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Abstract: Irisin is a muscle factor induced by exercise, generated through the proteolytic cleavage of the membrane protein 
fibronectin type III domain-containing protein 5 (FNDC-5). Numerous studies have shown that irisin plays a significant role in 
regulating glucose and lipid metabolism, inhibiting oxidative stress, reducing systemic inflammatory responses, and providing 
neuroprotection. Additionally, irisin can exert immunomodulatory functions by regulating regulatory T cells (Tregs). Tregs are 
a highly differentiated subset of mature T cells that play a key role in maintaining self-immune homeostasis and are closely related 
to infections, inflammation, immune-related diseases, and tumors. Irisin exerts persistent positive effects on Treg cell functions through 
various mechanisms, including regulating Treg cell differentiation and proliferation, improving their function, modulating the balance 
of immune cells, increasing the production of anti-inflammatory cytokines, and enhancing metabolic functions, thereby helping to 
maintain immune homeostasis and prevent immune-related diseases. As an important myokine, irisin interacts with receptors on the 
cell membrane, activating multiple intracellular signaling pathways to regulate cell metabolism, proliferation, and function. Although 
the specific receptor for irisin has not been fully identified, integrins are considered potential receptors. Irisin activates various 
signaling pathways, including AMPK, MAPK, and PI3K/Akt, through integrin receptors, thereby exerting multiple biological effects. 
These research findings provide important clues for understanding the mechanisms of irisin’s action and theoretical basis for its 
potential applications in metabolic diseases and immunomodulation. This article reviews the relationship between irisin and Tregs, as 
well as the research progress of irisin in immune-related diseases such as multiple sclerosis, myasthenia gravis, acquired immune 
deficiency syndrome, type 1 diabetes, sepsis, and rheumatoid arthritis. Studies have revealed that irisin plays an important role in 
immune regulation by improving the function of Tregs, suggesting its potential application value in the treatment of immune-related 
diseases. 
Keywords: irisin, FNDC5, regulatory T cell, immunity, immune-related diseases

Introduction
Irisin is a glycosylated type I membrane protein, a cleavage product of fibronectin type III domain-containing protein 5 
(FNDC5), and is highly homologous between humans and mice.1–4 Recent studies have shown that irisin plays 
a significant role under various physiological and pathological conditions, including promoting bone remodeling,5 

improving the prognosis of metabolic diseases,3,6 and exhibiting anti-inflammatory,7,8 anti-oxidative stress, anti- 
apoptotic,5,6,9 neuroprotective,7,10 and organ ischemia-injury protective effects.9 Multiple studies have indicated that 
irisin can enhance the function of natural killer cells and play various roles in immune regulation. Irisin significantly 
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inhibits the pro-inflammatory polarization of microglia and macrophages by reducing the expression of pro-inflammatory 
factors and promotes the transition of macrophages to the anti-inflammatory M2 type. Regarding neutrophils, irisin exerts 
anti-inflammatory effects by inhibiting their infiltration and the formation of extracellular traps, thereby reducing 
inflammation and tissue damage. Additionally, irisin can inhibit the activity and expression of T lymphocytes and 
various inflammatory factors.8,11–15 Overall, irisin is primarily endogenously produced by skeletal muscle cells but can 
also be obtained exogenously in research and potential therapeutic applications. By directly regulating the function of 
immune cells and improving metabolism, reducing inflammation, and combating oxidative stress, irisin shows great 
therapeutic potential in immune-related diseases.Regulatory T cells (Tregs) are a highly differentiated subset of mature 
T cells characterized by the expression of CD4+CD25+Foxp3+ on their surface. These cells interact with various cells of 
the innate and adaptive immune systems and are closely associated with multiple diseases and disorders, including 
infections, inflammation, immune-related diseases, and tumors.16–19 Dysfunction of Tregs is closely related to multiple 
sclerosis (MS), myasthenia gravis (MG), acquired immune deficiency syndrome (AIDS), type 1 diabetes mellitus 
(T1DM), sepsis, and rheumatoid arthritis (RA). Currently, there are few reviews on the regulation of Tregs function 
by irisin for the treatment of immune-related diseases. This article reviews the relationship between irisin and Tregs in 
immune-related diseases and evaluates the potential application of irisin in regulating Tregs function for the prevention 
and treatment of immune-related diseases. It is hoped that by sorting and discussing the existing literature, this review 
will provide a reference for further research.

Irisin, Tregs, and MS
Irisin and MS
Multiple sclerosis is an immune-mediated inflammatory and neurodegenerative disease that manifests as a multi-focal 
demyelination of the central nervous system (CNS).20,21 Studies have shown that elevated levels of inflammatory 
cytokines, such as interleukin (IL)-17 and IL-1β, play an important role in the pathogenesis and progression of MS.22– 

