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OBJECTIVE—The aim of this study was to investigate the
impact of 9 days of bed rest on insulin secretion, insulin action,
and whole-body glucose and fat metabolism in first-degree rela-
tive (FDR) and matched control (CON) subjects.

RESEARCH DESIGN AND METHODS—A total of 13 FDR and
20 CON subjects participated in the study. All were studied
before and after 9 days of bed rest using the clamp technique
combined with indirect calorimetry preceded by an intravenous
glucose tolerance test. Glucose and glycerol turnover rates were
studied using stable isotope kinetics.

RESULTS—Bed rest caused a significant decrease in whole-
body insulin sensitivity in both groups. Hepatic insulin resistance
was elevated in FDR subjects prior to bed rest and was signifi-
cantly augmented by bed rest in FDR (P � 0.01) but not in CON
(P � NS) subjects. The rate of whole-body lipolysis decreased
during bed rest in both FDR and CON subjects, with no signifi-
cant differences between the groups. Insulin resistance induced
by bed rest was fully accounted for by the impairment of
nonoxidative glucose metabolism in both groups (overall P �
0.001).

CONCLUSIONS—Whole-body insulin action in both insulin-
resistant FDR and healthy CON subjects deteriorates with 9 days
of bed rest, converging toward similar degrees of whole-body
insulin resistance. FDR subjects exhibit hepatic insulin resis-
tance (HIR), which, in contrast to CON subjects, deteriorates in
response to physical inactivity. FDR subjects exhibit reduced
insulin secretion when seen in relation to their degree of HIR but
not peripheral insulin resistance. Diabetes 58:2749–2756,

2009

T
ype 2 diabetes is caused by a complicated inter-
play between genetic and environmental factors
that influence defects of peripheral and hepatic
insulin action, insulin secretion, adipose tissue

metabolism and lipolysis, and possibly a range of addi-
tional metabolic defects in various other organs (1). First-
degree relatives (FDR subjects) of patients with type 2
diabetes have been characterized by insulin resistance and
�-cell dysfunction (2,3).

The habitual degree of physical activity is a moderator
of glucose and fat metabolism, including insulin action
(4,5). Physical inactivity is associated with increased mor-
bidity and mortality (6,7) and has negative effects on lipid
metabolism and insulin sensitivity (8–10). Studies of the
regulatory mechanisms influencing skeletal muscle li-
poprotein lipase (LPL) activity provided proof of the
principle that the cellular and molecular mechanisms
influencing LPL activity, and therefore fatty acid metabo-
lism, during physical inactivity are distinct from the cellu-
lar events influencing LPL during exercise training. Indeed,
reducing normal physical activity level has a much greater
effect on LPL regulation than adding vigorous exercise
training on top of the normal level of nonexercise activity
(11). Thus, there are reasons to believe that exercise
training versus physical inactivity influences additional
molecular mechanisms and metabolic pathways relevant
to metabolic health and risk of type 2 diabetes in a
differential manner in humans.

Previous studies (12,13) documented the detrimental
effect of inactivity on insulin action in healthy individuals.
The Dallas Bedrest and Training Study showed that 3
weeks of bed rest caused a fall in VO2max comparable to 30
years of aging (14). Previous studies have demonstrated
reduced VO2max in healthy FDR subjects (15). It has been
estimated that a sedentary lifestyle accounts for at least
25% of type 2 diabetes incidence (16), and sedentary FDR
subjects have about three times the risk of developing type
2 diabetes (17).

Although muscle insulin resistance and defective pan-
creatic insulin secretion may represent the most promi-
nent defects of metabolism in FDR subjects (18,19),
defects of metabolism in other organs, including liver
(3,20,21), are important for elevating plasma glucose levels
in type 2 diabetic patients. Little is known about the
response of muscle, liver, pancreas, and adipose tissue
metabolism in FDR subjects when exposed to physical
inactivity, and there is a need to understand the impact of
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physical inactivity on mechanisms involved in the devel-
opment of type 2 diabetes (22).

