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Neurophysiological effect of human exposure to radiofrequency signals has attracted

considerable attention, which was claimed to have an association with a series of

clinical symptoms. A few investigations have been conducted on alteration of brain

functions, yet no known research focused on intrinsic connectivity networks, an

attribute that may relate to some behavioral functions. To investigate the exposure

effect on functional connectivity between intrinsic connectivity networks, we conducted

experiments with seventeen participants experiencing localized head exposure to real

and sham time-division long-term evolution signal for 30min. The resting-state functional

magnetic resonance imaging data were collected before and after exposure, respectively.

Group-level independent component analysis was used to decompose networks of

interest. Three states were clustered, which can reflect different cognitive conditions.

Dynamic connectivity as well as conventional connectivity between networks per

state were computed and followed by paired sample t-tests. Results showed that

there was no statistical difference in static or dynamic functional network connectivity

in both real and sham exposure conditions, and pointed out that the impact of

short-term electromagnetic exposure was undetected at the ICNs level. The specific

brain parcellations and metrics used in the study may lead to different results on

brain modulation.

Keywords: radiofrequency exposure, long-term evolution, resting-state fMRI, intrinsic connectivity network,

dynamic connectivity

INTRODUCTION

Wireless communication technology has evolved drastically in the past 20 years. The emergence
of the fourth generation (4G) wireless communication technology promoted the widespread
applications of mobile network, and vice versa, and 4G rapidly became the popularly used wireless
network. The unprecedentedly increasing exposure to radiofrequency (RF) field provoked public
anxieties, especially over the effect on neurophysiological function (1). By the end of the third
quarter of 2020, although 5G network had already been commercially deployed in many countries
for 1 year, there were still 5.82 billion 4G subscriptions (accounting for 62.1% of global subscription)
(2). Therefore, it is necessary to investigate the exposure effect of 4G wireless signal.
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Subjects who attribute health complaints to everyday levels of
electromagnetic fields are suspected of having electromagnetic
hypersensitivity, and their symptoms include impaired sense of
smell, feeling of pressure in ear, dizziness, and difficulties in
concentration (3). However, many studies ascribed the symptoms
to psychological suggestion due to the lack of proof of causality
(4, 5). The analysis using neuroimaging techniques may help
elucidate the concern whether RF radiation exposure would
disturb behavioral cognitive function.

The human brain possesses intrinsic connectivity networks
(ICNs) relating to underlying neural activity (6). They maintain
structural stability at resting state and could be decomposed as
spatial-distributed components (independent components, IC)
with highly temporal-correlated fluctuations using independent
component analysis (ICA) (7) or seed-based analysis (8).
Functional network connectivity (FNC), defined by pairwise
correlation between ICNs over a certain time course, canmeasure
the averaged connectivity among these ICNs during the scan
duration (9). It was conventionally assumed that correlation
values stabilized within 4–5min of data length (7). However,
the average over the entire scanning time course may conceal
the instantaneous change. Recent research demonstrated that
the spontaneous blood oxygen level dependent (BOLD) signals
measured during resting state exhibited intrinsic spatiotemporal
dynamic organization (10). The dynamic FNC calculated
by short time windows was able to track this oscillation
over time. Furthermore, the results can be clustered into
several connectivity patterns, which may associate with diverse
perspectives from unconscious states relevant to anatomical
structures to more complex information exchange states (11).
By aids of the technique, new breakthroughs have been made
in identifying brain dysfunction and cognitive behavior (12,
13). In contrast, relatively few non-ionizing exposure effects
have been evaluated in terms of ICNs, and even less on
dynamic FNC.

In this work, seventeen healthy participants were recruited
and they experienced 30-min exposure. Group-level ICA
was performed to decompose ICs across participants
from their resting-state fMRI data. We identified 51
ICs in 14 ICNs of interest. Both static FNC over the
entire scanning time course and the dynamic FNC using
short-time windows were computed. Consequently, these
dynamic FNCs were clustered in three states using k-
means (14). Statistical analysis was preformed to assess the
exposure effect. The study provided a novel approach of
understanding the modulation of brain functional connectivity
by RF radiation.

