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Abstract
Background: Cyclooxygenase 2 (COX-2), the inducible form of prostaglandin G/H synthase, is
associated with several human cancers including pancreatic adenocarcinoma. Pancreatic stellate
cells (PSCs) play a central role in the intense desmoplasia that surrounds pancreatic
adenocarcinoma. The present study examined COX-2 expression in PSCs. PSCs isolated from
normal rats, were cultured and exposed to conditioned medium (CM) from the human pancreatic
cell line, PANC-1.

Methods: COX-2 expression was evaluated by immunostaining and western blotting. Proliferation
of PSCs was determined by thymidine incorporation and cell counting.

Results: COX-2 was found to be constitutively expressed in PSCs, and COX-2 protein was up-
regulated by PANC-1 CM. Moreover, the induction of COX-2 by PANC-1 CM was prevented by
U0126, an extracellular signal-regulated kinase (ERK) 1/2 inhibitor suggesting that activation of ERK
1/2 is needed for stimulation of COX-2. Finally, NS398, a selective COX-2 inhibitor, reduced the
growth of PSCs by PANC-1 CM, indicating that activation of COX-2 is required for cancer
stimulated PSC proliferation.

Conclusion: The results suggest that COX-2 may play an important role in the regulation of PSC
proliferation in response to pancreatic cancer.

Background
Vitamin A-containing cells were first reported in 1982 by
Watari et al. in vitamin A loaded mice using fluorescence
and electron microscopy [1]. This cell type was subse-
quently identified by electron microscopy in normal rat
and human pancreatic tissues [2]. These cells were identi-
fied as pancreatic stellate cells (PSCs) by Apte et al and

Bachem et al in 1998 [3,4]. In the normal pancreas, stel-
late cells are quiescent and can be identified by the pres-
ence of vitamin A-containing lipid droplets in the
cytoplasm. In response to pancreatic injury or inflamma-
tion, PSCs are transformed ("activated") from quiescent
phenotypes into highly proliferative myofibroblast-like
cells which express the cytoskeletal protein α-smooth
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muscle actin (α-SMA), and produce type I collagen and
other extracellular matrix components. Many of the mor-
phological and metabolic changes associated with the
activation of PSCs in animal models of fibrosis also occur
when these cells are cultured on plastic in serum-contain-
ing medium.

Activated PSCs have also been implicated in the deposi-
tion of extracellular matrix components in pancreatic ade-
nocarcinoma [5]. In patients with pancreatic cancer, an
intense, interstitial, fibrillar staining for PSCs is evident in
the peritumoral fibrous regions. Procollagen I staining
colocalized with α-SMA to these fibroblast-shaped cells
suggests that they are responsible for the deposition of
matrix components and the desmoplastic reaction that
surrounds the pancreatic tumor [5].

Cyclooxygenases (COXs) are key rate-limiting enzymes
involved in the conversion of arachidonic acid to prostag-
landin (PG) H2, the precursor of a variety of compounds

including PGs, prostacyclin, and thromboxanes. Two iso-
zymes are found in mammalian tissues, COX-1 and COX-
2. COX-1 is expressed constitutively in a wide variety of
tissues, where it is involved in the maintenance of tissue
homeostasis. In contrast, COX-2, which is not expressed
in resting cells, is the inducible form of the enzyme
responsible for PG production at sites of inflammation.
Growth factors, cytokines, tumor promoters, and other
inflammatory mediators can induce COX-2 expression
[6,7]. COX-2 expression and activity is up-regulated in
pancreatic cancer, but absent in normal pancreatic acinar
and duct cells [8-10]. Some scattered cells in normal pan-
creatic tissues express COX-2 [11,12].

The current study revealed that COX-2 is expressed in pri-
mary cultured PSC. Furthermore, conditioned media
from pancreatic cancer stimulates PSC proliferation and
COX-2 expression. The increase in PSC proliferation in
response to conditioned media is prevented by inhibition
of COX-2.

Results
COX-2 in primary cultured PSCs
In early primary PSCs, cytoplasmic COX-2 staining was
detected (Figure 1). However, early primary cultured PSCs
(quiescent cells) were α-SMA negative (Figure 1). After
passage, PSCs flattened and developed long cytoplasmic
extensions (activated PSCs), and showed positive immu-
nostaining for COX-2 and α-SMA (Figure 2).

