain-specific
information, such as morphology and event-related potential
biometrics19–21, that can be used to identify individuals. Indivi-
dual identification with MEG data, however, has not been fully
explored. Due to availability of MEG datasets, only single-trial
MEG data have been studied for person identification22. Other
MEG studies focusing on variability of individual data8,11 may
not make connections with individual identifiability. Cross-
modality identifiability has also not been explored.

In this paper, we argue that individuals can be easily identified
with MEG data (see Fig. 2 for a graphical abstract). We measure
identifiability as identification accuracy with three interpretable
MEG features on multiple public and private MEG datasets. We
show that identifiability is not a product of environmental arti-
facts and specific features have a consistent performance between
task and resting state data. We further demonstrate that iden-
tifiability is preserved even between MEG and EEG datasets. We
dissect the contribution of each features into sub-features to
understand what may be leading to the high identifiability. Fac-
tors such as the amount of data and level of preprocessing are also
shown to have influence on identifiability. Our analysis not only
confirms the worrisome potential of privacy being compromised
by released MEG data via extracting simple features but also
leverage the interpretability of the features to explain the
underlying mechanism for the high identifiability, thereby relat-
ing it to individual variability.
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Fig. 1 Individual identifiability is a function of individual and session
variability in neuroimaging. Consider repeating an experiment in multiple
sessions for a group of individuals. Cross-session variability refers to the
change in the recorded data for the same individual across sessions, while
within-session variability refers to differences in a single session's recorded
data across individuals (keeping all other variables, including the stimulus,
unchanged). The ideal conditions for the scientific discovery of an effect
shared by the group are low within-session and low cross-session
variability. However, the combination of low within-session and high cross-
session variability indicates an artifact or a confound in the experiment
design (e.g., each month, one session is recorded for all individuals and the
instrument has a drift over time). High within-session variability paired with
low cross-session variability leads to individual identifiability with the
individual's data acting like a stable signature that differentiates them from
others. Finally, high within-session and cross-session variability lead to
unreliable data.
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Results
In the result section, we first confirm the existence of the fin-
gerprint using data of a single session, of multiple sessions, of
multiple-tasks, and even of multiple recording modalities. We use
machine learning tools as well as interpretable features to show
that identification is easy when the MEG sessions were collected
on a single visit. We then show that the proposed features also
achieve high accuracy on datasets of multiple visits to the scanner,
and some features are even consistent on datasets between dif-
ferent tasks and from imaging recording modalities. We finally
show which components of each feature are important for indi-
vidual identification, and that sample size and level of pre-
processing will also affect identification accuracy.

Within-session identification is surprisingly easy. To measure
identifiability, we consider the test accuracy of a classifier trained
to identify participants from their MEG recording. We first focus
on within session identifiability. In this context, we assume that
each participant undergoes one session. A classifier is trained on a
subset of the session, in which each trial is labeled with the
identity of the participant it corresponds to. In our framework, we
refer to the training set as the source set. Then, on held-out test
data, the classifier predicts which participant is associated with
each test trial. We refer to the test set as the target set. As an
example, we investigated individual identifiability on a MEG
dataset of eight participants during a reading task. Participants
were asked to read a chapter of Harry Potter23 while each word
was presented for 0.5 s on a screen. There were 5176 trials
(words) for each individual. The data was recorded using the
Elekta Neuromag system (see Supplementary Fig. 1 for the sensor
layout). The Harry Potter (HP) data is a single-session dataset:
the data for each individual were collected on a single visit of the
MEG scanner. Hence the source and target set are non-
overlapping subsets of that single session. We preprocessed and
downsampled the data from 1000 Hz to 200 Hz so that there are
100 time points for each word. We trained a random forest
classifier24 using the MEG recording of all channels at a randomly
selected time point, a flattened vector representing the snapshot
of the topographic map (topomap) of the brain activity (see
Methods and Supplementary Fig. 2). Random forest is a powerful
classifier that uses a majority vote of a number of decision trees to
predict the label associated with a given feature. Under this set-
ting, we are asking if there is any individual-specific information
contained in the topomap, the basic element of MEG recording.
We split the dataset into 10 non-overlapping folds and used one
as the target (testing) set and the other nine as the source
(training) set. This 10-fold cross-validation scheme yielded a high
identification accuracy (0.94) while the chance accuracy is only
0.125. We also repeated the analysis by only sampling one

topomap from each trial to deflate possible statistical dependency
and still obtained an accuracy of 0.923. This surprisingly high
accuracy on merely 0.05 s of MEG data suggests the existence of
strong patterns detected by the random forest classifier. This
strong pattern may be contained on the transient spatial dis-
tribution of an individual’s MEG activity and is strongly dis-
tinctive of an individual. This high accuracy with the limited
amount of information used suggests that within-session identi-
fication is a strikingly easy task.

Interpretable MEG features yield high identification accuracy.
The random forest classifier may not enclose enough information
to explain the high identifiability of the HP data because of the
black-box nature of the algorithm. The topomap mainly contains
the spatial information: how heterogeneous the amplitude of the
signal is across channels at a certain time point. High identifia-
bility may also be attained using temporal and frequency infor-
mation. We proposed three interpretable features for individual
identification to further disseminate the individual-specific
information. These features are interpretable because they bear
biological meanings and hence can be used to interpret the high
identification accuracy. The three features were based on n ran-
domly selected trials (words) which have the shape [102 chan-
nels, 100 time points, n trials] (Fig. 3a). sp (Fig. 3b, Supplementary
Fig. 3) is the spatial correlation between different sensors which
may be related to individual-specific correlated activities between
areas of the brain or the anatomy of the individual (e.g., brain
size)8,25. tp (Fig. 3c, Supplementary Fig. 4) is the temporal cor-
relation between the time points into a trial. A high value in the
tp matrix indicates highly synchronous brain signals between two
temporal points, which might be related to participant specific
stimulus processing latencies. A relevant study shows that the
temporal change of brain activities in auditory steady-state
responses are different between individuals26. fq (Fig. 3d, Sup-
plementary Fig. 5) represents the distribution of the power
intensity of signal frequency. Individual differences might also
manifest as differences in the power distribution along frequency
bands22,27.