28 In the pathogenesis of MS, oxidative stress is considered a key factor, leading to cellular dysfunction, demyelination, 
and neuronal death. During the progression of MS, oxidative damage is particularly significant,28–30 and it has been 
suggested that irisine might directly act on neurons, relating to the pathological process of MS. This may involve 
protective effects on neurons, as well as mitigation of demyelination and axonal damage.31 Irisin can improve symptoms 
in MS patients, and by increasing serum irisin levels, improvements in depression, cognitive abilities, and fatigue 
symptoms in MS patients have been observed.32,33 This could be related to irisin’s impact on neuroprotection, 
inflammation reduction, oxidative stress, and apoptosis.34,35 Moreover, exercise is known to increase irisin levels. In 
animal model studies of neuroautoimmune diseases, exercise has been shown to reduce oxidative stress, inhibit the 
production of inflammatory cytokines, and modulate the immune response by promoting the activity of regulatory 
T cells. The studies also indicate that exercise, by altering the expression of adhesion molecules and enhancing the tight 
junctions in spinal cord tissue, helps to restore the integrity of the blood-brain barrier (BBB), limiting the migration of 
autoreactive T cells into the central nervous system.36 This is significant for the treatment of MS, as T cell infiltration is 
closely associated with MS exacerbations, and irisin, as a hormone secreted after exercise, may play an indispensable 
role in this process.

Tregs and MS
Regulatory T cells (Tregs) play a crucial role in controlling autoimmune inflammation in the central nervous system, and 
their dysfunction is considered to be a key factor in the progression of Multiple Sclerosis (MS).37,38 Tregs typically 
regulate peripheral immune responses by suppressing effector T cells (Teffs). When the function of Tregs is compro-
mised, uncontrolled Teffs may attack the myelin sheath, leading to neuronal damage and neuroinflammation.28,38,39 

Studies have shown that restoring the functional homeostasis of Tregs can alleviate the severity of the disease and help 
prevent or slow down the development of Experimental Autoimmune Encephalomyelitis (EAE), an animal model of 
MS.40,41 Therefore, restoring the homeostasis of Tregs has been proposed as a potential therapeutic strategy for treating 
MS, demonstrating promising research prospects.42–44
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Irisin, Tregs, and MS
In the blood and cerebrospinal fluid of MS patients, as well as in animal models of multiple sclerosis, research indicates 
that although the number of Tregs is elevated, their function is impaired, leading to increased susceptibility to the disease 
and disruption of the autoimmune regulatory process.36–38 This phenomenon highlights the importance of Tregs in 
maintaining immune balance. In preclinical models, supplementation with irisin therapy has shown the potential to 
alleviate the severity of MS. The mechanisms may include reducing inflammatory responses, alleviating oxidative stress, 
and inhibiting apoptosis. These effects may be achieved by enhancing the function of Tregs, thereby reducing the 
pathological activity of effector T cells (Teff) (Figure 1). Specifically, irisin may improve the regulatory capacity of Tregs 
on immune responses, decrease the release of inflammatory mediators, and protect neurons from immune attacks.

Despite these findings providing a theoretical foundation for irisin as a treatment component for MS, its practical 
clinical application still faces numerous challenges. These challenges include determining effective and safe dosage 
ranges, addressing potential side effects, and evaluating the impact of long-term treatment. Additionally, the bioavail-
ability of irisin and its plasma half-life are critical parameters that require special attention in future clinical research. 
Future research efforts should focus on elucidating the direct impact mechanisms of irisin on Tregs cell function and 
validating its efficacy and safety in clinical trials. This will involve in-depth studies on the effects of irisin under different 
dosages and administration regimens, as well as its safety and tolerability in long-term use. Through these studies, a more 

Figure 1 Multiple sclerosis (MS) presents with multifocal demyelination of the central nervous system (A and B). Irisin improves MS by improving demyelination caused by 
inflammation, oxidative stress, and apoptosis, as well as reducing neuronal loss and glial cell formation caused by axonal injury (C). At the same time, irisin may treat MS by 
improving Tregs function (D) and inhibiting myelin destruction caused by Teff (efferent CD8+ T cells) (E) and autoimmune T cell migration to the CNS (central nervous 
system) (F).
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accurate assessment of irisin’s potential in MS treatment can be made, and feasible treatment strategies can be 
formulated.

Irisin, Tregs, and MG
Irisin and MG
Myasthenia gravis is an autoimmune disease in which autoantibodies attack the acetylcholine receptors (AChR) in 
skeletal muscles, which leads to impaired transmission at the neuromuscular junctions.45–47 Clinical manifestations of 
MG include abnormal fatigue, weakness of the affected transverse muscles, and an inability to exercise at will, with 
a temporary reduction or disappearance of symptoms after rest or taking anticholinesterase drugs.48 Recent studies have 
shown that the development and progression of MG are closely associated with the activities of inflammatory mediators 
and inflammatory cytokines.49–52 In contrast, irisin may enhance mitochondrial function and maintain a homeostatic 
intracellular redox status by promoting an increase in the proportion of Tregs and inhibiting the activation of endoplasmic 
reticulum-related stress in macrophages. Due to differences in sample selection, heterogeneity of study design, and 
variation in baseline status, there is controversy regarding the levels of irisin in the serum of patients with myasthenia 
gravis (MG).53,54 Despite these controversies, studies suggest that irisin can reduce the secretion of various inflammatory 
cytokines. In autoimmune diseases like MG, the anti-inflammatory effects may be beneficial. Irisin may alleviate 
immune-mediated damage at the neuromuscular junction by reducing the secretion of inflammatory cytokines on one 
hand, and on the other hand, it may indirectly enhance muscle function and endurance by improving energy metabolism. 
Additionally, it may regulate the immune system, affecting the function of T cells and other immune cells, improving the 
autoimmune response, and ameliorating MG.53–55

