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Abstract
The capability of neurons to discriminate between intensity of external stimulus is measured by its dynamic range. A larger dynamic range 
indicates a greater probability of neuronal survival. In this study, the potential roles of adaptation mechanisms (ion currents) in modulating 
neuronal dynamic range were numerically investigated. Based on the adaptive exponential integrate-and-fire model, which includes two 
different adaptation mechanisms, i.e. subthreshold and suprathreshold (spike-triggered) adaptation, our results reveal that the two adapta-
tion mechanisms exhibit rather different roles in regulating neuronal dynamic range. Specifically, subthreshold adaptation acts as a negative 
factor that observably decreases the neuronal dynamic range, while suprathreshold adaptation has little influence on the neuronal dynamic 
range. Moreover, when stochastic noise was introduced into the adaptation mechanisms, the dynamic range was apparently enhanced, re-
gardless of what state the neuron was in, e.g. adaptive or non-adaptive. Our model results suggested that the neuronal dynamic range can 
be differentially modulated by different adaptation mechanisms. Additionally, noise was a non-ignorable factor, which could effectively 
modulate the neuronal dynamic range.

Key Words: nerve regeneration; dynamic range; subthreshold adaptation; suprathreshold adaptation; noise; neuron; adaptive exponential 
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Graphical Abstract

Two different intrinsic adaptation currents modulate neuronal dynamic range

Introduction
In natural systems, the dynamic range serves as a good 
measure to characterize the capability of systems to dis-
criminate between intensity of external stimulus. For ex-
ample, in neuronal systems, this ability is important for bi-
ological cells to avoid danger. Thus, a larger dynamic range 
indicates a greater probability for neuronal survival (Gollo 
et al., 2012).

In past decades, several factors have been identified to 

modulate the dynamic range of neurons. Theoretical in-
vestigations suggest that a major effect of active dendritic 
conductance is to enhance the neuronal dynamic range, fur-
ther revealing that neurons with larger dendritic trees may 
exhibit higher levels of dynamic range (Gollo et al., 2009). 
Through the construction of computational network models 
of mammalian retina, researchers have shown that electrical 
synapses between rod-rod, along with appropriate values of 
rod Ih (hyperpolarization-activated cation current) conduc-
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tance, could enhance the dynamic range of retinal ganglion 
cells (Publio et al., 2009). Additionally, our recent model 
study demonstrated that intrinsic channel fluctuations ex-
hibit a potent effect in modulating the neuronal dynamic 
range (Wang et al., 2013).

A prominent feature in biological neurons is their ability 
to adapt to processing afferent signals, called spike-frequency 
adaptation (SFA) (Chen et al., 2014; Wang et al., 2014c; Keller 
and Takahashi, 2015; King et al., 2015; Buonocore et al., 2016; 
Cui et al., 2016; Roach et al., 2016). Past studies focused on 
the ability of neurons to adapt to changes in incoming stimuli. 
In collision-detecting neurons, SFA has been shown to signifi-
cantly contribute to neuronal tuning behaviors by selectively 
lowering the responses to non-preferred stimuli (Peron and 
Gabbiani, 2009). Experimental results on electroreceptor af-
ferents showed that SFA helps separate transient signals from 
slower oscillatory signals in the background (Benda et al., 
2005). Moreover, some studies suggested that SFA plays pivot-
al roles in defining neuronal population rhythms (Fuhrmann 
et al., 2002), spike timing precisions (Teka et al., 2014; Keller 
and Takahashi, 2015; Liu and Gollisch, 2015), and synchro-
nous behaviors (Crook et al., 1998; van Vreeswijk and Hansel, 
2001; Li et al., 2012; Pakdaman et al., 2014; Wang et al., 2014b; 
Norman et al., 2016).

Based on different generation mechanisms, adaptation can 
be classified into two types: subthreshold adaptation and su-
prathreshold (spike-triggered) adaptation. Previous reports 
demonstrated that these two adaptation mechanisms play 
differential functions in modulating neuronal spiking vari-
ability (Ladenbauer et al., 2014; Colliaux et al., 2015), regu-
lating the correlation between sequential interspike intervals 
(Chacron et al., 2003; Shiau et al., 2015), and population 
synchronizations (Hansen and Dragoi, 2011; Ladenbauer et 
al., 2012).

In this study, we investigated how different SFA mech-
anisms (subthreshold and spike-triggered) influence the 
dynamic range of neurons. We also analyzed the effect of 
adaptation currents with stochastic fluctuations.