We used the 1-Nearest Neighbor (1NN) identification
procedure, similar to Finn et al.15, to test if the three features
are brainprints for the within-session identification task. For a
given feature such as sp, the feature was computed on the source
set using n randomly sampled trials (n= 300 for the HP data).
Target set features were also computed in the same way (but
unlabeled) with the same number of trials. The 1NN classifier
simply assigned each target feature to the participant with the
closest source feature (we used correlation to measure distance).
The aforementioned matching process was repeated for 100 runs
to account for the variance of the feature on the sampled trials,
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Fig. 2 Graphical abstract. Identifying which subject a segment of MEG data belongs to is strikingly easy when other data from the same session is available
for every subject. We propose three types of interpretable features that can also be used to identify individuals across sessions with high accuracy.
Identifiability of individuals is influenced by factors such as resting state vs. task state, components of each feature, the sample size and the level of
preprocessing. Our results reveal aspects of individual variability in MEG signals and highlight privacy risks associated with MEG data sharing.
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and the accuracy was averaged across these 100 runs. The
simplicity of this 1NN classifier optimizes the interpretability of
the result.

With n= 300 trials all three features achieve perfect identifica-
tion accuracy (Fig. 3e, the accuracy for sp, tp, and fq is
1 ± 0, mean ± SE, p < 0.0002, see Supplementary Information B
for how we computed the p-values). In fact, the high
identifiability can be attained with as few as n= 100 trials
(Supplementary Fig. 6a shows the improvement in accuracy for
different number of trials, and Supplementary Fig. 6b shows the
accuracy is high for all subjects and features). The high
identifiability with sp, tp and fq suggests they are brainprints,
at least for identifying individuals within a session. Therefore,
multiple features capturing different aspects of the MEG activity
can be used for identifying individuals.

Cross-session identification confirms the existence of brain-
prints. The high within-session identification accuracy suggests
sp, tp, and fq are individual-specific within a session. Artifacts
such as environmental noise and equipment configurations,
however, might be the main contributing factor to within-session
identification accuracy. Hence, we examined the consistency of
the three features when the same type of task data was collected
from each individual on multiple sessions. This setting tests if the
features are preserved over time, i.e., if they are indeed brainprints
and not mere artifacts. If the identifiability is significantly lower
on multi-session datasets, the high identifiability on the HP data
may be a mere result of session-specific artifacts, since the
recording session for each individual is performed on different
days. If high cross-session identifiability is observed, sp, tp, and fq
can be considered genuine brainprints because they are unique to
individual and invariant between sessions. This would also sug-
gest low cross-session and high within-session variability (Fig. 1).

We tested the three features on two multi-session datasets:
FST28,29, a four-session dataset where four individuals were
shown pictures of familiar and unfamiliar faces with 1464 trials
and SEN, a three-session dataset where four individuals were
shown sentences with 3575 trials. Both recordings were recorded
with the Elekta Neuromag sytem and were preprocessed and
downsampled from 1000 Hz to 200 Hz so that there were 100
time points in one picture/sentence which we considered as one
trial (see “Methods”). Since each individual has recordings
conducted on different days, we set the target and source data
to be from different sessions (Fig. 4a), to test the role of
environmental artifacts and further confirm the existence of the
brainprints. In addition to identification accuracy which is binary
on one matching procedure, we used a continuous version, the
rank accuracy, which captures more information in a failure case

where an individual is misidentified. Rank accuracy represents the
rank of the correct assignment out of all possible assignments: it
is 1 if the target feature of each individual have the largest
similarity to the source features for that individual, and is 1

K if the
similarity is the smallest. The chance rank accuracy is Kþ1

2K . In
addition to the identification and rank accuracy, we also used a
metric, differential identifiability30 which measures the similarity
between the features of the same individual as compared to that
of other individuals (see “Methods” and Supplementary Fig. 7).

Both tp and fq achieve almost perfect average identification
and rank accuracy on both FST and SEN data whereas sp
achieved lower but still well above-chance accuracy (Fig. 4c, f).
The high cross-session identification accuracy of sp, tp, and fq
confirms that it is reasonable to call them brainprints for
individual identification in MEG. The lower identification
accuracy for sp is due to low accuracy on a two of the individuals
(Fig. 4d, g) in both datasets. This is also confirmed using the
confusion matrices (Supplementary Fig. 8). However, identifica-
tion accuracy of these individuals is not consistently low across all
session pairs (Fig. 4b, e) indicating that sp only perform worse for
these subjects between certain sessions.

For SEN data, the MEG recording of two subjects were taken
on the same day for session 1 and 2. Since the identification
accuracy of sp corresponding to these two pair of sessions (1 vs 2
and 2 vs 1) does not yield higher accuracy than the average (the
mean identification accuracy between these two session pairs is
0.655, lower than 0.72, the mean across all cross-session pairs),
the accuracy for sp is not inflated due to this issue with duplicated
recording times. In line with the results on the HP dataset, sp, tp,
and fq are the brainprints that are consistent even between
recording sessions with tp, fq leading to higher identifiability.