Tregs and MG
Tregs dysfunction in patients with MG is often associated with elevated levels of pro-inflammatory cytokines, and 
accordingly, the maintenance of Tregs immune homeostasis may be beneficial for the prognosis of patients with this 
condition.56–60 In this regard, it has been found that thymectomised patients with MG have higher levels of circulating Tregs 
and enhanced immunoregulation, which, by reducing the expression of AChR antibodies and cytotoxic T lymphocyte- 
associated antigen 4 (CTLA-4), can contribute to a significant improvement in the symptoms of MS.61–63 To further validate 
the role of Tregs in improving MG, Aricha et al64 and Sheng et al65 adoptively transferred Tregs to mice with experimental 
autoimmune MG (EAMG) and found that whereas there were reductions in the pro-inflammatory cytokines IL-6, IL-17, 
and IFN-γ, this treatment promoted increases in the levels of FoxP3 and IL-10. Moreover, reductions were detected in the 
number of self-reactive T cells and the levels of AChR antibodies, thereby providing evidence that the activity of Tregs can 
contribute to significant retardation in disease progression in mice with EAMG.64,65

Irisin, Tregs, and MG
Irisin may play a role in MG by increasing the proportion of Tregs and reducing the expression of the AChR antibody 
and cytotoxic T lymphocyte-associated protein 4 (CTLA-4), as well as the secretion of various inflammatory factors, 
resulting in improved MG through anti-inflammatory effects55 (Figure 2).Although current approaches to treating MG do 
not target Tregs, a modest increase in Tregs has been found with drugs that do not target Tregs (pyridostigmine, 
rituximab, azathioprine, intravenous immunog). In addition study has discovered that Irisin may ameliorate the immu-
nopathological process of MG by modulating the proportion of Treg cells, which are a type of immune regulatory cell 
known for their ability to suppress immune responses. Research has found that after stimulating CD4+ T cells in MG 
patients with irisin, the proportion of Treg cells significantly increased, suggesting that irisin may regulate the directional 
differentiation of Treg cells in MG patients. Additionally, irisin can inhibit the activation of endoplasmic reticulum stress 
in macrophages, improve mitochondrial function damage, and inhibit the production of intracellular reactive oxygen 
species, thereby alleviating the inflammatory response. Therefore, we hypothesize that irisin may exert its anti- 
inflammatory effects in the immune pathogenesis of MG through the following mechanisms: firstly, by increasing the 
proportion of Treg cells; secondly, by inhibiting the activation of endoplasmic reticulum stress in macrophages; 
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furthermore, by improving mitochondrial function and maintaining the balance of intracellular redox state; and ulti-
mately, by reducing the secretion of inflammatory factors.55,56

Irisin, Tregs, and AIDS
Irisin and AIDS
Acquired immune deficiency syndrome, caused by infection with the human immunodeficiency virus (HIV), is char-
acterised by immunodeficiency and a series of opportunistic infections and tumours, which in severe cases can prove 
fatal.66 Patients with AIDS have been established to have elevated levels of irisin that do not respond to lifestyle 
modification and are unrelated to brown adipose tissue gene expression,67 thereby indicating a possible association 
between HIV infection and irisin levels. In this regard, Trombeta et al demonstrated a positive correlation between irisin 
levels and body fat in HIV-infected subjects and a negative correlation with strength parameters.68

In the context of HIV infection and its related complications, irisin may exert effects through several mechanisms: 
Metabolic Regulation, individuals with HIV commonly experience metabolic complications such as insulin resistance 
and fat redistribution after initiating antiretroviral therapy (ART). Irisin, by enhancing insulin sensitivity and promoting 
energy expenditure, could help improve these metabolic issues;3,6 Anti-inflammatory Action, chronic inflammation in 
individuals with HIV is associated with an increased risk of non-infectious diseases such as cardiovascular and liver 
diseases. The anti-inflammatory properties of irisin could help mitigate chronic inflammation, thereby reducing the risk 
of these complications;7,8 Immune Function Modulation, HIV primarily damages the immune system by destroying 
CD4+ T cells. Irisin might indirectly affect immune regulation and has the potential to improve or support the immune 
status of individuals with HIV;5 Promotion of Muscle Function and Reduction of Wasting Symptoms, individuals with 
HIV may experience muscle wasting and a decline in strength. Due to its role in enhancing muscle mass and endurance, 
irisin could be beneficial in improving muscle function and alleviating wasting symptoms in HIV-infected 

Figure 2 Myasthenia gravis (MG) is an immune-related disease in which autoantibodies attack the skeletal muscle acetylcholine receptor (AChR), resulting in neuromuscular 
junction transmission disorders (A). Inflammatory mediators and cytokines are closely related to the development of MG (B). Irisin may increase the proportion of Tregs, 
reduce the expression of the AChR antibody and cytotoxic T lymphocyte-associated protein 4 (CTLA-4), as well as the secretion of various inflammatory factors, and 
improve MG through anti-inflammatory effects (C-G).
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individuals;8,11–15 Neuroprotective Effect, HIV infection can affect the central nervous system and lead to cognitive 
decline. Although there is limited research on irisin’s role in HIV-related neurological issues, its potential neuroprotective 
effect offers the possibility that irisin might help alleviate HIV-related neurological complications.7,10

It is important to note that these effects and potential benefits are mainly based on findings of irisin in other research 
areas, and direct studies on HIV infection may still be relatively limited. Therefore, these hypotheses need to be verified 
through more clinical research specifically targeting individuals with HIV. As research progresses, more biological 
actions of irisin may be discovered, as well as its practical applications in the treatment and management of HIV.