Materials and Methods
Neuronal model with adaptation currents
The model we employed to investigate was the adaptive ex-
ponential integrate-and-fire (aEIF) model, which has been 
widely used in previous model studies (Schwalger et al., 
2010; Ladenbauer et al., 2012) to analyze SFA features in 
neurons (Hertäg et al., 2014; Buchin et al., 2016; Kobayashi 
and Kitano, 2016). The model includes the following equa-
tions and a reset condition (Schwalger et al., 2010; Laden-
bauer et al., 2012): 
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with ancillary after-spike resetting according to the follow-
ing equation (4):

If                 , then               and                                               (4)

where C is the membrane capacitance, V is the membrane 
potential of neuron, w is the adaptation variable, η is an ad-
ditional noise embedded in the adaptation dynamics, and I is 
the synaptic input. σ characterizes the noise intensity of the 
adaptation current, and ξ(t) denotes the Gaussian white noise. 
a quantifies the conductance that mediates subthreshold ad-
aptation, and b quantifies suprashreshold adaptation through 
the increment in Eq. (4). Vcut represents the “cutoff” or maxi-
mum value of V, and Vr represents the resting potential of V. 
Detailed explanations and values for the model parameters 
have been previously described (Schwalger et al., 2010; Lad-
enbauer et al., 2012). Specifically, gL is the leak conductance, 
VL is the leak reversal potential, ΔT is the threshold slop factor, 
VT is the threshold potential, τw is the adaptation time con-
stant, and Na is the number of stochastic adaptation channels.

To characterize the dynamic range of a neuron, we intro-
duced a widely used measure adopted from (Publio et al., 
2009):

                                     (5)

 
                                                          where, I90 and I10 represent the stimulus intensity for which 
the firing frequency of neuron is 10 percent below the maxi-
mum and 10 percent above the minimum, respectively.

Simulation method
Simulations were performed using Matlab software (R2010a) 
(The MathWorks, Natick, MA, USA), and the first-order 
Euler algorithm was employed to calculate the membrane 
potential with a time integration of 0.25 ms.

Results
Firing behaviors of an aEIF neuron
Figure 1 demonstrates firing behaviors of an aEIF neuron 
under different adaptation states. When a = 0 and b = 0, the 
neuron fired continuously with nearly identical interspike 
intervals, and no adaptation phenomenon was observed 
(Figure 1A). However, if b = 0 and a > 0, or a = 0 and b > 0, 
the neuron fires spikes with apparent adaptation phenom-
ena, suggesting that the firing frequency decreased and the 
interspike intervals were larger (Figure 1B, C).

Figure 2 presents diagrams showing the variation of fir-
ing frequencies under different values of a and b. Results 
showed that the increase of a maintained the slope (gain) 
of the F–I (frequency-stimulus) curve, but the rheobase 
changed from low to high (Figure 2A). Although the in-
crease in b maintained the rheobase, the slope of the F–I 
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Figure 1 Membrane potential and adaptation current of a typical adaptive exponential integrate-and-fire neuron. 
(A) Without adaptation (a = b = 0); (B) with subthreshold adaptation (a = 0.02, b = 0); (C) with suprathreshold adaptation (a = 0, b = 0.02). 

Figure 4 Membrane potential, adaptation current, and noisy current of an adaptive exponential integrate-and-fire neuron.  
(A) Without adaptation (a = b = 0); (B) with subthreshold adaptation (a = 0.02, b = 0); (C) with suprathreshold adaptation (a = 0, b = 0.02). 

Figure 5 Variation of neuronal dynamic range with respect to noise intensity under different adapting states (repeating 50 times).   
(A) Without adaptation (a = b = 0); (B) with subthreshold adaptation (a = 0.02, b = 0); (C) with suprathreshold adaptation (a = 0, b = 0.02). σ rep-
resents noise intensity of the adaptation current; Δ represents the neuronal dynamic range. 

Figure 2 Frequency-stimulus (F–I) curves 
of adaptive exponential integrate-and-
fire neuron under different adaptation 
mechanisms. 
(A) Subthreshold adaptation (b = 0). (B) Su-
prathreshold adaptation (a = 0).

curve changed from high to low (Figure 2B). The varia-
tions of the F–I curves, which were due to the adaptation 
variables a and b, were consistent previous reports (Lad-
enbauer et al., 2012). 

Dynamic range of neurons under different adaptation 
mechanisms
The variations of neuronal dynamic range with respect to a 
and b are demonstrated in Figure 3. Results show that sub-
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Figure 6 Two-parameter dependence of 
neuronal dynamic range on noise intensity 
and adaptation mechanisms (repeating 50 
times).
(A) Noise intensity and subthreshold adapta-
tion; (B) noise intensity and suprathreshold 
adaptation. The deeper color denotes the larger 
dynamic range. 

threshold adaptation a always decreased the dynamic range 
of neurons, irrespective of the value of b; while suprathresh-
old adaptation b had little influence on the dynamic range 
when the value of a was small. However, when a was larger, 
the increase in b also reduced the neuronal dynamic range.

