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ABSTRACT
Estimating free energy differences by computer simulation is useful for a wide variety
of applications such as virtual screening for drug design and for understanding
how amino acid mutations modify protein interactions. However, calculating free
energy differences remains challenging and often requires extensive trial and error
and very long simulation times in order to achieve converged results. Here, we
present an implementation of the adaptive integration method (AIM). We tested our
implementation on two molecular systems and compared results from AIM to those
from a suite of other methods. The model systems tested here include calculating the
solvation free energy of methane, and the free energy of mutating the peptide GAG to
GVG. We show that AIM is more efficient than other tested methods for these systems,
that is, AIM results converge to a higher level of accuracy and precision for a given
simulation time.

Subjects Computational Biology, Scientific Computing and Simulation
Keywords Adaptive integration, Monte Carlo, Free energy, Solvation, Protein, Biomolecule

INTRODUCTION
Measuring free energy differences using computer simulations can be computationally
expensive, yet is useful for many different applications (see e.g., Steinbrecher & Labahn,
2010; Chodera et al., 2011; Mobley et al., 2012; Zhan et al., 2013; Miller et al., 2014; Petukh,
Li & Alexov, 2015; Zhan & Ytreberg, 2015; Miller et al., 2016; Cournia, Allen & Sherman,
2017; Hossain et al., 2019; Aminpour, Montemagno & Tuszynski, 2019). Specific examples
include determining protein conformational preferences, virtual screening for drug design
or drug discovery (Steinbrecher & Labahn, 2010; Chodera et al., 2011; Zhan & Ytreberg,
2015; Śledź & Caflisch, 2018; Aminpour, Montemagno & Tuszynski, 2019; Zhang et al.,
2019). Of specific relevance to the current study is that free energy calculations allow
prediction of how amino acid mutations may modify protein-protein binding (Zhan et al.,
2013;Miller et al., 2014; Petukh, Li & Alexov, 2015;Miller et al., 2016;Geng et al., 2019). We
are particularly interested in developing and implementing efficientmethods for calculating
free energy differences and using them to understand how amino acid mutations modify
protein–protein and protein-substrate interactions.
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For this study, we have implemented the adaptive integration method (AIM) introduced
by Fasnacht, Swendsen & Rosenberg (2004) for use in the GROMACS (Berendsen, Van der
Spoel & Van Drunen, 1995) molecular dynamics simulation package, and have compared
results to a suite of other methods. In previous studies, AIM was shown to provide high
quality, precise and efficient estimates of binding free energies (Ytreberg, Swendsen &
Zuckerman, 2006; Kaus, Arrar & McCammon, 2014; Kaus & Mccammon, 2015). We focus
on alchemical free energy calculation where a system is transformed from one state to
another via an unphysical pathway. The progress along the pathway that connects the
two states is defined by the parameter λ. For this study, we are interested in two ways
to explore λ space—both of which have the goal of obtaining equilibrium sampling of
system configurations at discrete λ values along the pathway. The first way is to treat λ
as a system variable that can be biased and sampled. A class of such methods, termed
generalized ensemble, use an extended Hamiltonian to sample λ (Bitetti-Putzer, Yang &
Karplus, 2003). For example, λ-dynamics (Kong & Brooks, 1996; Knight & Brooks, 2009;
Knight & Brooks, 2011) treats λ as a dynamic particle in the system with fictitious mass.
By contrast, AIM uses Metropolis Monte Carlo to sample λ space (Fasnacht, Swendsen &
Rosenberg, 2004). Monte Carlo moves between values of λ are based on running estimates
of free energy differences; this is a key distinction from other methods and allows AIM
to continuously improve the estimate for the free energy during the simulation. The
second way to explore λ space is to perform standard molecular dynamics or Monte Carlo
simulations at fixed values of λ, typically discarding some simulation time for equilibration.
The configurational ensembles at each value of λ can then be used to estimate free energy
differences (see e.g., Lyubartsev, Førrisdahl & Laaksonen, 1996; Gonçalves & Stassen, 2004;
Kofke, 2005; Shirts, Mobley & Chodera, 2007; Chodera & Shirts, 2011; Klimovich, Shirts &
Mobley, 2015). In order to provide comparisons for AIM to fixed λ methods, we used
the Python tool alchemical-analysis.py (Klimovich, Shirts & Mobley, 2015), part of the
Pymbar package (Shirts & Chodera, 2008). This tool estimates the free energy using a suite
of methods such as the Bennett acceptance ratio, multistate Bennett acceptance ratio,
thermodynamic integration and exponential averaging.