Spatial brainprints are consistent across resting-state and tasks.
The high performance and interpretability of the brainprints
make it enticing to study the factors and the underlying
mechanism for identification. We looked at the performance of
these features between two sessions of different types collected on
the same day to test their consistency between different brain
states. We compared the features using the Human Connectome
Project (HCP) MEG data5 between a resting-state session (422
trials on average) in which individuals (N= 77) rest and do not
perform a task and a task-MEG session (372 trials on average)
where these same individuals view images and perform a
working-memory task. The dataset was recorded using the
MAGNES 3600 system. We preprocessed and downsampled the
data from 1024 Hz to 200 Hz and there were 500 time points in
one trial in the WM data, which correspond to 2.5 s after the
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Fig. 3 High within-session identification accuracy on HP data with three interpretable features. a Shape of the HP data before featurization. The HP data
consists of participants reading a book chapter one word at a time for 0.5s each. The data are resampled to have the dimension [102 channels,
100 time points, n trials] where each trial corresponds to one word and n to the number of words. b The spatial correlation feature sp is a 102 × 102
Pearson's correlation coefficient matrix computed across the time points and trials. c The temporal correlation feature tp is a 100 × 100 Pearson's
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power at each band was averaged across channels and trials. e Identification accuracy with the three features. The accuracy was averaged across 100
identification runs of 8 individuals. The red dashed line represents the chance level (=0.125). The error bars are the standard errors across individuals and
identification runs and are invisible since they are all zeros.
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onset of the stimulus (see Methods). For the resting dataset, we
simply reshape the recording into consecutive blocks similar to
the WM dataset and performed the same analysis.

Consistent with the cross-session results in Fig. 4, sp yields a
high identification accuracy (Fig. 5a, b, 0.77 ± 0.0034, mean ± SE,
p < 0.0002), well above the 0.013 random baseline. This suggests
that the spatial fingerprint is consistent between different brain
states, which confirm a similar finding in fMRI15. The by-
individual identification accuracy (Fig. 5c, Supplementary Fig. 9)

shows that there is a small subset of individuals whose accuracy is
below random, which may be due to the lack of head position
correction in the HCP collection protocol. tp and fq do not
perform as well as sp, suggesting that the temporal rhythm and
frequency involved might be different between resting-state and
task31,32.

The rank accuracy of tp and fq (Fig. 5b, 0.82 ± 0.0017 and
0.85 ± 0.0016, mean ± SE, p < 0.0002 for all) are much higher than
the baseline (=0.506). The majority of the individuals also have
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higher rank accuracy than baseline for tp and fq (Fig. 5c). The
higher rank accuracy suggests that tp and fq may still contain
individual-specific information but are not strong enough to
achieve a high identification accuracy. Since the individuals
perform different tasks on the source and target session, the rank
accuracy indicates the potential consistent brainprint the
generalizes beyond the task. It is noticeable that for the HCP
dataset, the recording sessions of one individual were recorded on
the same day. Hence one may exercise caution when extend the
conclusions to cross-session datasets.

Temporal and frequency brainprints are consistent across
modalities. So far, we have verified that the brainprints are
consistent across visits, and even between resting and tasks. It
would be a stronger piece of evidence if we show that brainprints
can identify individuals during two visits to different centers with
different recording modalities. We looked at MEG and EEG
(electroencephalography) data of 15 participants viewing scene
images (362 trials for each individual, one trial lasted 1 s)33–35.
Both MEG and EEG were recorded for the exact same stimuli, but
on different days for each participant, making it an ideal testbed
to verify the consistency of brainprints across different imaging
modalities. We downsampled the MEG and EEG data from 1000
Hz and 512 Hz to 110 Hz so that there were 110 time points per
trial. Since the spatial arrangements of MEG and EEG are dif-
ferent, we only tested the accuracy using tp and fq.

Both features yield well above-chance identification accuracy
and rank accuracy (Fig. 6, identification accuracy for tp and fq is
0.43 and 0.43 whereas the chance accuracy is 1

15 ¼ 0:067, the same
conclusion for the rank accuracy). This constitutes strong
evidence that the frequency and temporal information of an
individual’s response to stimuli are preserved even when different
imaging modalities are used. The consistency also indicates that,
at least for the temporal and frequency feature, the high accuracy
is due to the individual-specific responses despite the possibility
of different artifacts induced by MEG and EEG machines. We
also checked that the identification accuracy does not depend on
the number of days between the two visits of an individual
(Supplementary Fig. 10).

Not every part of a brainprint is equally important. What
contributes to the high identifiability of the three brainprints?
Understanding the relative contribution of the components of
brainprints could help understand individual identifiability and

variability. We divided the three brainprints into sub-features and
looked at their identification accuracy to see which components
contain the most individual-specific information. sp was divided
into correlations between groups of sensors: Left Occipital (LO),
Right Occipital (RO), Left Parietal (LP), Right Parietal (RP), Left
Temporal (LT), Right Temporal (RT), Left Frontal (LF), Right
Frontal (RF). tp was divided into correlations between time
intervals. fq was divided into frequencies within a sliding window.
We use the SEN and FST dataset to focus on cross-session
patterns.

For both SEN and FST, the correlations between sensors within
Left Occipital (LO) and between LO and Right Parietal (RP) yield
high accuracy (Fig. 7a, inset, and Supplementary Fig. 11a). LO is
involved in visual processing36 and RP is involved in sensory
integration37, both of which are functions recruited by the
experimental task. Due to the nature of the sampled signal and
the physical properties of the skull, each MEG sensor samples
coarsely from the brain, making it hard to say whether MEG
spatial correlation effectively corresponds to functional connec-
tivity, especially for nearby sensors8. However, the fact that
correlations between faraway groups of sensors, for example, LT
and RT, still have good accuracy suggesting it may be due to
actual functional correlation between these areas, but it could still
be the case that it is the difference in skull shapes that contributes
to the high sp accuracy.