COX-2 protein in culture-activated PSCs
On days one and four in primary culture, PSCs expressed
low levels of α-SMA (Figure 3). Between day 7 and day 20,
α-SMA expression increased substantially (Figure 3). In.
contrast, the COX-2 protein was detected in primary cul-
tured PSC from day 1 through day 20 (Figure 3).

Expression of COX-2 protein in PSCs was increased by 
PANC-1 CM
PSCs were treated with PANC-1 CM for 0.5, 1, 3, 6, 12, 24,
48, and 72 hours. PANC-1 CM caused sustained up-regu-
lation of the COX-2 protein, which was maximally
increased after 12 hours and remained elevated for at least
24 hours (Figure 4).

The increase in expression of COX-2 protein in PSCs by 
PANC-1 CM was inhibited by U0126
PSCs were treated with PANC-1 CM and control medium
and PANC-1 CM with the mitogen-activated protein
kinase kinases (MEK) inhibitor U0126 (10 µM) for 0.5, 1,
3, 6, 12, 24, 48, 72 hours. U0126 significantly inhibited
PANC-1-induced expression of COX-2 (Figure 5).

Immunostaining of COX-2 and α-smooth muscle actin (α-SMA) in pancreatic stellate cells (PSCs) after one day in cultureFigure 1
Immunostaining of COX-2 and α-smooth muscle actin (α-
SMA) in pancreatic stellate cells (PSCs) after one day in cul-
ture. (A) Immunostaining of COX-2 in quiescent PSCs. All 
PSCs stained for COX-2. (B) Immunostaining of α-SMA in 
quiescent PSCs. PSCs did not stain for α-SMA. Magnification 
400×.
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NS398 inhibits cell proliferation of PSCs stimulated by 
PANC-1 CM
Since COX-2 is increased by PANC-1 CM, the role of COX-
2 in PANC-1 CM-induced PSC proliferation was investi-
gated using a specific COX-2 inhibitor, NS398. PANC-1
CM increased PSC thymidine incorporation as well as cell
number compared to control medium (Figure 6). Inhibi-
tion of COX-2 with NS398 resulted in a concentration-
dependent decrease in thymidine incorporation and cell
number.

Discussion
There is accumulating evidence that PSCs play a role in the
development of pancreatic fibrosis [13,14]. Little is
known regarding the relationship between PSCs and pan-
creatic cancer, or the role of COX-2.

The present study revealed that PSCs express COX-2 con-
stitutively and when activated. The two isoforms of COX,
COX-1 and COX-2, differ in many respects. COX-1 is a

housekeeping gene that is expressed in most tissue, while
COX-2 is not detected in most normal tissues. In the pan-
creas, islet cells display a strong expression of COX-2 [9];
however, some scattered basal cells in normal pancreas
express COX-2 as well, though less than seen in islet cells
[11,12]. In hepatic stellate cells (HSCs) which are similar
to PSCs, COX-2 expression is virtually undetectable by
Western blot analysis in protein extracts obtained from
freshly isolated HSC [15]. However, serum-deprived
unstimulated HSC express low levels of the COX-2 pro-
tein and expression is dramatically enhanced in response
to IL-1α, TNF α or endothelin-1 [15,16]. The present
study suggests that COX-2 expression is independent of
the activation status in isolated PSCs. While there is no
marked expression of COX-2 in desmoplastic areas of
pancreatic cancers [8-10], it is possible that the enzyme is
up-regulated early in the activation of stellate cells in vivo
but increased expression may not be required for mainte-
nance of stellate function once activated.