Tregs and AIDS
The main features characterising the immune system of patients with AIDS are a reduced number and dysfunction of CD4+ 

T lymphocytes,69,70 abnormal immune activation,71 and the restoration of immune integrity in response to antiviral therapy.69 

Disease progression in these patients is closely associated with inflammation and elevated viral levels,72 and even in cases of 
effective antiviral therapy, patients can continue to experience heightened immune activation and inflammation.73 Consequently, 
the maintenance of immune homeostasis plays an important role in the treatment of AIDS. In this regard, it has been found that 
Tregs are positively correlated with HIV viral load and are closely associated with disease progression.74–77 However, the 
suppressive efficacy of Tregs is considered something of a double-edged sword. Suppression occurs primarily in the early stages 
of acute HIV infection,78 during which the amplification of Tregs can contribute to the suppression of immunity, the inhibition of 
excessive T-cell activation, and a reduction of bodily damage, although it also has the effect of weakening HIV-specific responses 
and impairing HIV detection and clearance by the body, which tend to be conducive to viral persistence.79 Nevertheless, Tregs 
may play a regulatory role in the protection of HIV hosts and contribute to the specific elimination of HIV,80 and thus the 
maintenance of Tregs functional homeostasis may represent a viable therapeutic approach for treating patients with AIDS.

Irisin, Tregs, and AIDS
Among individuals infected with the HIV virus, persistent immune activation and inflammation are common phenomena that 
negatively impact treatment effectiveness and the overall health status of the infected person. Against this backdrop, maintaining 
immune homeostasis becomes particularly important. Irisin, as a potential adjunctive therapy, has the potential to improve the 
immune function of HIV-infected individuals and alleviate aberrant immune states by enhancing the anti-inflammatory functions 
of Treg cells (Figure 3). In HIV-related models, boosting the activity of Tregs may help reduce chronic immune activation and 
levels of inflammation, thereby decreasing HIV replication and disease progression. However, this intervention strategy is not 
without risks. Enhancing Treg function may improve immune control over HIV infection and reduce damage to the host, but it 
may also suppress the body’s specific immune response to HIV, hampering the recognition and clearance of the virus, and thus 
leading to its persistent presence.78,79 Therefore, when employing Irisin, a delicate balance is needed, possibly requiring dynamic 
monitoring of HIV load and the host’s immune response to determine the optimal timing and dosage of treatment. Future research 
should focus on the interaction between Irisin and the existing antiretroviral therapy (ART), and whether it can improve the state 
of immune exhaustion associated with HIV infection. Through these studies, we can gain a deeper understanding of the 
immunomodulatory mechanisms of Irisin and its potential applications in HIV-infected individuals.

Irisin holds potential value for improving treatment in individuals infected with HIV, and research into its mechan-
isms and applications in HIV-infected individuals is crucial for developing new strategies to treat HIV/AIDS. The 
outcomes of future studies will help to reveal the true potential of Irisin in HIV treatment and determine its role in 
comprehensive treatment regimens. This will provide a more holistic and personalized treatment option for individuals 
infected with HIV.

Irisin, Tregs, and T1DM
Irisin and T1DM
Type 1 diabetes mellitus generally manifests as a syndrome encompassing a group of metabolic disorders associated with 
the metabolism of proteins, lipids, and electrolytes associated with the autoimmune-mediated destruction of islet β-cells81 

(Figure 4). It is an inflammatory disease82,83 that is mainly characterised by an intense inflammatory response that 
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induces T1DM via the lymphocyte-mediated destruction of pancreatic β-cells, followed by a persistent state of systemic 
low-grade inflammation, and the substantial fluctuation in blood glucose thus induced will exacerbate this 
inflammation.84 In addition to an elevation of inflammatory markers,80,81 immune activation83,85 and oxidative 
stress86,87 play important roles in the pathogenesis and progression of T1DM.

Observations concerning the association between serum irisin concentrations and T1DM tend to be somewhat 
inconsistent. Chronic inflammation, autoimmunity, and anti-glutamic acid decarboxylase levels may affect irisin synth-
esis in patients with T1DM,88 however, most patients with T1DM have elevated irisin levels, which is particularly 
pronounced in women.89,90 Moreover, irisin level was negatively correlated with insulin dose in T1DM patients, and 
irisin could reduce insulin dose89 and promote blood glucose control and bone health.90 It has been established that 
exercise can contribute to the production of irisin, and exercise combined with insulin therapy has been found to reduce 
the associated complications in patients with T1DM and improve their prognosis.91 Animal studies have also shown that 
irisin can benefit blood glucose levels by reducing insulin resistance, promoting pancreatic β-cell survival, and enhancing 
glucose-induced insulin secretion.3,92 However, although irisin is generally considered beneficial for the prognosis of 
patients with T1DM, the change in trends of irisin in patients with T1DM and the specific mechanisms of irisin action 
need further investigation.