For both SEN and FST, the super-diagonal of the heatmap for
temporal sub-features (Fig. 7b and Supplementary Fig. 11b) has
high accuracy. The super-diagonal entries correspond to the
cross-correlation of the MEG signal between two consecutive
segments of 0.05 s. Hence the rhythm of the signal within a short
segment of time contributes to identifiability, which can also be
seen from the banded structure of tp (Fig. 3c). Moreover, the
correlations between fourth and fifth 0.05 s yield considerably
high accuracy on both datasets tp (Fig. 7b, inset). These time
periods overlap with the time we expect the brain is processing
word and picture stimuli38.

The power intensity of frequencies between 4 and 13 Hz yields
the highest accuracy on both SEN and FST data (Fig. 7c), the peak
is 6 Hz for SEN and 8 Hz for FST. These peaks roughly
corresponds to the Theta and Alpha frequency band which are
related to the resting state, memory, and mental coordination39.
The accuracy is also moderately high on part of Beta band (14–31
Hz) where attention and concentration are recruited39. We also
grouped the frequencies into canonical frequency bands and
discovered a similar pattern (Supplementary Fig. 12).

(a) (b) (c)

Fig. 6 Consistent tp and fq for cross-modality identification on MEG-EEG data. a Heat maps of the cross-modality identification accuracy using the two
features on MEG-EEG data. MEG and EEG data for the same individual were recorded on different days. For one identification run, the features of each
individual were computed using randomly sampled trials (N= 200) from both the source and target session. Each grid represents the average accuracy
across 15 individuals and 100 identification runs. The within-task accuracy (diagonal entries) was computed using the same source-target splitting
procedure as on the Harry Potter data to avoid data leakage. b Average cross-modality identification accuracy and rank accuracy for each feature. Within-
modality accuracy (MEG vs. MEG, EEG vs. EEG) were excluded in the computation. Error bars are the SEs across cross-modality sessions (N= 2),
individuals (N= 15), and identification runs (N= 100) and are invisible due to small values. The red dashed lines are the chance level for the identification
accuracy (¼ 1

15) and rank accuracy (¼ 16
30). c Identification (upper two rows) and rank (lower two rows) accuracy on MEG-EEG data by individual. Within-

modality accuracy is excluded in the computation. Error bars are the SEs across cross-modality sessions (N= 2) and identification runs (N= 100) and are
invisible due to small values. The red dashed lines are the same as in (b). These results indicate that tp and fq are consistent even when different
neuroimaging modalities were used in the source and target session.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03727-9

6 COMMUNICATIONS BIOLOGY |           (2022) 5:852 | https://doi.org/10.1038/s42003-022-03727-9 | www.nature.com/commsbio

www.nature.com/commsbio


Identifiability changes with data size and preprocessing. The
last dimensions that we investigate are the dependence of indi-
vidual identification on the amount of available data and on the
level of data preprocessing.

We looked at the identification accuracy using the three
brainprints while increasing the sample size n. The identification
accuracy increases with the amount of data used for computing
sp, fp, and fq (Fig. 8a) as the sampling variance becomes smaller.
In general, with 50 s of data, the brainprints perform well on
cross-session identification of the same task. sp becomes reason-
ably accurate on the HCP dataset with 100 trials corresponding to
250 s of recording, possibly because more trials are required to
accurately compute features that are distinguishable within a
larger pool of individuals. For FST and SEN, the identification
accuracy of sp saturates at fewer number of trials than tp and fq.
It is possible that sp requires fewer trials to be estimated robustly.

Preprocessing may also affect identification accuracy. We
compared the difference in the identification and rank accuracy
between the raw and preprocessed data (Fig. 8b, c). The changes
in accuracy were all statistically significant (Fig. 8b, c) when the
raw data was preprocessed for all the three features except for the
sp feature for SEN: For both FST and SEN, preprocessing yields
better accuracy for tp and fq. However, for sp, the results point in
opposite directions: preprocessing increases identifiability for FST
and decreases it for SEN (though with little statistical signifi-
cance). There is one difference in the preprocessing pipeline for
both datasets: FST preprocessing does not include head position
correction due to a lack of head position recordings whereas SEN
does. Head position correction might be changing the signal in
inhomogeneous ways thereby undermining the identifiability
with sp. We also found that head size and average movement
have a weak correlation with identification accuracy in the HCP
data (not statistically significant after multiple comparison
correction), shown in Supplementary Fig. 13.

Discussion
An individual can be identified with a number of differential
characteristics, including their real "fingerprints". Existing studies

have suggested the existence a fingerprint in brain signals (e.g.
Refs. 14,15). In this paper, we argued that such brainprints also
exist in MEG data and, in fact, there are multiple of them that
capture different information from the MEG data. We showed
that these brainprints are likely not by-products of environmental
artifacts and may pertain to the underlying brain response to
stimuli. These analyses, apart from adding to the existing evi-
dence of the brainprints, may bear alarming meanings in privacy
issues and provoke thoughts on how scientific conclusions based
on multiple individuals have to be examined carefully given these
consistent individual-specific features.

Within-session identifiability. Using the HP data, we showed
that both random forest classification with topomaps and 1NN
classification with certain interpretable features can be used to
correctly identify individuals when the data is collected on a
single session. The high accuracy based on merely 0.5 s of data for
sp and 25 s for tp and fq is striking since small amounts of data
usually leads to inaccurate estimates of these features, unless the
underlying patterns are strong. The easy task of identifying
individuals on single-session dataset points to strong individual-
specific patterns which may or may not be brain-activity related.