For the current study, we chose two molecular systems that have well-documented
results and are important starting points for biomolecular free energy studies. First, we
calculated the solvation free energy of methane. Simulations were performed and the
free energies were calculated using the fixed λ methods provided by alchemical-analysis.
Simulations were also performed using AIM and results compared to fixed λ simulations.
Using the lessons learned from the methane system, we then calculated the free energy
of mutating the peptide GAG to GVG in water. For both systems, we found that AIM
produces free energy estimates that are within statistical uncertainty of fixed λ methods
but with greater efficiency (i.e., more accurate for a given simulation time).

METHODS
Allmethods, code and simulation input files are available in the supplementalmaterials. For
this study, we performed alchemical free energy simulations where the system is changed
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from a reference state to an end state by constructing a reaction pathway that modifies,
adds or removes atoms. Such alchemical simulations are non-physical, i.e., the simulation
does not represent what could occur naturally. Since the free energy is a state variable, it is
independent of the path taken, and we may provide any path we wish. To perform these
simulations the reaction pathway is divided into many separate, non-physical, λ states
between a reference state and an end state. The λ states represent the progress along the
reaction pathway as the reference state transforms into the end state.

Like most methods used to calculate free energies we start from the identity,

F =U −TS, (1)

where U is the potential energy, T is the temperature and S is the entropy of the system.
For free energy differences we generalize the formulation of the change in free energy by
separating calculations into two, non-overlapping, thermodynamic end states, A and B, at
constant system temperature T ,

1F ≡1FA→B= FB−FA=1U −T1S. (2)

1F is the change in free energy, 1U is the change in potential energy and 1S is the
change in entropy of the system. According to statistical mechanics, the free energy
difference between the two end states, A and B, of the system is the log of the ratio of the
configurational partition functions (see discussion in Chipot & Pohorille (2007)),

1F =−kBT ln
Z [UB(Ex)]
Z [UA(Ex)]

. (3)

Here, kB is the Boltzmann constant and Z [U (Ex)] is the configurational partition function
for the energy states UA(Ex) and UB(Ex), where Ex is the vector of configuration coordinates.
The configurational partition function is given by

Z [U (Ex)] =
∫

exp(−βU (Ex))dEx, (4)

and β = 1
kBT

.
Computationally, we calculate free energy differences between end states by performing

molecular dynamics simulations along a reaction pathway of intermediate states, defined
by λ, such that, 0≤ λ≤ 1.

This pathway connects the two end states of the system. In the case of poor overlap, where
the end states may be separated by a high energy barrier, |UB−UA|� kBT , this pathway
mitigates the otherwise very slow convergence of free energy estimates (Shirts, Mobley &
Chodera, 2007). Care should be taken when choosing intermediate states such that there
is adequate overlap in the conformation space between the end states (Shirts, Mobley &
Chodera, 2007; Klimovich, Shirts & Mobley, 2015). For our simulations the number of λ
values and time per λ were chosen through extensive trial and error (more on this below).