It is important to note that while these mechanisms provide a theoretical hypothesis, the potential therapeutic role and 
actual mechanisms of action of irisin for T1DM require further research to be confirmed. Current research on irisin 
primarily focuses on metabolic diseases, particularly Type 2 Diabetes. For Type 1 Diabetes, although irisin may help 
improve some metabolic parameters, it cannot replace insulin therapy, which is indispensable in the management of 
T1DM.

Figure 3 Acquired Immune Deficiency Syndrome (AIDS) refers to immunodeficiency caused by human immunodeficiency virus (HIV) infection (A). The major changes in 
the immune system of patients with AIDS include a reduced number and dysfunction of CD4+ T lymphocytes, abnormal immune activation (B), and inflammation resulting 
from abnormal immune activation (C). Moreover, the progression of AIDS patients is closely related to increased inflammation and viral levels (D). Irisin may improve 
abnormal immunity by improving the function of Tregs (E, F) and reducing inflammation (G).
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Tregs and T1DM
It has been found that the mRNA levels of characteristic Tregs surface molecules and receptors, such as CTLA-4, IL-10 
receptor alpha (IL-10Rα), TGF-β1, and TGF-β2, are generally low in patients with T1DM, as are the levels of signal 
transducer and activator of transcription 1 (STAT-1) and suppressor of mothers against decapentaplegic 3 (SMAD-3), 
which are patterns taken to be indicative of impaired Tregs functions in these patients.93–95 Moreover, patients with 
T1DM are generally characterised by a reduced percentage of Tregs.96,97 The key to the aetiological treatment of T1DM 
lies in preventing early islet loss in susceptible individuals, promoting islet regeneration during remission, or islet 
transplantation in the case of chronic disease, each of which can be regulated by Tregs.98 In recent years, animal models 

Figure 4 The development of type 1 diabetes is thought to be initiated by the presentation of β-cell peptides by antigen-presenting cells (APCs). APCs bearing these autoantigens 
migrate to the pancreatic lymph nodes, where they interact with autoreactive CD4+ T lymphocytes, which in turn mediate the activation of autoreactive CD8+ T cells (A). These 
activated CD8+ T cells return to the islet and lyse β cells expressing immunogenic self-antigens on major histocompatibility complex class I surface molecules (B). β-cell destruction 
is further exacerbated by the release of proinflammatory cytokines and reactive oxygen species from innate immune cells (macrophages, natural killer cells, and neutrophils) (C). 
This entire process is amplified by defects in regulatory T lymphocytes, which do not effectively suppress autoimmunity (D). Activated T cells within the pancreatic lymph node also 
stimulate B lymphocytes to produce autoantibodies against β-cell proteins. These autoantibodies can be measured in the circulation and are considered a defining biomarker of type 
1 diabetes (E). Reprinted from The Lancet, Molina C, Oram RA. Type 1 diabetes. Lancet. 2018 Jun16;391(10138):2449–2462. doi: 10.1016/S0140-6736(18)31320–5.from DiMeglio 
LA, Evans-Molina C, Oram RA. Type 1 diabetes. Lancet. 2018;391(10138):2449–2462, with permission from Elsevier.81
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and clinical trials have also confirmed that promoting increases in the number of Tregs in the body, regulate Tregs 
homeostasis, and improve the progression of T1DM, the effects of which tend to be notably more pronounced during the 
early stages of T1DM development.99,100 However, although this would appear to imply that the activation of Tregs is 
highly beneficial from the perspective of T1DM treatment,100 long-term observations in a large number of patients are 
needed for confirmation.99

Irisin, Tregs, and T1DM
The ideal immunotherapy for T1DM should restore self-tolerance without inducing chronic immunosuppression. Irisin is 
thought to play a significant role in alleviating immune-mediated inflammation. Specifically, irisin may enhance the 
function of Tregs, thereby reducing the immune system’s attack on pancreatic β-cells, alleviating inflammation, and 
decreasing β-cell damage. Additionally, irisin might protect the remaining pancreatic cells by slowing immune-mediated 
damage, allowing them to continue producing insulin. The potential benefits of this mechanism include improved 
metabolic function, better glycemic control in T1DM patients, reduced dependence on insulin injections, and improved 
clinical outcomes for T1DM. By modulating Tregs function, irisin not only reduces the immune system’s attack on the 
pancreas but may also enhance overall immune regulation, thereby improving patients’ health in multiple aspects3,90,92 

(Figure 5). However, despite these promising mechanisms, the role of irisin in T1DM treatment remains in the research 
stage. More clinical trials and experimental data are needed to verify the efficacy and safety of these potential 
mechanisms. Furthermore, the supplementation and regulation of irisin may be influenced by other complex factors, 
including the patient’s lifestyle, genetic background, and disease severity. Therefore, Discussions on irisin as a treatment 
strategy should be cautious and based on scientific evidence.