Stimulation of PSC by PANC-1 CM increased the expres-
sion of COX-2. Oncogenes, growth factors, cytokines,
chemotherapy and tumor promoters stimulate COX-2
transcription via protein kinase C and RAS-mediated sig-
naling. Stimulation of either protein kinase C or RAS-
mediated signaling enhances mitogen-activated protein
(MAP) kinase activity, which in turn, activates transcrip-
tion of COX-2 [17]. We have previously reported that
PANC-1 CM enhances ERK 1/2 activation and growth of
PSCs [18]. We speculate that a growth factor is responsible
for these effects, however, our attempts to identify the can-
didate using receptor antagonists and immunoneutraliza-
tion have not been successful. Inhibition of ERK1/2
phosphorylation by U0126 prevented the PANC-1 CM-
stimulated increase in PSC COX-2 protein production. In
previous studies U0126 alone had no effect on ERK1/2 or
COX-2 expression [19,20]. This suggests that the MAP
kinase pathway plays a role in cancer-induced stimulation
of COX-2 in PSCs. The reported biological consequences
of COX-2 up-regulation include growth stimulation inhi-
bition of apoptosis [21], increased metastatic potential
[22] and promotion of angiogenesis [23]. Increased
expression of COX-2 in PSCs by PANC-1 CM may contrib-
ute to tumor progression.

Finally, the proliferation of PSCs was inhibited by treat-
ment with NS398, a COX-2 inhibitor. In pancreatic
carcinomas, COX-2 is overexpressed and NS398 inhibits
tumor growth [8,9,24]. This COX-2 inhibitor alone has no
effect on expression of COX-2 or ERK1/2 and shows no
toxicity at the concentration used in the present studies
[20,24]. Recent studies have demonstrated a role for the
COX-2 enzyme and PGE2 in the regulation of epithelial
cell growth and angiogenesis [23,25,26]. These properties
will need to be studied further in pancreatic

Immunostaining of COX-2 and α-smooth muscle actin (α-SMA) in pancreatic stellate cells (PSCs) after 10 days in cultureFigure 2
Immunostaining of COX-2 and α-smooth muscle actin (α-
SMA) in pancreatic stellate cells (PSCs) after 10 days in cul-
ture. (A) Immunostaining of COX-2 in activated PSCs. (B) 
Immunostaining of α-SMA in activated PSCs. Magnification 
400×. All PSCs stained for both COX-2 and α-SMA.
Page 3 of 9
(page number not for citation purposes)



Molecular Cancer 2005, 4:27 http://www.molecular-cancer.com/content/4/1/27
adenocarcinoma and stellate cells. NS-398 has been previ-
ously shown to inhibit cell proliferation of colorectal
carcinoma by inducing apoptosis in a COX-2-independ-
ent fashion [27]. More studies are needed to confirm the
mechanism of inhibition by NS398.

Conclusion
The COX-2 protein is up-regulated in pancreatic stellate
cells by pancreatic cancer-conditioned media. The induc-
tion of COX-2 by pancreatic cancer cells is mediated by
extracellular signal-regulated kinases 1/2 (ERK1/2). The
COX-2 induction by pancreatic cancer cells is involved in
mediating PSC proliferation. Therefore, COX-2 may play
an important role in the regulation of desmoplasia in
pancreatic cancer and inhibition of this enzyme may pre-
vent or reduce this response.

Materials and methods
Materials
Iscove's modified Dulbecco's medium (IMDM), Dul-
becco's modified Eagle's medium (DMEM), albumin, and
pronase were purchased from Sigma Chemical (St Louis,
MO). Fetal bovine serum (FBS), glutamine, and antibiot-

ics were purchased from Mediatech, Inc. (Herndon, VA).
Collagenase P was purchased from the Roche Diagnostics
Corporation (Indianapolis, IN), and deoxyribonuclease
from Amersham Biosciences (Piscataway, NJ). Nycodenz
was obtained from Nycomed Pharma AS (Oslo, Norway).
U0126, a specific inhibitor of extracellular signal-regu-
lated kinase (ERK) activation, was obtained from Calbio-
chem (San Diego, CA). NS398, COX-2 inhibitor was
obtained from Cayman Chemicals (Ann Arbor, MI). 3H-
methyl thymidine was purchased from ICN Pharmaceuti-
cals (Costa Mesa, CA).

Animals
Male Sprague-Dawley rats weighing 200–250 g were used
in accordance with standard institutional animal welfare
guidelines, and protocols were approved by the Institu-
tional Animal Care and Use Committee, Northwestern
University School of Medicine.