The method of exponential averaging (DEXP, IEXP) (Zwanzig, 1954) starts from
Eq. (3) above and then adding and subtracting exp(−βU (Ex)) from the integral in the
configurational partition function of the numerator we end up with the final relationship,

1Fij =−kBT ln〈exp(−β1Uij(Ex))〉λi . (5)
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where 1Fij is the free energy between λi and λj and 〈·〉λi represents an average of the
equilibrium configuration for λi. Unlike some other methods, exponential averaging has
an exact solution since it is only used to evaluate the difference between two states. However,
it is the least efficient method and should not be used if difference in potential energies are
much larger than kBT (Shirts & Pande, 2005). In addition, exponential averaging can be
noisy, biased and dependent on the tails of the distribution of λ states (Bruckner & Boresch,
2011; Shirts & Pande, 2005).

For thermodynamic integration (TI) we estimate the free energy by first looking at the
derivative of Eq. (1) with respect to λ,

∂F
∂λ
=

〈
∂U
∂λ

〉
λ

. (6)

This differential equation, Eq. (6), can then be integrated to give,

1F =
∫ 1

λ=0

〈
∂Uλ(Ex)
∂λ

〉
λ

dλ (7)

where the 〈·〉λ notation represents the ensemble average at a given intermediate state, λ.
The free energy is estimated by numerically integrating Eq. (7) after running equilibrium
simulations at each intermediate λ state. Since numerical integration is required, TI can
be biased by the chosen method of integration. Some of that bias can be removed by using
cubic-spline interpolation or more complex integration estimators(Shirts & Pande, 2005;
Shyu & Ytreberg, 2009).

The Bennett (Bennett, 1976) andmultistate (Shirts & Chodera, 2008) Bennett acceptance
ratio (BAR and MBAR) methods are far more efficient than exponential averaging
and are commonly used to avoid the shortcomings of other methods (Shirts & Pande,
2005; Ytreberg, Swendsen & Zuckerman, 2006). BAR and MBAR typically achieve the same
statistical precision as TIwith fewerλ states unless the integrand for TI is very smooth (Shirts
& Mobley, 2013; Ytreberg, Swendsen & Zuckerman, 2006). The complete derivation can be
found in Bennett’s paper (Bennett, 1976) but the premise is; for sufficiently large samples
ni of Ui and nj of Uj ,

1F(i→ j)= kBT ln
〈f (1Uij+C)〉j
〈f (1Uji−C)〉i

+C . (8)

C is a shift constant,

C = kBT ln
nj
ni
, (9)

and f (x) is the Fermi function,

f (x)=
1

1+exp(βx)
. (10)

Equation (8) is the ratio of canonical averages of two different potentials Ui and Uj acting
on the same configuration space meaning it requires information from two neighboring
states. However, this limitation is not too much of a concern with a trivial coordinate
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transformation or when using dummy coordinates in alchemical simulations. MBAR, an
extension of BAR, differs in that it takes data from more than two states hence the name
‘‘multistate’’.

AIM is similar to TI in that numerical integration of Eq. (7) is performed; the key
difference is how the averages 〈∂U/∂λ〉λ are obtained. AIM uses Metropolis Monte Carlo
to move in λ space and ordinary running averages are calculated at each λ value. In AIM,
a random move from λold to λnew is accepted with probability

min{1,exp(−β(Unew)−Uold)+β(Fnew−Fold)} (11)

where Unew−Uold is the difference in the potential energy for the old and new λ values.
Fnew−Fold is the estimated free energy difference based on the current running averages of
∂U/∂λ.

Implementation
AIM was implemented in GROMACS as an expanded ensemble calculation. That is, the
Hamiltonian must be calculated along with its derivative, and an expanded ensemble
step must be performed for every dynamics step. In GROMACS, nstexpanded is the
number of integration steps between attempted λmoves changing the system Hamiltonian
in expanded ensemble simulations. This value must be a multiple of nstcalcenergy,
the number of steps before calculating the system energy, but can be greater or less than
nstdhdl, the number of steps before calculating ∂U/∂λ (referred to as dHdλ in GROMACS
documentation). For a detailed explanation of all technical terms see reference Abraham
et al. (2016). The GROMACS package was further altered to print out the ∂U/∂λ averages
computed by AIM to the log file when AIM is used as the lmc-mover.