Abbreviations: RF, radiofrequency; ICA, independent component analysis;

ICN, intrinsic connectivity network; FNC, functional network connectivity;

ASN, Anterior salience network; AUN, Auditory network; BGN, Basal ganglia

network; HVN, Higher visual network; VSN, Visuospatial network; LGN,

Language network; LECN, Left executive control network; DDMN, Dorsal default

mode network; PSN, Posterior salience network; PCN, Precuneus network;

PVN, Primary visual network; VDMN, Ventral default mode network; RECN,

Right executive control network; SMN, Sensorimotor network. AAL, anatomic

automatic labeling; ALFF, Amplitude of Low Frequency Fluctuations.

METHODS AND MATERIALS

Participants and Experiment Settings
Seventeen healthy right-handed participants including 9 men
and 8 women aged 26.1 ± 4.2 (mean ± standard deviation,
from 18 to 38) were recruited for this study. They were asked
to complete a Medical History Questionnaire before being
admitted to the study and none of them had a history of
mental illness or disorders related to cognitive dysfunction.
They were asked to keep away from caffeine, alcohol, and
electronic products the day before experiments. All of them
were informed fully of the details and signed a written informed
consent. This study conformed to the principles outlined in
the Declaration of Helsinki and was approved by the local
ethics committee.

As the paradigm in Figure 1 shows, the experiment was
divided into two sessions with an interval of 1 week. Each
session consisted of three stages: fMRI, experiment conditions
for 30-min real or sham exposure, and immediate fMRI again.
Structural MRI was conducted for participants before the two
sessions. The experiment was designed double blind. The real
and sham exposure conditions were allocated randomly and
counterbalanced across participants. Participants were asked to
stay as still as possible. They started scanning immediately after
the exposure so that the fMRI data collection could be initiated
within 5min. All participants reported that they kept conscious
during the experiments.

The exposure was carried out in an anechoic chamber to
avoid interference from the environment. A signal generator
(CMW 500, Rohde and Schwarz, Munich, Germany) was used
to generate QPSK modulated time-division LTE signals at 2.573
GHz. The radio frame (total length: 10ms) consisted of 10
subframes, each 1ms in length. In the exposure experiment,
the maximal emission configuration was opted (simulating 6
uplink subframes in the radio frame). The radiation duration
(including the uplink subframes and uplink pilot time slot
subframes) accounted for 63.3% of the total frame length, which
mimicked the maximum number of the uplink subframes, as
prescribed by 3GPP (15). The time domain character is shown
in Figure 2.

Signals were then amplified by an RF power amplifier
(AR40S1G4, AR, WA, US). A standard dipole antenna
(D2600V2, SPEAG, Zurich, Switzerland) exposed the subjects.
Using dipole antenna could avoid the brain activation from
temperature rise and sound due to the operation of the mobile
phones. The distance between the antenna and the right ear of
each participant was stuck to 1 cm. The reflected power due to
the existence of the head was monitored and compensated so that
the net power output to the dipole antenna was constant (23.0 ±
0.5 dBm). The power distribution in the head was calculated by
finite-difference time-domain simulations. The results indicated
that the peak SAR averaged over a 10-g mass (pSAR10g) was
below 2.00 W/kg for all subjects during real exposure (Figure 3),
with a mean ± standard deviation as 1.22 ± 0.24 W/kg. To note,
individual head modeling was developed by a semiautomatic
segmentation method (16), using in-house tool (17) and iSEG
(ZMT, Zurich, Switzerland).
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FIGURE 1 | Experimental procedure for each participant. Neither participants nor operators know the exposure sequence.