Figure 5 Activated CD8+ T cells attack islet β-cells, resulting in type 1 diabetes mellitus (T1DM) (A). Oxidative stress, insulin resistance, inflammation, and immune 
activation may promote this process (B). Irisin treats T1DM by improving oxidative stress and insulin resistance (C) and promoting Tregs function, reducing inflammation and 
immune activation (D).
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In summary, although the potential of irisin in T1DM treatment is promising, its practical application requires 
extensive research to confirm its effectiveness and safety. Future studies will help to better understand the role of irisin in 
immune regulation and T1DM management, leading to the development of more effective treatment strategies.

Irisin, Tregs, and Sepsis
Irisin and Sepsis
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host immune response to infection, characterised 
by mitochondrial dysfunction, cellular energy exhaustion, and immune dysfunction.101–105 Levels of irisin in the serum 
of patients with sepsis have been demonstrated to be negatively correlated with the severity of sepsis, and given that 
irisin has been found to ameliorate sepsis and related complications, it is considered to have promising clinical 
applications.106

Irisin has been shown to alleviate multiple organ dysfunction syndrome caused by sepsis and may improve sepsis- 
related cardiac dysfunction via multiple pathways, including blocking the toll-like receptor 4/NLR family pyrin domain 
containing 3 (TLR4/NLRP3) signalling pathway to inhibit inflammation, apoptosis, and pyroptosis;107 reducing mito-
chondrial dysfunction, oxidative stress, and apoptosis via FUN14 domain-containing 1 (FUNDC1)-related mitochondrial 
autophagy;108 activating mitochondrial ubiquitin ligase (MITOL) and inhibiting the Gasdermin D (GSDMD)-dependent 
pyroptosis pathway;109 regulating the macrophage stimulating 1-c-Jun N-terminal kinase (MST1-JNK) pathway110 and 
inhibiting the dynamin-related protein 1 (DRP1)-related mitochondrial fission pathway.111 Irisin has also been found to 
ameliorate the symptoms of sepsis-associated encephalopathy by modulating the inflammatory microenvironment via 
inhibition of ferroptosis in the hippocampus and attenuating neurocognitive dysfunction via an attenuation of blood brain 
barrier disruption.106,112,113 Irisin can improve sepsis-associated alveolar epithelial barrier dysfunction by inhibiting 
inflammation and apoptosis via the AMP-activated protein kinase/Sirtuin 1 (AMPK/SIRT1) pathway,114 attenuate sepsis- 
associated liver injury by preventing apoptosis, NLRP3 inflammasome activation, and nuclear factor (NF)-κB signal 
transduction,115 and contribute to reducing sepsis-associated acute kidney injury by inhibiting ferroptosis via the SIRT1/ 
nuclear factor erythroid 2–related factor 2 (NRF2) pathway and suppressing inflammation and apoptosis via the NF-κB 
pathway.113,116 However, despite these ostensibly impressive properties, most of the aforementioned findings pertaining 
to the therapeutic effects of irisin on sepsis and its complications are based on animal studies. A previous study reported 
that serum irisin levels decreased in patients with sepsis and were negatively correlated with disease severity,117 

highlighting the need for clinical trials to evaluate the use of irisin in patients with sepsis. Insufficient exercise is 
a risk factor for sepsis death.118 Running can prevent sepsis in mice.119–122 Potential protective mechanisms of exercise 
with sepsis include muscle factors released by muscle contraction. At the same time, exercise can up-regulate the marker 
products of Tregs, improve the function of Tregs, and reduce the “inflammatory storm“.36 Exercise generally improves 
skeletal muscle function. Irisin improved the function of Tregs and reduced the ”storm of inflammation”, which may be 
why exercise improved the function of organs with sepsis other than skeletal muscle.123,124

Tregs and Sepsis
In a mouse model of sepsis, a significant increase in the percentage of Tregs was detected 24 h after the initiation of 
sepsis, with the number and suppressive functions of Tregs increasing more significantly following the onset of septic 
shock, thereby contributing to a reduction in organ injury and mortality associated with the generation of a cytokine 
storm.125 In this regard, Heuer et al demonstrated a significant increase in the survival of mice with sepsis treated with 
in vitro stimulation of Tregs proliferation before or after modelling.126 Conversely, other studies have provided evidence 
to indicate that Tregs have no demonstrable effects on the survival of septic model mice127,128 and may even reduce 
survivorship.129 It is presumed that these discrepant findings of animal model studies can be attributed to differences in 
the stage of sepsis, host conditions, and the heterogeneity of Tregs.130–133 In related clinical studies, it has been found 
that the prolonged presence of large numbers of Tregs may be associated with severe immune paralysis, and it has been 
established that the functional homeostasis of Tregs is more conducive to improving the prognosis of patients with 
sepsis.134–136 Accordingly, continuous monitoring of the changes in Tregs numbers in the peripheral blood of patients 
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with sepsis would no doubt contribute to evaluating their condition and determining their prognosis. The maintenance of 
Treg functional homeostasis may thus represent a promising therapeutic strategy for treating patients with sepsis.