AIM requires the ∂U/∂λ value from every dynamics step to be stored regardless of
whether a move in λ space is attempted. Since ∂U/∂λ is only calculated at each step
where free energies are calculated, every nstdhdl step, we set nstexpanded = nstdhdl =
nstcalcenergy = 1 for AIM simulations. This further implies that lmc-stats functions
were not used during AIM simulations because those functions modify the Hamiltonian
which is not needed for AIM.

For the implementation of AIM with GROMACS we follow the outline given in our
previous study Ytreberg, Swendsen & Zuckerman (2006).
1. Start the simulation from an equilibrated configuration at λ=0 and perform one

molecular dynamics step.
2. Randomly choose a trial move in λ space. For example, if our λ spacing is 0.05, a move

from λ= 0.35 to 0.4 or 0.3 may be attempted but not to 0.45.
3. Calculate the difference in potential energy between the trial and current λ values.
4. Estimate the free energy difference between the trial and current λ values using the

running averages of ∂U/∂λ and the trapezoidal rule.
5. Accept λ trial with probability given in Eq. (11).
6. If the move is accepted then λ is updated to the trial value, otherwise the simulations

stays at the current λ.
7. The running average of ∂U/∂λ is updated.
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Simulation details
The first system used here, methane in water, is detailed in systematic studies of force
fields and the free energies of hydration of amino acid side chain analogs (Sun et al., 1992;
Lyubartsev, Førrisdahl & Laaksonen, 1996; Chodera & Shirts, 2011; Paliwal & Shirts, 2011).
For the GAG to GVGmutation the PMX (Gapsys et al., 2015) software package was used to
construct the tri-peptide mutation. Using PMX, we generated the hybrid protein structure
and topology for simulations of the chosen mutation, alanine to valine.

All simulations described in this paper were performed using the molecular dynamics
package GROMACS 5.1.4. The simulations were carried out at 300 K and solvated in a
dodecahedron box with TIP3P waters. The methane molecule was parameterized using
the OPLS (Optimized Potential for Liquid Simulations) force field (Jorgensen, Maxwell &
Tirado-Rives, 1996). The OPLS force field was chosen for this study because it is known
to perform well on small molecules (Shirts et al., 2003). In future studies, we anticipate
using AIM on protein systems where other force fields are more appropriate such as
AMBER (Salomon-Ferrer, Case & Walker, 2013) and CHARMM (Mackerell, Banavali &
Foloppe, 2001). Since all molecular dynamics force fields have similar form and number
of parameters, it is expected that the performance of AIM would not depend on the force
field chosen. For the GAG to GVG mutations, Na+ and Cl- ions were added to keep the
simulation box neutral and reach a physiologically relevant 150 mM salt concentration.

For both systems, energy minimization was performed using steepest descent for 1,000
steps. The system was then equilibrated using simulated annealing for 1,000 ps to heat the
system from 100 K to 300 K. For production simulations, electrostatic interactions were
handled by Reaction field with a cut-off of 0.9 nm, Potential-shift-Verlet modifier and
Verlet cutoff scheme. Van der Waals interactions were handled by twin range cutoffs with
neighbor list cutoff of 1.15 nm and van der Waals cutoff of 0.9 nm. The bonds involving
hydrogens were constrained with the Shake algorithm, allowing for a 2 fs time step. Long
range dispersion corrections for energy and pressure were applied. For the free energy
calculations, softcore scaling was used with parameters sc-power=1, sc-r-power=6 and
sc-alpha=0.5. In addition, the van der Waals and Coulomb interactions were separately
turned on or off as a function of λ. That is, one is held fixed as a function of λ while
the other changes. For the methods processed with alchemical-analysis.py we ran fixed λ
simulations. That is, an equal amount of simulation time was spent at each λ value. For
AIM we ran expanded ensemble simulations where we alternate between taking molecular
dynamics steps and attempting trial moves in λ space. That is, for AIM the amount of time
spent at each λ value is determined by the algorithm.