Data Acquisition and Preprocessing
All the MR data were generated from a 3.0 T system (SIGNA
EXCITE, GE Healthcare) with a conventional eight-channel
phased array surface coil. The T1-weighted images were acquired
at the beginning with repetition time (TR) = 6.8ms, echo time

(TE) = 2.9ms, field of view = 22 cm, matrix size = 256 × 256.
T2-weighted functional images of the whole brain were collected
using an echo-planar imaging sequence with TR = 2 s, TE =

30ms, slice thickness= 3mm,matrix size= 64× 64, flip angle=
90◦, gap = 0.8mm. The pre- and post-exposure sessions shared

Frontiers in Public Health | www.frontiersin.org 3 January 2022 | Volume 9 | Article 734370

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Yang et al. No Alteration in FNC by 4G

FIGURE 2 | Time-domain signal generated by CMW 500 and visualized by Rohde and Schwarz FSU26 Spectrum Analyzers.

the same parameters, and each lasted for 6min to collect 180
image volumes. Thirty-two transversal slices were acquired in
ascending order for each volume.

Preprocessing was conducted using an automatic pipeline
based on SPM 12 (https://www.fil.ion.ucl.ac.uk/spm/software/
spm12/). The first ten presteady-state volumes of the EPI time
series were firstly removed. Realignment was implemented firstly
considering the sequential acquisition. Images were registered to
the first image in the series. Then slice timing was performed with
the middle one as reference. A single T1-weighted image was co-
registered with the corrected average functional image. Then all
the functional images were spatially normalized using parameters
estimated by nonlinearly registering gray matter and white

matter images into MNI space. Their resampled voxel was 3mm
× 3mm × 3mm. Finally, the volumes were spatially smoothed
with a Gaussian kernel of 6mm full width at half maximum.

Group-level ICA to Derive ICNs
Independent component analysis (18), as a data-driven method,
is a suitable tool to investigate ICNs at resting state. However,
ICA is typically performed separately on each subject, leading
to incompatible decompositions across subjects. Consequently,
several group-level ICA methods for multisubject analysis have
emerged (19).

By the method, the individual voxelwise time-course data
were z-scored to reduce the variability, followed by a principal
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FIGURE 3 | SAR distribution on the transverse slice at the peak value level, for each of the 17 subjects. Square shape delineates the region of pSAR10g on the slice.

component analysis (PCA) to reduce the complexity of
the individual data from 170 to 150 volumes using a
standard economy-size decomposition. Next, individual data
were temporally concatenated as (1):

Y ≡ [Y1
T, . . . , YM

T]
T

(1)

where, Yi is T1-by-V matrix containing the data of subject i;
Y ∈ R

T1M×V; T1 is the PCA-reduced time course; V is the total
number of the voxels for each image; M is the number of the
dataset to be evaluated.

Consequently, PCA was conducted on the group level to
reduce time-course dimension and yielded (2)

X = AS (2)

where, X is T2-by-V concatenated imaging dataset reduced
by group-level PCA; A is T2-by-T2 mixing matrix; and S is
T2-by-V aggregated spatial map. T2 was predefined as 100 to
achieve a sufficient “functional parcellation” of refined cortical
and subcortical components corresponding to the well-known
anatomical and functional segmentations (20). The selected
number corresponded to the previous studies (21).

The Infomax ICA algorithm (22) was repeated 10 times in
ICASSO (23) to derive A and S.

Consequently, back reconstruction can be conducted to derive
subject-specific spatial maps and time-course signals by (3) and
(4) using least square:

Si = ATGiYi (3)

Ri = GiA (4)

where, GT is the T2-by-T1 ×M reducing matrix.
The abovementioned temporal concatenation (24)

implemented in the GIFT toolbox (http://mialab.mrn.org/
software/gift/) was used in this work for processing functional
data from both real and sham exposure conditions. The
procedures are described in Figure 4.

The aggregated images of all subject were rewritten in Nifti
format so as to enable the labeling for ICs (obtained from
spatial maps) according to the RSN templates from the GIFT
toolbox (icatb/icatb_templates/RSN.zip).