Uniqueness of brainprints. The three features we proposed may
not be the only characteristics of MEG data that can be used for
individual identification. However, these features represent fun-
damental aspects of MEG data (and even time series in general)
hence they may be a vital first step to understand brainprints.
Specifically, we proposed the temporal feature, tp, because of the
high temporal-resolution of MEG data. This feature may have not
been used for other types of neuroimaging datasets, suggesting
that different features may be informative depending on the
nature of dataset of interest.

Cross-session identifiability. The high cross-session identifica-
tion accuracy using sp confirms it is a brainprint, and supports
the previous literature on the similar features in fMRI and
EEG15,40. The higher accuracy by sp, tp and fq suggest that
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Fig. 7 Identification accuracy of components of the features. See Supplementary Fig. 11 for (a, b) on FST data. a Identification accuracy of the sub-features
of sp on SEN data. Each grid represents the identification accuracy using the corresponding entries of sp averaged across cross-sessions (N= 6),
individuals (N= 4), and identification runs (N= 100). Inset is the plot of the sensor group layout and edges correspond to the sensor group pair with over
0.7 accuracy for both FST and SEN. The topomap was plotted using the python MNE package49. b Identification accuracy of the sub-features of tp on SEN
data. Each grid represents the identification accuracy using the corresponding entries of tp averaged across the same dimensions as in (a). Inset is an
example MEG signal of one individual averaged across channels (N= 102) and trials (N= 1000). Arrows correspond to the entries of the heatmap with
over 0.9 accuracy for both FST and SEN. c Identification accuracy of the sub-features of fq on SEN (upper plot) and FST (lower plot) data. Each dot
represents the identification accuracy using the corresponding entries of tp averaged across cross-sessions (N= 6 for SEN and 12 for FST), individuals
(N= 4), and identification runs (N= 100). Accuracy values of f larger than 60 Hz were truncated since the curve became flat. Error bars are SE across
cross-sessions, individuals, and identification runs and are invisible due to small values. The curve peaks at f= 6 Hz for SEN and f= 8Hz for FST. The
accuracy of some components of a feature is consistently higher than the rest on both datasets, indicating that some parts of a certain feature may be more
important in identifying individuals.
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multiple aspects of the individual activity captured by MEG may
be used for identification. The generally lower accuracy from sp
might be the result of the change of alignment of sensors for each
individual. However, since necessary steps have taken in the
preprocessing pipeline to align the sensors (Supplementary
Information A) and each MEG sensor measures brain activity
from a non-trivially large area, it remains unclear if the issue is
the alignment. Another interpretation of this result is that the
temporal and frequency information is more consistent for an
individual across time and the spatial information may slowly
evolve over time (e.g., when the individual slowly moves during
the recording).

The three highly identifiable features on FST and SEN
represent an alarming message for experimentalists to consider
before releasing MEG data. The existence of brainprints are also
examples of certain functions of the MEG data with high cross-
individual variability preserved across sessions, which has been
widely discussed on various types of neuroimaging data8,11,41–43.
For example, the high accuracy with tp suggests the existence of
individual variability in their temporal response to the same
stimuli. Understanding brainprints will facilitate the under-
standing of the underlying anatomical and functional variability
between individuals.

Cross-task identifiability. The consistent performance of sp on
the HCP data is in line with a previous study on fMRI of over-
lapping individuals that the spatial connectome is preserved
between tasks15. The rank accuracy of tp and fq on HCP data
indicates the potential of these two features to be consistent

within individuals (Fig. 5c) because the majority of individuals
still have higher than chance rank accuracy than identification
accuracy. The current underperformance of these two features, as
expected, is likely due to the different temporal dynamics between
the resting and task data. This difference may be eliminated by
removing the trial part from the task MEG, focusing on inter-trial
intervals or baseline periods, and hence boost the identification
accuracy of tp and fq. A more complicated matching method
may be proposed to further boost the performance of these two
brainprints.

Cross-modality identifiability. We have also observed that both
the temporal and frequency features can be used to identify
participants across modalities (MEG and EEG) with accuracy
much higher than chance. This further supports the interpreta-
tion that the temporal and frequency brainprints are capturing
idiosyncrasies that are specific to the time-course of how a sti-
mulus is processed (both in amplitude and in frequency), outside
possible artifacts induced by MEG and EEG machines.

Interpretability of brainprints. For the three brainprints, higher
accuracy seems to be associated with the components of features
with more stimuli-driven activity: the occipital lobe, the time
around the stimulus, and frequency bands the with highest power
intensities (Fig. 7, Supplementary (Figs. 3, 4 and 5)). Indeed,
MEG signal is most sensitive to transient, coordinated firings of
many neurons that happen after stimulus onset. This common-
ality indicates the possibility that higher accuracy is related to
event-related signals, which in turn suggests that identifiability
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Fig. 8 Factors affecting identification accuracy. a Identification accuracy with respect to the number of trials (sample size) used for the featurization of
FST, SEN, and HCP data. Each dot represents the identification accuracy averaged across individuals, identification runs, and cross-sessions (or cross-task
sessions) excluding the within-session or within-task results. Error bars are the SEs across the corresponding cross-sessions (or cross-task sessions),
individuals, and identification runs of each dataset and are invisible due to small values. b–c Identification (b) and rank (c) accuracy of the three features
computed on raw and fully preprocessed FST and SEN data. The same color represents the same feature as in (a). For (b), the identification accuracy
across sessions (N= 12 for FST, N= 6 for SEN) and individuals (N= 4) were averaged with respect to identification runs (N= 100) and were put into one
vector (of N= 48 entries for FST and 24 entries for SEN) for each feature and level of preprocessing. The heights of the bar plots are the mean of the
corresponding vector. A two-sided unpaired t-test was performed on the vectors of the same feature and dataset between the raw and preprocessed data.
The p-values for all pairs are less than 0.05, except for the sp feature for SEN. For (c), the rank accuracy were put into one vector in the same way as in (b).
The heights of the bar plots are the mean of the corresponding vector and the error bars are its SE A two-sided unpaired t-test was performed on the
vectors of the same feature and dataset between the raw and preprocessed data. The p-values for all pairs are less than 0.05, except for the sp feature
for SEN.
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might be caused by different individuals responding differently to
the stimulus. This dependence on stimulus may explain the low
accuracy with tp and fq on HCP data and also suggest that the
identifiability originates from brain-related activities instead of
session- and individual-specific artifacts. In contrast, these accu-
racy patterns could also be explained by a signal-to-noise ratio
argument: regions, time points, or frequencies related to stimulus
processing correspond to parts of the underlying brain signal with
higher amplitudes while the ambient noise amplitude is constant.
The increase in signal magnitude may make the individual-
specific spatial, temporal, and frequency patterns more detectable
by increasing their amplitude relative to the ambient noise, even if
these patterns are not inherently related to stimulus processing
and are just consistent features of a individual’s brain activity.