Isolation and culture of PSCs
Rat PSCs were isolated as previously described [3]. Briefly,
the pancreas was digested with a mixture of collagenase P
and pronase and deoxyribonuclease in Gey's balanced salt

Induction of COX-2 and α-smooth muscle actin (SMA) protein in pancreatic stellate cells (PSCs)Figure 3
Induction of COX-2 and α-smooth muscle actin (SMA) protein in pancreatic stellate cells (PSCs). After isolation of PSCs, equal 
amounts of protein from the cell lysates were loaded by SDS-PAGE and immunoblotted with COX-2 or α-SMA antibodies. 
Upper panels show representative western blots and lower panels show the densitometry data from all experiments. PSCs 
expressed α-SMA after seven days in culture. In contrast, PSCs expressed COX-2 throughout this time period.
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solution. The resulting suspension of cells was centrifuged
in a 28.7% Nycodenz gradient at 1400 g for 23 minutes.
Stellate cells then separated into a hazy band just above
the interface of the Nycodenz solution and the aqueous
buffer. Cells were harvested, washed, and resuspended in
IMDM containing 10% FBS, 4 mmol/l glutamine, and
antibiotics. PSCs were all used within two passages fol-
lowing isolation.

Conditioned medium
The poorly differentiated pancreatic adenocarcinoma cell
line PANC-1 (American Type Tissue Culture, Rockville,
MD) was grown in DMEM in 75 cm2 flasks. When the cells
reached confluence, the serum-containing medium was
removed and the cells were cultured in 20 ml of serum-
free medium. After 24 hours, the medium was collected
and the peptide containing fraction obtained by semi-
purifying on a Sep-Pak Plus C18 Cartridge (Waters,
Milford, MA). After washing, Sep-Paks were eluted with
50% acetonitrile (EM Science, Gibbstown, NJ) with 0.1%
trifluoroacetic acid (J. T. Baker, Phillipsburg, NJ). The elu-
ates were lyophilized and reconstituted in fresh IMDM

with 1% FBS, forming what we refer to as PANC-1 condi-
tioned medium (CM). In total extracts of 100 ml pf
PANC-1 conditioned media were purified and reconsti-
tuted in 20 ml of media for PSC culture. Control medium
consisted of only serum-free medium without PANC-1
cells which underwent are same Sep-Paking procedure.
The eluates were also lyophilized, and then reconstituted
in fresh IMDM with 1% FBS.

Immunostaining
COX-2 and α-SMA expression in PSCs was evaluated by
immunohistochemical staining. Cultured PSCs were
grown directly on glass coverslips in six-well plates, and
immunostained for COX-2 using peroxidase-labeled
streptavidin for immunohistochemistry (KPL, Inc., Mary-
land) according to the manufacturer's instructions. Cells
were fixed for 30 minutes in acetone at -20°C. Thereafter,
glass coverslips were air-dried and stored at 4°C until the
cells were stained. Endogenous peroxidase activity was
blocked by incubation in methanol with 0.3% hydrogen
peroxidase for 30 minutes. After immersion in normal
goat serum for 30 minutes, the slides were incubated with

The expression of COX-2 protein in pancreatic stellate cells (PSCs) was increased by cancer conditioned medium (PANC-1 CM)Figure 4
The expression of COX-2 protein in pancreatic stellate cells (PSCs) was increased by cancer conditioned medium (PANC-1 
CM). Stellate cells were isolated and cultured in media containing 10% serum for 12 days. Then, following 18-hour culture in 
1% serum medium, cells were treated with PANC-1 CM for the indicated times. Upper panels are representative western 
blots showing the effect of PANC-1 CM on COX-2 expression over two different time-courses. The lower panels show that 
densitometric analysis western blots from the separate experiments. PANC-1 CM caused a rapid and sustained up-regulation 
of COX-2 protein, which was maximally increased after 12 hours and remained elevated.
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COX-2 (murine) polyclonal antibody (Cell Signaling
Technology, Inc., Beverly, MA) diluted 1:200 in tris-buff-
ered saline (TBS) 1× bovine serum albumin and stored in
a humid chamber overnight at 4°C. The slides were incu-
bated with anti-mouse immunoglobulins for 10 minutes
at 37°C, followed by peroxidase conjugated streptavidin
for 30 minutes at room temperature. Finally, color was
developed incubating the slides for 8 minutes, with
diaminobenzine (DAB Reagent Set; KPL, Inc., Maryland).
Expression of α-SMA was examined in a similar manner

by using monoclonal anti-α-SMA antibody (Sigma, St
Louis, MI).