The generated ICs may contain artifacts and should be
removed from analysis according to two criteria. Firstly, the cross
correlation between the generated ICs and the RSN templates
was calculated, and the ICs with correlation value below 0.2 were
considered as artifacts (25). Secondly, the spatial distribution of
the IC and its temporal/spectral characteristics were assessed to
further screen out the artifacts, and signal ICs should have a high
spatial overlap with gray matter and a low overlap with other
tissues (26).

Static and Dynamic FNC
We calculated static FNC over the entire time courses between
ICNs. Preprocessing included detrending and low-pass filtering
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FIGURE 4 | Procedures to detecting the ICs. Group-level ICA decomposes resting-state data from the subjects into ICs (number = 100). Then back reconstruction

estimates IC for each subject.

by a fifth-order Butterworth filter with a cut-off frequency of
0.1Hz (27). Fisher’s z transformation was then performed.

Consequently, dynamic FNC was computed with the relevant
parameters as specified:

• TR= 2 s
• window size: 22 TRs
• step: 1 TR
• number of states: 3 (by kmeans).

To note, TR was set by the imaging protocol. Selection of the
window size and step was in accordance to the recommendation
by Damaraju et al. (12). Trials have been conducted from 2 to
9 to determine the appropriate number of states. The optimized
number was 3 because it ensured that each state contained at least
one dataset from qualified subject. The procedure is visualized in
Figure 5.

Statistical Analysis
Paired sample t-test was conducted for static FNC within
conditions, corrected using FDR with a p-value < 0.05. For
dynamic analysis, subjects with no less than 10 windows for each
state were qualified for statistical comparison.

To investigate if the effects of electromagnetic exposure were
driven by certain dynamic FNC states, the median value of all
windows for each subject in each state was used for paired sample
t-test (12). The calculated p-value underwent FDR correction
with p < 0.05.

RESULTS

Group-level ICA derived 100 spatial ICs was performed to
define brain networks, and 100 spatial ICs were generated. By
screening out the noise, they were classified into 51 signals
whose correlation value was from 0.2058 to 0.5664. Detailed
information for ICs are presented in Figure 6: ICs 26, 64, 66,
and 91 are anterior salience network (ASN); 25, 44, and 86 are
auditory network (AUN); 7, 23, and 29 are basal ganglia network
(BGN); 40 and 60 are higher visual network (HVN); 5, 33, 49,
and 70 are visuospatial network (VSN); 21, 34, 35, 46, and 57 are
language network (LGN), 59, 79, and 87 are left executive control
network (LECN); 20, 22, 31, 42, 72, 73, 80, and 100 are dorsal
default mode network (DDMN); 68 is posterior salience network
(PSN); 43 and 82 are precuneus network (PCN); 78 is primary
visual network (PVN); 17, 53, 58, 65, 71, and 76 are ventral default
mode network (VDMN); 30, 32, 37, 67, and 88 are right executive
control network (RECN); 12, 14, 50, and 51 are sensorimotor
network (SMN).

No statistically significant difference was found in static FNC
in both real and sham exposure conditions.

The group-specific medians for each state are shown in
Figure 7. State 1 accounted for 27% in terms of the occurrence of
states across subjects, 66% for State 2, while 7% for State 3. State 1
was similar to State 2, which showed a weak connectivity within
each ICN and demonstrated no strong connectivity between
ICNs. On the contrary, State 3 showed strong connectivity of
ICs within ICN (in particular, with in ASN, AUN, LGN, LECN,
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FIGURE 5 | Pipeline for static FNC and dynamic FNC analysis.

FIGURE 6 | Identified ICs. Within each ICN, the color of the component corresponds to No. of ICs. X, Y, Z corresponds to the MNI coordinates.

VDMN and RECN), enhanced connectivity between VDMN and
LECN, PVN, SMN, PCN, PSN, also strong pairwise connectivity
among ASN, BGN, AUN, and LGN.