Irisin, Tregs, and Sepsis
Irisin, through its diverse biological functions, including anti-inflammatory, antioxidant, metabolic regulation, and organ 
protection effects, can effectively treat sepsis and its related complications, improving patient prognosis.107–116 (Figure 6). 
The different stages of sepsis, host conditions, and the heterogeneity of Tregs lead to diverse results in animal experiments, 
suggesting that we may need to more closely monitor and regulate Treg function to achieve immune homeostasis. Therefore, 
individualized treatment plans and further research are needed to optimize the application of irisin.

Irisin, Tregs, and RA
Irisin and RA
RA’s precise aetiology and pathogenesis have yet to be sufficiently elucidated, but it is generally recognised as a chronic 
systemic autoimmune disease characterised by synovitis. What is known, however, is that extravascular immune 

Figure 6 Sepsis can cause multiple organ dysfunctions (A). Irisin can improve sepsis-related cardiac dysfunction in various ways, including by blocking the TLR4/NLRP3 
signalling pathway to inhibit inflammation, apoptosis, and pyrodeath and through FundC1-related mitochondrial autophagy. It alleviates mitochondrial dysfunction, oxidative 
stress, and apoptosis by activating mitochondrial ubiquitin ligase (MITOL), inhibiting the Gasdermin D (GSDMD)-dependent scorch death pathway and DRP1-associated 
mitochondrial fission pathway, and regulating the Mst1-JNK pathway (B). Irisin reduces sepsis-associated liver damage by suppressing apoptosis, activating the NLRP3 
inflammasome, and NF-κB signalling (C). Irisin inhibits iron death through the SIRT1/Nrf2 pathway and inflammation and apoptosis through the NF-κB pathway, reducing 
sepsis-associated acute kidney injury (D). Irisin improves the inflammatory microenvironment by blocking iron death in the hippocampus, alleviates neurocognitive 
dysfunction, and promotes SAE by reducing blood-brain barrier disruption (E). Irisin suppresses inflammation and apoptosis through the AMPK/SIRT1 pathway, decreasing 
sepsis-associated alveolar epithelial barrier dysfunction (F).
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complexes form and stimulate an inflammatory response, whereas the release of cytokines associated with cellular 
immunity results in injuries that manifest as chronic, symmetric, multi-synovial arthritis and extra-articular lesions.137–139 

Research to date indicates that irisin can ameliorate joint damage in RA by modulating immune inflammation, necrotic 
molecules, and biochemical signaling pathways, as well as by inhibiting mitochondrial fission through suppression of the 
YAP-Drp1 signaling pathway.140,141 It has also been proposed that irisin could serve as a novel marker for the early 
diagnosis of RA-related fractures. Serum irisin level in RA patients was determined by ELISA irisin test system. 37% of 
patients had lower irisin level, and these patients had higher RA activity and functional joint failure grade.142 Moreover, 
levels of serum irisin in female patients with RA have been established to be correlated with osteoporotic vertebral 
fractures.143 Irisin may have a potential role in the diagnosis, treatment, or prognosis of RA, but due to the current 
scarcity of related data, further in-depth research is required.

Tregs and RA
Whereas inconsistencies have been reported regarding the number of Tregs in the peripheral blood of patients with 
RA,144–149 it is generally found that numbers in the synovial fluid of patients with RA are higher than those in the 
peripheral blood,145,147,150 and that the function of these Tregs is significantly impaired. Moreover, FoxP3-deficient mice 
had more rapid and aggressive arthritis progression.151 It has been established that Tregs can reduce inflammation, retard 
synovial tissue damage, and prevent erosive inflammation.152 For example, Morgan et al have demonstrated that Tregs 
can effectively alleviate RA symptoms in mice by targeting Tregs using specific monoclonal antibodies followed by the 
re-infusion of normal Tregs.153 Clinical studies have also shown that increasing Tregs number and function can 
effectively control the progression of RA.154,155

The treatment of RA is mainly based on drug therapy, which can significantly reduce the morbidity and mortality 
associated with RA, but it is not a cure. Meanwhile, several drugs that affect the number or function of Tregs have been 
reported to be effective in the treatment of RA. Enhancing the number and function of Tregs may be an effective method 
for the treatment of RA patients. This makes it possible to improve Tregs function in the treatment of RA as a new and 
fruitful means.154

Irisin, Tregs, and RA
It is widely believed that exercise promotes the production of irisin through muscle contraction. However, some studies 
suggest that exercise may reduce the levels of Tregs in the peripheral blood of elderly RA patients.156 Furthermore, 
exercise may also induce chronic arthritis by upregulating local complement activation and inhibiting the Tregs feedback 
loop.157 In contrast, other studies provide evidence that exercise can improve related symptoms in RA patients and that 
different intensities of exercise may have varying effects on the condition of RA patients.158,159 Given these contrasting 
results, whether irisin can improve the prognosis of RA patients by regulating Tregs function still requires further 
investigation. Despite the differing opinions on whether exercise can improve the condition of RA patients, it is generally 
believed that irisin is beneficial for RA patients. Firstly, irisin may improve the condition of RA patients by directly 
reducing synovial inflammation. Additionally, irisin may also reduce synovial inflammation by improving Tregs function, 
thereby slowing down synovial damage (Figure 7).

In conclusion, although the impact of exercise on RA patients is controversial, irisin may play an important role in the 
treatment of RA through complex mechanisms of immune system regulation, especially by modulating Tregs function. 
Further research in this field will help clarify the potential benefits of irisin in RA management.