Sample size and level of preprocessing. sp accuracy tends to
saturate with fewer number of trials than the other two features
on FST and SEN data but with more trials on HCP data (Fig. 8a).
This difference is likely due to the difference in the maximum
accuracy a feature can attain: in HCP data, tp and fq has much
lower maximum accuracy and will reach the peak with smaller
number of trials. In FST and SEN data, the spatial pattern may
require fewer trials to estimate accurately, as compared to the
temporal and frequency features.

The artifact removal and temporal filtering in the preproces-
sing pipeline might have prevented session-specific noise from
contaminating individual-specific features, resulting in higher
accuracy for tp and fq. The seemingly contradictory accuracy on
sp does not justify our results: identifiability using sp increases
after prepossessing when not performing head position correction
but decreases when performing it. On the one hand, it is expected
that head position correction would improve identifiability by
recentering each individual’s data to the same position in each
session. On the other hand, head position correction may remove
individual-specific information such as the head shape, causing
the decrease in the accuracy of sp. Future work and analysis of
additional datasets are required to investigate this result. The
difference in the accuracy between raw and preprocessed data
suggests, for example, encrypting the data with session-specific
noise may lower identification accuracy.

Limitations. Due to the limited availability of multi-session MEG
data, more experiments are needed to generalize our findings to a
larger population and other tasks. For example, the cross-session
identifiability results depend on 4 subjects and may suffer from
high variance. A larger population (with multiple sessions per
participant) may benefit the interpretation of brainprints and
eventually attribute the high identifiability of certain features to
the underlying brain mechanism.

Throughout the paper, we assumed both the target and source
datasets had the same pool of participants in the scope of this
paper. If we don’t know if one individual from the target set is
included in the source set, other classification methods which
allow for abstaining from classification (e.g.,44) may be used to
account for the case when no label in the source set can be
assigned to the individual. This situation is an example of a more
realistic identification problem because an individual’s participa-
tion in multiple MEG studies is usually unknown to the public.

Future solutions. More complicated features can be proposed
which combine the spatial, temporal, and frequency information
to improve identifiability. For example, functional connectivity at
different frequency bands has been used to identify twins from
other participants17. A new feature similarity function that
focuses on the structure of the correlation matrices may also be

used to improve accuracy45. Metric learning46 can also be used to
learn the similarity function in a supervised manner which may
boost performance with sufficient labeled MEG data. Further-
more, given the high identification accuracy with brainprints in
this study, privacy-preserving algorithms need to be proposed to
account for this privacy issue. Federated learning47 may be a
promising framework as data collected from multiple sessions
and sites can be analyzed together without revealing critical
information of each specific dataset.

Methods
Ethical approval. The Carnegie Mellon University and the University of Pittsburgh
Institutional Review Boards have approved and overseen the Harry Potter (HP)
and the SEN data collection. The other studies were accessed online and were
overseen by their respective institution’s Institutional Review Boards.

Within- vs cross-session. We called a pair of source and target sets "within-
session" if, for each individual, both datasets were collected in the same visit to the
scanner. For example, two blocks of a resting-state recording of a participant
collected on the same day are within-session. If the two datasets are collected on
different days for each individual, they are "cross-session". For example, a resting
state recording on day 1 and another resting-state recording on day 2 are cross-
session. Individuals with within-session data may be easier to identify since the
source and target data were collected under almost the same environment.

Within-session data. The Harry Potter dataset was recorded using the 306-
channel whole-head MEG system (Elekta Neuromag, Helsinki, Finland) at the
Brain Mapping Center at the University of Pittsburgh. The study was approved by
the Carnegie Mellon University and the University of Pittsburgh IRBs and
informed consent was obtained from all participants. Individuals were asked to
read a chapter of Harry Potter23 while each word was presented for 0.5 s on a
screen. There were 5176 trials (words) for each one of the eight individuals. There
were 306 sensors at 102 locations where each location has one magnetometer and
two planar gradiometers whose signal was averaged. The sampling frequency of the
data was 1000 Hz which was further downsampled to 200 Hz. Details about the
preprocessing of all the datasets in this paper can be found in Supplementary
Information A and Supplementary Table 1. The data was parsed into trials where
each trial corresponds to the MEG recording when an individual was reading a

word. Specifically, the trials of individual k is fXk
i 2 R102 ´ 100gIki¼1 where Ik is the

number of trials for individual k, 102 represents the number of spatial channels,
and 100 represents the number of temporal points in the trial. Since the recording
of each individual was collected in one session, we simply split the data into a target
and source dataset for the within-session identification task.