For the dynamic analysis, paired sample t-test was performed
on the subjects who got at least 10 windows for each state. In pre-
exposure of real exposure condition, there were 8 subjects in State
1, 13 subjects in State 2, 3 subjects in State 3. In post-exposure of
the same condition, there were 5 subjects in State 1, 12 subjects in
State 2, 4 subjects in State 3. In contrast, in pre-exposure of sham

exposure condition, there were 6 subjects in State 1, 13 subjects in
State 2, and 3 subjects in State 3. The post-exposure in the sham
exposure condition revealed 7 subjects in State 1, 12 subjects in
State 2, and 4 subjects in State 3. No statistically within-condition
significant difference has been detected in terms of real and sham
exposure conditions. Figure 8 shows the mean correlation (cross
subjects) in all states within real and sham exposure conditions.

The raw data for Figures 7, 8 are provided in
Supplementary Tables 1, 2.
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FIGURE 7 | Clustered states in dynamic FNC analysis averaged over the subjects.

DISCUSSION

In this study, we used a data-driven method (group-level ICA)
to identify 51 ICs, which belonged to 14 ICNs, covering the
functional areas of vision, hearing, and cognitive control etc.
The identified components correlated well with the template and
provided a reliable basis for subsequent analysis of static and
dynamics FNC during resting state for exposure effects.

Accumulating evidence suggested that static FNC resembled
the architecture of brain networks elicited by task-based
paradigms (29) and reflected anatomical structure (7). However,
the human brain activities were dynamic in nature, and thus,
dynamic connectivity analysis was an insight tool to investigate
the instantaneous change (30). The enriched information
convoyed by the analysis might better reflect the temporally
fluctuating brain states compared with static connectivity
analysis, as shown in previous studies (31).

K-means clustering was used to identify these reoccurring
short-term connectivity patterns, being described as FNC states.
FNC state represented the large-scale models of neuronal
connectivity that considered the repertoire of functional motifs
generated by a given structural architecture (32). Three FC
states were confirmed in this study. As shown in Figure 7,
8 and as described in Result, State 1 and State 2 generally
showed a weak connectivity, and State 3 showed relatively
stronger connectivity. The physiological meaning of the three
states could be interpreted. During unconstrained resting-state
MRI scan, it was possible for subjects to fall in deliberation or
even mind wandering. Therefore, the FNC state representing
specific cognitive states unlikely followed similar temporal
characters across subjects, expect for the increased likelihood
of drowsiness or sleep (32). In this study, State 1 was marked
by the disconnection within BGN (thalamocortical neural loop)
and the weakening connectivity within DDMN and VDMN.
The characteristics were consistent with the features of falling
to sleep, such as the reduced thalamocortical connectivity and
a breakdown of default-mode connectivity (33, 34). State 3
had a stronger connectivity within DDMN, VDMN, and BGN,
respectively. It indicated that this state was close to the awake
state. State 2 had connectivity pattern in the BGN similar to State

1 but had a fairly strong connectivity in DDMN and VDMN,
which could be regarded as a transitional state from drowsiness to
waking state. Moreover, dwelling time in State 1 and 2 accounted
for 93% of the total occurrence of all states across subjects. It
was also consistent with our analysis on various conscious states
during MRI. It revealed that the dynamic estimation/clustering
approach had an advantage since it was sensitive to spontaneous
state-transition during imaging and supported accessibility of the
refined dynamic features of the dataset (12).