In order to determine the best distribution of intermediate λ states we followed a simple
strategy: (i) Conduct short simulations with a small set of intermediates. (ii) Generate a
plot comparing slope values between AIM and fixed λ (iii) Determine the locations of
curvature in the estimate of the free energy. (iv) Increase the density of intermediate states
in locations of high curvature. (v) Repeat until all areas of high curvature have been well
explored. We note that these steps should be performed for any method where the slope
of the free energy is used to calculate free energies, including both TI and AIM. Similar
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Figure 1 Different λ densities for methane solvation free energy calculations. Eight trial simulations of
100 ps per λ for 11, 21 and 31 λ values. This shows how the number of λ values were chosen to effectively
compare AIM to fixed λ simulations. The circles indicate the region where the λ density needed to be in-
creased.

Full-size DOI: 10.7717/peerjcs.264/fig-1

steps would be performed for methods such as DEXP, IEXP, BAR and MBAR to ensure
that energy differences are not too large between λ values.

RESULTS
Methane
After conducting short simulations, generating plots to determine locations of high
curvature and increasing λ density in those regions, we averaged eight trial simulations of
100 ps per λ for separate λ distributions (see Fig. 1). We found, by progressively increasing
the λ density between λ= 0.5 and λ= 1.0, that a distribution of 31 λ values gave us a
dense enough distribution to properly compare AIM to fixed λ methods for the methane
simulations.

Figure 2 is a violin plot to visualize the distribution and probability densities over the
eight trials for each method as a function of simulation time per value of λ. A violin plot
combines a box plot and a density plot to show the shape of the distribution around the
mean. The thick black bar in the center represents the interquartile range, the white dot
is the median and the thin black line going vertically through the middle represents the
upper and lower adjacent values. Reading a violin plot is similar to reading a density plot.
The thicker parts represent high frequency values and the thinner parts represent low
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Figure 2 Violin plot showing methane solvation results for 31 λ values averaged over eight trials. A vi-
olin plot combines a box plot and a density plot to visualize the distribution and probability density. The
graphic shows all methods have similarly converged at 1 ns per λ. AIM and AIM-CUBIC converge earlier
than other methods at 750 ps per λ.

Full-size DOI: 10.7717/peerjcs.264/fig-2

frequency values. The advantage of a violin plot over a box plot is that we are able to view
the underlying distribution of the data.

In Fig. 2 at 100 ps per λ most methods have similar standard deviations of around
0.05 kcal/mol (visualized by the height of the violin shape in the figure), but the slower
convergence of MBAR in this case leads to a larger standard deviation of around 0.16
kcal/mol. By 750 ps AIM has converged to a smaller standard deviation of around 0.02
kcal/mol compared to the other methods at around 0.05 kcal/mol.

GAG to GVG Mutation
For the GAG to GVG mutation we first tested a distribution of 41 λ values averaged over
8 trial simulations of 1 ps and 100 ps per λ; see Fig. 3. By reviewing the smoothness of the
function we concluded that 41 λ values was sufficient. Figure 4 shows the convergence of
the free energy for GAG to GVG over time for each method. At just 1 ps per λ value the
AIM estimates are within less than 1.0 kcal/mol of the converged (1 ns per λ) result with a
standard deviation of around 0.5 kcal/mol. All other methods are more than 2.0 kcal/mol
from this converged result with larger standard deviations of around 1.0 kcal/mol. At 100
ps all estimates are less than 0.1 kcal/mol from the converged result, but AIM estimates have
a standard deviation of around 0.1 kcal/mol compared to other methods at 0.4 kcal/mol.
All methods have similarly converged at 1 ns per λ.