Influence of noise on neuronal dynamic range
Noise is ubiquitous in natural systems, especially in neuronal 
systems (Andreeva, 2015; Béhuret et al., 2015; Mokri et al., 
2015; Antal and Herrmann, 2016; Lee et al., 2016; Zylber-
berg et al., 2016). A previous study suggests that noise em-
bedded in adaptation currents affects the shaping interspike 
interval histograms of spike trains and neuronal correlations 
(Schwalger et al., 2010). Therefore, we analyzed whether ad-
aptation noise influenced the neuronal dynamic range.

Figure 4 shows several examples of firing behavior of an 
aEIF neuron under different adaptation states. Compared 
with results from Figure 1, the effect of noise on neuronal 
spikes was significant. Figure 5 shows that the variations in 
neuronal dynamic range varied with increased noise inten-
sity. The presence of noise always enhanced the neuronal 
dynamic range, regardless of the neuronal state (adaptive or 
non-adaptive).

The two-parameter dependence of neuronal dynamic 
range on noise intensity and variables a and b is demonstrat-
ed in Figure 6. The reduction trend of neuronal dynamic 
range induced by an increased a was always observed, re-
gardless of the value of noise intensity. However, for fixed 
values of a, the increased noise intensity reliably enhanced 
the dynamic range of neurons. Results from Figure 6B 
showed that the variation trend of neuronal dynamic range 
induced by an increased b always persisted when the noise 
intensity varied. However, for fixed values of b, the increased 
noise intensity also undoubtedly enhanced the neuronal dy-
namic range. 

Discussion
SFA has been described as a prominent property in many 
neurons in the brain (Chen et al., 2014; Wang et al., 2014c; 
Keller and Takahashi, 2015; King et al., 2015; Buonocore 
et al., 2016; Cui et al., 2016; Roach et al., 2016). Previous 
studies revealed that SFA plays significant roles in neural 
information processing, e.g. modulating looming stimulus 
selectivity (Peron and Gabbiani, 2009), separating transient 
signals from background oscillations (Benda et al., 2005), 
mediating synchronous behaviors (Crook et al., 1998; van 

Vreeswijk and Hansel, 2001; Li et al., 2012; Pakdaman et al., 
2014; Wang et al., 2014b; Norman et al., 2016), and reducing 
the variability of neuronal population activity (Schwalger et 
al., 2010). Results from the present study suggested that SFA 
exhibited crucial roles in regulating neuronal dynamic range. 
Moreover, the detailed regulations behave differently under 
the two adaptation mechanisms.

In the present paper, we performed a computational study 
to investigate whether adaptation mechanisms exerted influ-
ence on the dynamic range of biological neurons. Based on 
the aEIF model neuron, which includes two different adap-
tation mechanisms (subthreshold and suprathreshold), our 
results indicated that the two adaptation mechanisms had 
different roles in modulating the neuronal dynamic range: 
subthreshold adaptation decreased the dynamic range of 
neurons, while suprathreshold adaptation had little impact 
on the neuronal dynamic range. These results also suggested 
that noise embedded in the adaptation current efficiently ad-
justed the dynamic range of neurons, regardless of the neu-
ronal state. Accordingly, these results could provide a better 
understanding about the factors that modulate the dynamic 
range of biological neurons.

Noise is a non-ignorable factor in natural systems, es-
pecially in neural systems (Andreeva, 2015; Béhuret et al., 
2015; Mokri et al., 2015; Antal and Herrmann, 2016; Lee 
et al., 2016; Zylberberg et al., 2016). Previous studies have 
suggested a role for noise in processing neural information 
(Wang et al., 2014a; Nobukawa and Nishimura, 2015; Lück-
en et al., 2016). One recent study showed that noise embed-
ded in adaptation currents performs critically in shaping the 
interspike interval histograms of spike trains and neuronal 
correlations (Schwalger et al., 2010). Results from the pres-
ent study showed that adaptation currents with stochastic 
noise always enlarged the dynamic range of neurons.

It should be noted that we only discuss the effect of adap-
tation currents on modulating neuronal dynamic range in 
a single model neuron, but did not consider synaptic con-
nections with many other neurons. In the nervous system, 
neurons are organized in networks or populations. There-
fore, future studies should analyze the variations in dynamic 
range in neuronal networks.
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