No statistically significant difference was found in static or
dynamic functional connectivity of ICNs in both real and sham
exposure conditions. The finding was seemingly inconsistent
to the previous relevant literature on static state analysis. We
attributed the difference to the distinctive brain parcellation
or the metrics using in these studies. For example, Lv et
al. (35) demonstrated that short-term LTE EMF exposure
would modulate the interhemispheric homotopic functional
connectivity, specifically decreasing amplitude of low frequency
fluctuations (ALFF) in resting state around the medial frontal
gyrus and the paracentral lobule during the real exposure
(36). The study was based on brain anatomy of larger scale
(hemisphere). Signals averaged over several ICs were computed
for connectivity and may conceal the change in terms of
individual IC. Wei et al. (37) detected that acute LTE-EMF
exposures modulated both localized intraregional connectivity
and interregional connectivity with the other voxels were
computed. It evaluated the brain modulation on the level
of voxels and without the conception of network structure.
Yang et al. (38) indicated that acute LTE exposure modulated
both the nodal functional connection and graph-based network
properties. Those nodes were defined by AAL-90 template and
the connectivity was evaluated for the rest of the nodes (39),
which was a parcellation for the entire brain (some changes
have been reported at the nodes close to Basal Ganglia). In
contrast, our analysis was based on the functional parcellation,
aiming to delineate more homogeneous and functionally
coherent regions (40). The two parcellations were not completely
overlapped. Moreover, the graph-based analysis considered the
whole brain as a network to study the ensemble changes of
its information transmission efficiency, function integration,
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FIGURE 8 | The states derived from the experiments. Connections with

correlation coefficients exceeding 0.6 are shown in the Figure (28).

network collectivization, and other attributes without paying
attention to the special ICN architecture. In fact, ICNs, comprised
of various physiological regions (ICs), was coordinated to provide
integrative services on behalf of the central nervous system and
have emerged as fundamental and organizational elements of
human brain architecture. The finding may also indicate that the
localized near-field exposure with the power emitted by a mobile
phone may impact the regional or interregional BOLD dynamics,
but would not affect the specific ICN relating to functional
or behavior change. The study, as well as the abovementioned
publications, provided useful information to comprehensively
understand the change of brain function by EMF exposure.

There were several limitations. Firstly, only 17 subjects were
exposed in the experiments. For example, in State 3, only 3–4
subjects were eligible for statistical comparison. In fact, many
acute exposure studies on neurophysiological effects have the
same problem. For example, Danker-Hopfe et al. (41) conducted
a literature review and concluded that 14 out 22 papers on RF
exposure and EEG included subjects ≤20. In such a case, the
statistical power may only detect the large effects. However, the
present study, although with limited number of subjects, has
its merit as enriching the knowledge of EMF safety. Based on
the work, researchers can continue to optimize the experimental
design and to accumulate dataset. Secondly, there were no
positive controls in the study. In such a case, it would be
difficult to interpret the positive findings if any of them were
found (although we did not detect them). Actually, we have
considered to include positive control, but it was not allowed by
the ethical committee since it may involve high risk, especially
when the potential health implication of EMF exposure has
not been elucidated. Thirdly, during 3 T MRI scan, the subjects
were exposed to the static magnetic field, gradient magnetic
field, and the RF fields (128 MHz). The effect may confound
the results. Previous reports proposed activation of the sites
at the anterior cingulate, the insula, hippocampus, and some
parts of nasal gandlia (caudate) following exposure to MRI (42).
It was consistent with our research on functional connectivity
strength (38). In this work, no statistically significant difference
has been reported in the real exposure group. This may be
due to the clustering of the network which would smooth
the particular activation at the locations. Low-frequency pulsed
signals may influence sleep EEG (43, 44). Although the subjects
were requested to stay awake during the experiments, completely
ruling out the possibility that subjects fell asleep or experienced
sleepiness during the MRI scan was difficult. In such a case,
the impact should be taken into consideration. Moreover, each
subject was only scanned for approximately 6min (in order
to minimize the effect of RF exposure during MRI). Longer
scanning times (ideally tens of minutes) will improve the
robustness for FC variability estimation.

CONCLUSION

We evaluated functional connectivity within and between ICNs
identified by group-level ICA. Our results showed that there
was no statistically significant different in terms of static and
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dynamic FNC in both real and sham exposure conditions
by exposure to LTE signals. Although previous results show
that short-term electromagnetic exposure had an impact on
the brain in terms of voxel-wise functional connectivity and
graph-theory analysis of functional networks, the results of this
work point out that the impact of short-term electromagnetic
exposure was insufficient to be detected at the ICNs level.
Appropriate metrics for evaluating the brain functional change
should be discussed. Further work is needed in the perspective of
behavioral change.
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