DISCUSSION
In the limit of infinite sampling, all rigorous methods (i.e., statistical mechanics-based
methods), performed properly with the same force-field and parameters, will yield the
same result within uncertainty. Often, it is of interest to define accuracy by comparing
results to experimental data. However, given that the purpose of this study is to compare
various computational methods, we define accuracy by comparing results to the value
upon which all methods converge. For fixed λ simulations the sampling time is typically
the same for each λ state. Sampling time must be increased whenever convergence has not
been achieved. However, if bias is introduced by using an insufficient number of λ values
in regions of high curvature, increased sampling leads to radical convergence problems
(Shyu & Ytreberg, 2009; Steinbrecher & Labahn, 2010). If the curvature of the underlying
free energy slope values is large, averaging over a state space that is not dense enough
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Figure 3 Different simulation times for alanine to valine mutation free energy calculations. Eight trial
simulations of 41 λ values at 1 ps, 100 ps and 1 ns per λ. Note the smoothness of AIM versus fixed λ simu-
lations. AIM requires less samples than fixed λ simulations to smooth the free energy function.

Full-size DOI: 10.7717/peerjcs.264/fig-3
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als. The graphic shows all methods have similarly converged at 1 ns per λ. AIM and AIM-CUBIC con-
verge more rapidly than other methods and are mostly converged at 100 ps per λ.

Full-size DOI: 10.7717/peerjcs.264/fig-4

to fully describe the state function propagates this bias requiring significantly increased
sampling time to achieve convergence. For TI, the bias will persist even for infinite
sampling. In addition, increasing sampling time may not be realistic when dealing with
limited computational resources. Paliwal & Shirts (2011)make a detailed argument to why
convergence may not be possible for all systems due to hard limitations in computational
resources.

In particular, both TI and AIM are calculating the same slope averages and should
agree very well for simple systems and reasonably long simulation times. However, before
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convergence is reached, due to the fact that AIM spends more time in some regions, we
should not expect the approximation of AIM to exactly match TI with similar sampling
time until the number of λ values has been sufficiently increased in high curvature regions.
Once we have properly chosen the λ values then reasonably long simulations will lead to
highly similar results between these two methods.

AIM is able to estimate the free energy for the amino acid mutation within 1.0 kcal/mol
at a total simulation time of only 41 ps. This is quite remarkable since ±1.0 kcal/mol is
typically the range that is desired for mutation studies. Of course, further studies using a
broader range of amino acid change are needed, but it suggests that AIM may be suitable
for quick estimation. We believe the reason that AIM performs so well in such cases is due
to the Monte Carlo sampling that allows AIM to more efficiently sample λ space compared
to fixed λ simulations.

The reader may note that AIM violates detailed balance since the acceptance criterion
contains the free energy estimates that are updated continuously. AIM does however obey
detailed balance asymptotically. As simulation time increases, the average free energy
differences between λ values reach an equilibrium and detailed balance is satisfied. Once
this equilibrium is attained the algorithm will sample all λ values equally, that is, the
histogram of the number of configurations will become flat as a function of λ.

CONCLUSION
In this report we have implemented the adaptive integration method (AIM) for calculating
free energy differences in GROMACS and applied it to two molecular systems. We have
shown agreement within statistical uncertainty between AIM and a suite of fixed λmethods
for methane solvation and an GAG to GVG mutation. We have also shown that AIM is
more efficient than the other tested methods. That is, for a given amount of simulation
time, AIM has a higher level of accuracy and precision. We anticipate these findings will
extend to larger, more complex systems. Future studies will be performed to test whether
this is the case.

Further, we found that running longer simulations with too few intermediate λ states
generated results that were inconsistent between methods. The density and sampling
convergence of the λ states directly influences the agreement between all the testedmethods.
Since some states will contribute disproportionately to the variance of the estimate, we
found that generating short test simulations of different λ densities before attempting
longer simulations is advisable.
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