Discussion
We collected and summarized all current irisin studies on immune-related diseases. irisin was found to treat immune- 
related diseases mainly through anti-inflammatory effect. Tregs function seems to play an important role in the anti- 
inflammatory effect of irisin. Especially in the study of exercise improving immune-related diseases, we believe that the 
myofactor irisin produced by exercise plays a key role in the improvement of patients’ condition.

The prevention and treatment of immune-related diseases require the restoration of immune homeostasis, in which 
Tregs play key roles.160 To date, only a handful of animal models and clinical studies have provided us with evidence: 
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moderate physical exercise can significantly increase the number of Tregs and their immunosuppressive function in the 
blood and tissues, and also maintain the homeostasis of Tregs. Furthermore, exercise enhances the transcriptional activity 
and epigenetic regulatory capacity of Tregs by upregulating the expression of the transcription factor Foxp3, thereby 
helping to slow down the progression of immune-related diseases.161,162 However, the findings in this field are not 
always consistent. Such inconsistencies may stem from a variety of factors, including research biases, design flaws, 
significant variations in the effects of exercise on different individuals, and the high degree of heterogeneity between 
human and animal studies. Therefore, we cannot yet draw definitive conclusions. Nonetheless, early clinical studies have 
shed light on the impact of immune-metabolic pathways, particularly during the exercise response process, where the 
release of catecholamines, the kynurenine pathway, and the cAMP/PPARβ/δ signaling pathway play regulatory roles in 
modulating the immunosuppressive function of Tregs.163,164 Moreover, it has yet to be sufficiently ascertained whether 
the conditions of individuals with immune-related diseases are improved directly via an altered myokine microenviron-
ment associated with exercise or indirectly via immune system regulation. It is also unclear whether irisin, one of the 
myokines produced by exercise, is effective in enhancing immune system function and the prognosis of immune-related 
diseases when acting alone, which warrants further confirmatory research.

In recent years, irisin has been identified as a key myokine; numerous studies have shown that it has anti- 
inflammatory effects, which require further research to elucidate its role in immune-related diseases. The functional 
homeostasis of Tregs plays a crucial regulatory role in the progression and remission of immune-related diseases; the 
regulatory effect of irisin on the functional homeostasis of Tregs and its mechanism remains to be further studied. The 
role of irisin in regulating Tregs homeostasis in the prevention and treatment of immune-related diseases is not yet fully 
understood, and related cellular, animal, and clinical studies are relatively few. Existing studies suggest that irisin may 
improve the immune response in myasthenia gravis (MG) and viral myocarditis by regulating the proportion of Tregs and 
inhibiting related inflammatory factors.55,165 The specific mechanisms may include increasing the proportion of Tregs 
cells, inhibiting macrophage endoplasmic reticulum stress activation, improving mitochondrial function, and maintaining 
intracellular redox balance, thereby reducing the secretion of inflammatory factors. Additionally, many studies have 
confirmed that exercise can improve immune-related diseases by regulating the function of Tregs, with myokines playing 
an important role in this process, and irisin possibly being one of the key factors. Recent studies have found that integrins 

Figure 7 Rheumatoid arthritis (RA) is currently recognised as a chronic systemic autoimmune disease characterised by synovitis. First, immune cells, which attack foreign 
objects outside the body, gather on the surface of the synovial membrane. They then stimulate the synovium, producing inflammatory substances that cause abnormalities in 
the synovium and bone (A and B). Irisin may improve RA disease by promoting Tregs function or by directly reducing synovial inflammation (C–E).
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play an important role in regulating Tregs function166 and can reduce inflammatory responses through the αvβ5 
pathway.12 When inflammation occurs, neutrophils can release a net-like structure of DNA and proteins known as 
NETs through a process called NETosis to capture and kill pathogens. Excessive formation of NETs is associated with 
various types of inflammation and autoimmune diseases. Tregs can inhibit excessive NETs through anti-inflammatory 
signals. Research suggests that irisin may significantly reduce the formation of NETs by regulating the P38/MAPK 
pathway through αVβ5 and may improve disease damage by enhancing mitochondrial function.109,111,141 In summary, we 
hypothesize that irisin may promote Tregs function by improving mitochondrial function, reducing Tregs oxidative stress 
and apoptosis, inducing Tregs differentiation, and releasing anti-inflammatory factors. Furthermore, our current research 
indicates that irisin can upregulate the expression of αvβ5, thereby improving the function of Tregs (data not shown). 
Additionally, there is an interactive regulatory effect between inflammatory responses and oxidative stress. During 
inflammation, large amounts of ROS are released, promoting the transcription and expression of various inflammatory 
signals, forming a vicious cycle. The effect of using anti-inflammatory and antioxidant drugs alone to treat inflammatory 
diseases is limited and cannot solve the problem fundamentally. Irisin, with its anti-inflammatory and antioxidant 
properties, may be a candidate drug for treating immune-related diseases. With further understanding of the relationship 
between irisin, Tregs, and immune-related diseases, we will be able to determine whether the regulation of Tregs 
functional homeostasis by irisin can provide an effective therapeutic option for immune-related diseases.
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