Random forest identification with raw features. We trained a random forest
classifier with 256 estimators by first concatenating all the trials of each individual
along the time dimension, resulting in Xi 2 R102 ´N ; i ¼ 1; ¼ ; 8 where
N= 100 × 5176 is the total number of time points for each individual. We then
randomly selected 10000 topomaps from each individual and obtained fxij 2
R102; i ¼ 1; ¼ ; 8; j ¼ 1; ¼ ; 10; 000g as the training dataset where each sample is
a flattened vector with 102 entries corresponding to the signal across all channels at
one time point (or, the topomap). The training label is yij= i. A 10-fold cross-
validation was used to compute the classification accuracy. Data were z-scored by
channel separately on training and testing data to avoid data leakage. To further
avoid dependency between time points, we repeated the analysis while only sam-
pling one topomap per each trial: for each individual, we randomly sampled 5000
trials without replacement and randomly sampled one topomap from each one of
the 5000 trials, leading to 5000 randomly sampled topomaps for each individual.

Interpretable MEG features. Let X 2 R102 ´ 100 ´ n represent the recording used for
featurization, with 102 channels, 100 time points, and n randomly sampled trials.
The three features are defined as follows:

1 Spatial correlation (sp): Pearson correlation between channels averaged over
time. X was reshaped into R102 ´ 100n before the correlations between rows of the
reshaped matrix were computed.

2 Temporal correlation (tp): Pearson correlation between time points averaged
over channels. X was reshaped into R100 ´ 102n before the correlations between rows
of the reshaped matrix were computed.

3 Frequency (fq): power spectrum averaged over channels. Power spectrum of
X(i, : , j) was computed using a Tukey window with shape parameter of 0.25 and
window size of 100 time points for i= 1,⋯, 102, j= 1,⋯, n. The final power
spectrum was obtained by averaging across i, j.

Identification using 1NN. We performed R= 100 identification runs. In identi-
fication run r, we randomly split the Harry Potter dataset into non-overlapping
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source and target set, z-scored the source and target by channel separately, and
computed the feature xαi;r;F averaged over n= 300 randomly sampled trials using
data α∈ {target, source} for individual i and F∈ {sp, tp, fq}. The features from the
target to the source set were matched with a labeling with replacement protocol :

ŷ
�
xtargeti;r;F

�
¼ arg max

j2f1;2;���;Kg
m
�
xtargeti;r;F ; xsourcej;r;F

�
ð1Þ

where K= 8 is the total number of individuals and m( ⋅ , ⋅ ) is the similarity
function measuring the similarity between the two features. We used Pearson
correlation as our similarity function. The identification accuracy for individual i
and feature F is 1

R∑
R
r¼1 1ŷðxtargeti;r;F Þ¼i . The averaged identification accuracy for feature F

is 1
KR∑

K
i¼1 ∑

R
r¼1 1ŷðxtargeti;r;F Þ¼i . The random baseline is 1

K.

When the source set and target set were from the same session, we split the
dataset into non-overlapping sets as we did in the within-session identification. We
did not split data when the source and target data are from different sessions since
there is no potential data leakage. We z-scored the data by channel on the source
and target separately.

Rank accuracy. The rank accuracy of individual i on one run of identification
(suppressing notations of feature F and run r) is defined as 1

K rankðmðxtargeti ; xsourcei ÞÞ
where K is the number of individuals, rankðmðxtargeti ; xsourcei ÞÞ is over
fmðxtargeti ; xsourcej Þ; j ¼ 1; 2; � � � ;Kg. The rank accuracy equals to 1 if the feature of
the same individual has the largest similarity between the source and target sets
among all K individuals, and is 1

K if the similarity is the smallest. The rank accuracy
captures more information in a failure case where an individual is misidentified.
The random baseline for the rank accuracy is Kþ1

2K .

Differential identifiability. We also adopted a type of accuracy called differential
identifiability30 to better understand the robustness of the identification. For one
identification run, let C 2 RK ´K denote the correlation matrix between the source
and target features where K is the number of individuals. The differential iden-
tifiability for this identification run was calculated as:

100 ´
1
K

∑
K

k¼1
Ckk �

1
KðK � 1Þ∑i≠j Cij

� �
: ð2Þ

A high differential identifiability would indicate that the features for the same
individual (diagonal entries of C) are much more similar as compared to features
between different individuals (off-diagonal entries of C). The chance differential
identifiability is 0 where there is no difference between the diagonal and off-
diagonal entries if C.

Cross-session data. We considered the following two datasets which have
recordings on multiple days:

1- FST data28,29, shared online: individuals saw faces with each face appearing
on the screen. There were 1464 trials for each individual. Each trial lasted 0.5 s.
There were 4 individuals and 4 sessions. The sampling frequency was 1000 Hz and
was downsampled to 200 Hz. Intervals between consecutive sessions were
several days.

2- SEN data (shared with us by Tom Mitchell’s lab at Carnegie Mellon
University): individuals read sentences. Each trial lasted 0.5 s. There were 4
individuals and 3 sessions. There were 3575 trials for each individual. The sampling
frequency was 1000 Hz and was downsampled to 200 Hz. Intervals between
consecutive sessions ranged from days to weeks. In this dataset, two sessions for
two individuals were recorded at the same day.

The 306-channel whole-head MEG system (Elekta Neuromag, Helsinki,
Finland) at the Brain Mapping Center at the University of Pittsburgh was used to
obtain both recordings. The shape of one trial of the two datasets is 102 channels
by 100 time points, the same as the Harry Potter data. We used 300 trials to create
features for each run of identification. For the within-session identification
(diagonal entries of Fig. 4b, c), we split the recording for each individual into non-
overlapping source and target set before featurization.