Protein extraction
Protein concentrations in the cell lysates were measured
by the method of Lowry et al. [28] using bovine serum
albumin as the standard.

Effects of U0126, a specific inhibitor of ERK activation on cancer conditioned medium (PANC-1 CM)-induced COX-2 expres-sion in pancreatic stellate cells (PSCs) by Western blotFigure 5
Effects of U0126, a specific inhibitor of ERK activation on cancer conditioned medium (PANC-1 CM)-induced COX-2 expres-
sion in pancreatic stellate cells (PSCs) by Western blot. Following 18-hour culture in 1% serum medium, cells were treated 
with control medium and PANC-1 CM in the absence and presence of 10 µM U0126 for the indicated times. Equal amounts of 
protein from the cell lysates were loaded by SDS-PAGE and immunoblotted with COX-2 antibody. The upper panel is a repre-
sentative western blot and the lower panel shows densitometric analysis of the western blots from the separate experiments. 
The increase in expression of the COX-2 protein in PSCs in response to PANC-1 CM was abolished by U0126. This figure is 
representative of three separate experiments.
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Effect of cancer all conditioned medium (PANC-1 CM) with or without NS398Figure 6
Effect of cancer all conditioned medium (PANC-1 CM) with or without NS398. (A) Inhibition of COX-2 activity with NS398 
decreased DNA synthesis (thymidine incorporation) in pancreatic stellate cells (PSCs). Results are expressed as percent of 
control. (B) NS398 inhibited cell growth in PSCs. Results are expressed as mean ± SEM from three separate experiments. * P 
< 0.001; ** P < 0.01; *** P < 0.05.
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3H-methyl thymidine incorporation
Following the treatment of cells with PANC-1 CM for 48
hours, DNA synthesis was measured by adding to each
well 0.5 µCi of 3H-methyl thymidine and incubating these
plates for the final 24 hours. The cell protein was precipi-
tated with 10% trichloroacetic acid overnight, washed
twice with phosphate buffered saline (PBS) and then dis-
solved by adding 0.25 ml of 0.5 mol/l NAOH to each well.
Incorporation of 3H-methyl thymidine into DNA was
measured by adding 1 ml of scintillation cocktail (Scin-
tiSafe Plus 50%, S × 25-5, Fischer Scientific, Pittsburgh,
PA) followed by count measurements using the Wallac
WinSpectral liquid scintillation counter (Wallac Turku,
Finland).

Cell counts
Cells were washed with PBS, harvested by trypsinization
using 0.5% trypsin-0.2% EDTA, resuspended in 100 µl
culture medium, and counted using the Guava Personal
Cytometer (Guava Technologies, Inc., Burlingame, CA).

Western blotting
Expression of COX-2 and α-SMA were detected by West-
ern blotting. Protein extracts (5 µg) from each sample
were separated by gel electrophoresis using a 10% sodium
dodecyl sulfate-polyacrylamide gel (SDS-PAGE). Known
molecular weight protein standards were run alongside
the samples. Separated proteins were then transferred to a
nitrocellulose membrane (Bio-Rad, Hercules, CA), which
was incubated for one hour at room temperature in
blocking buffer (TBS and 0.1% Tween 20 with 5% nonfat
dry milk). A murine COX-2 polyclonal antibody was
diluted 1:2000 buffer (TBS and 0.1% Tween 20 with 5%
nonfat dry milk). After incubation with the primary anti-
body overnight at 4°C, the membrane was exposed to the
secondary antibody with gentle agitation for one hour at
room temperature. Western Blots were visualized using
Chemiluminescence Luminol Reagent (Santa Cruz Bio-
technology, Inc., CA). α-SMA expression was examined in
a similar manner by using monoclonal anti-α-SMA anti-
bodies. Bands from individual western blots were quanti-
fied densitometrically and the mean ± SEM for each time
point or concentration calculated for presentation.

Statistical analysis
All experiments were repeated at least twice. Data are
expressed as mean ± SEM. Statistical analysis was per-
formed using ANOVA with the Prism software package
(GraphPad, San Diego, CA).
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