Task vs resting data. We looked at the Human Connectome Project data5. The
recording was obtained using the whole-head MAGNES 3600 (4D Neuroimaging,
San Diego, CA) system located at the Saint Louis University (SLU) medical campus
during a single-day visit for each individual. There were two sessions, one resting-
state recording and one working-memory (WM) task recording where the stimuli
were images for the participants to remember. The number of trials for each
individual varied because different trials were removed for each individual in the
preprocessing step due to signal quality. There were 422 trials in average for the
resting dataset and 372 trials in average for the WM dataset. Each trial of the WM
corresponded to the 2.5 s of the recording after the onset of the stimulus. The two
datasets had 77 individuals in common and we only looked at these individuals.
There were 146 channels (after bad-channel removal) and the signal was down-
sampled to 200 Hz. The two sessions were collected on the same day with a break
of several hours. We used 200 trials for featurization for each run of identification
due to fewer number of total trials as compared to the aforementioned datasets.

MEG vs EEG data. We looked at the scene viewing data33–35. The dataset includes
both MEG and EEG recordings of 15 participants viewing 362 scene images (trials),
and the MEG and EEG sessions were recorded separately on different days. MEG
data were recorded using the 306-channel whole-head MEG system (Elekta Neu-
romag, Helsinki, Finland) at the Brain Mapping Center at the University of
Pittsburgh. EEG data were recorded using a 128-channel whole-head system
(ActiveTwo, Biosemi, Amsterdam, Netherlands) at the EEG laboratory of the
Psychology Department at Carnegie Mellon University. Each image was shown for
3−6 repetitions and the signal was averaged across these repetitions for each image.
MEG data were recorded at 1000 Hz and were downsampled to 110 Hz. EEG data
were recorded at 512 Hz and was downsampled to 110 Hz. Each trial corresponds
to the 1 second of the stimulus presentation. The shape of one trial is 102 channels
by 110 time points for MEG (averaged across three sensors for the 102 sensor
locations) and 128 channels by 110 for EEG. We used 200 trials to create features
for each of the 100 identification runs. For the within-session identification
(diagonal entries of Fig. 6a), we split the recording for each individual into non-
overlapping source and target set before featurization.

Sub-features. Each feature was decomposed as follows:
1 sp: The sensors were partitioned into 8 subgroups according to the map in

Figure 1 of Ref. 48: Left Frontal (LF), Right Frontal (RF), Left Temporal (LT), Right
Temporal (RT), Left Parietal (LP), Right Parietal (RP), Left Occipital (LO), Right
Occipital (LO). Each subfeature was the rows and columns of the spatial
correlation matrix corresponding to the sensors in one of the eight groups: let
Σs 2 R102 ´ 102 be the spatial correlation matrix, then the subfeature corresponding
to the correlation between RT and LT, for example, is Σs(indRT, indLT) where indRT
is the set of channel indices in the RT group and indLT corresponds to the
LT group.

2 tp: The 100 temporal points were divided into 10 consecutive segments
containing 10 time points. Each subfeature was the rows and columns of the
temporal correlation matrix corresponding to one of the ten segments: let Σt 2
R100 ´ 100 be the spatial correlation matrix, then subfeature corresponding to the
correlation between the first and second time segment, for example, is
Σt(1: 10, 11: 20).

3 fq: Each subfeature was the segment of the frequency feature vector
corresponding to [f, f+ 10] Hz where f∈ {0, 2,⋯, 90} Hz.

Raw vs preprocessed data. In Fig. 8b, we compared the identification accuracy
between the raw and preprocessed data for FST and SEN dataset. The details of the
full preprocessing pipeline are included in the Supplementary Information A. In
FST dataset, for a given feature and dataset, there were 48 matching results (12
cross-session comparisons × 4 individuals averaged across 100 identification runs)
where each one corresponds to the result of deciding which individual from the
source session matches the one individual from the target session. An two-sided
unpaired t-test was performed to determine if there is a significant difference in the
identification accuracy between the raw and preprocessed data. In SEN dataset, for
a given feature and dataset, there were 24 matching results (6 cross-session com-
parisons × 4 individuals averaged across 100 identification runs) instead. The
analysis was performed in a similar way for the rank accuracy in In Fig. 8c.

Statistics and reproducibility. All the error bars in the figures represent 1 stan-
dard error (SE). Statistical significance of the identification accuracy was computed
using our own permutation-based algorithm (see Supplementary Information B
and Supplementary Table 2). To compare the statistical significance in the dif-
ference in identification accuracy between raw and preprocessed data, we used two-
sided unpaired Student’s t test with n= 48 samples per group for FST data and
n= 24 samples for SEN data.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The HCP data can be accessed at: https://www.humanconnectome.org/study/hcp-young-
adult. The FST data can be accessed at: https://figshare.com/articles/FST_raw_data/
4233107. The MEG/EEG data can be accessed at: https://figshare.com/articles/dataset/
MEG_EEG_data_viewing_scene_pictures/16766938. The HP and SEN data can be made
available upon completing a data use agreement at https://kilthub.cmu.edu/articles/
dataset/RSVP_reading_of_book_chapter_in_MEG/20465898 and https://kilthub.cmu.
edu/articles/dataset/RSVP_reading_of_sentences_in_MEG/20465802 respectively.

Code availability
The code for preprocessing MEG data, computing the three features and their accuracy,
and creating the figures will be uploaded to the Github repo: https://github.com/
brainML/brainprint.
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