In the present study, we investigated the effects of 9
days of bed rest on in vivo metabolism in FDR and control
(CON) subjects. We hypothesized that FDR subjects may
be more sensitive to physical inactivity than CON subjects
as a result of their well-known defects of insulin action
and secretion and their a priori increased risk of develop-
ing type 2 diabetes.

RESEARCH DESIGN AND METHODS

The data presented in this article are part of a larger study on the influence of
physical inactivity in humans. This work was initiated and is funded by the
European Union Framework VI, EXGENESIS project.

Thirty-three young Caucasian men were recruited to the study. All study
subjects were born at term with normal birth weight to mothers with no
record of gestational diabetes. FDR subjects were recruited via their parents
(n � 10), who attended Steno Diabetes Center, Denmark, and via advertise-
ments in local newspapers (n � 3).

Inclusion criteria were the presence of at least one parent with type 2
diabetes and one additional family member with type 2 diabetes. Seven
subjects had more than one second-degree relative with type 2 diabetes. Three
subjects from the CON group declined their consent during the study and
were excluded from all analyses. The two groups were similar with respect to
age and BMI. All subjects had a normal level of fasting glucose measured
before entering the study.
Ethics approval. The study was approved by the regional ethics committee
(ref. no. 01-262546), and all procedures were performed in accordance with
the guidelines of the Declaration of Helsinki.
Experimental protocol. The experimental protocol is presented in detail in
Fig. 1.
Control period. Subjects were requested to abstain from strenuous physical
activity for 3 days before examination. To ensure standardized conditions, all
subjects were provided with a standardized diet 3 days before the first study
day and one with adjusted caloric content during bed rest to ensure weight
stability. Body composition was determined by a dual-energy X-ray absorpti-
ometry scan (Lunar Prodigy Advance; GE Healthcare). VO2max was measured
on a bicycle ergometer with a stepwise incremental test using the leveling-off
criterion (Jaeger Instruments, Höchberg, Germany).
Bed rest challenge studies. All subjects were admitted to Steno Diabetes
Center for 9 days and were not permitted to deviate from a half-recumbent
position during this period. Toilet visits, limited to 15 min per day, were
allowed. Blood samples for measurements of fasting plasma insulin and
C-peptide were taken in the morning of days 1, 2, 3, 5, 7, and 9 of bed rest.
Hyperinsulinemic-euglycemic clamp(s) combined with stable isotope

infusion and indirect calorimetry. Identical in vivo experiments were
performed before and after bed rest. The clamp procedure was initiated at
7:00 A.M. after a 10-h overnight fast. A polyethylene catheter was placed in the
antecubital vein for blood sampling. The hand was kept in a heated Plexiglas
box to ensure arterialization of the venous blood (23,24). A second catheter
was placed in the antecubital vein of the contralateral arm for test infusions.
Immediately after taking the background samples, a primed constant infusion
of [6,6-2H5] glucose (priming bolus of 20 �mol/kg; continuous infusion rate of
0.220 �mol � min�1 � kg�1) and [1,1,2,3,3-5H2] glycerol (priming bolus of 1.5
�mol/kg; continuous infusion rate of 0.1 �mol � min�1 � kg�1) was started (0
min) and maintained for 150 min to determine glucose and glycerol kinetics in
the basal state. Blood samples for measuring plasma glucose and glycerol
enrichments were drawn at baseline (0 min) and in the first steady-state
period (120, 135, and 150 min, respectively). All isotopes were purchased from

Cambridge Isotope Laboratories (Andover, MA). Blood samples for measuring
plasma glycerol and lactate were drawn at baseline and in the first (120 and
150 min, respectively) and second (330 and 360 min, respectively) steady-state
periods. The first steady-state period was defined as the last 30 min of the
150-min basal period, when the tracer equilibria of [2H5] glucose and [5H2]
glycerol were expected; the second steady-state period was defined as the last
30 min of the insulin clamp period. Blood samples for determining free fatty
acids (FFAs); A1C; total, HDL, LDL, and VLDL cholesterol; and triglycerides
were drawn at baseline, and blood samples for measuring FFAs in the
insulin-stimulated state were drawn at 360 min.

To determine �-cell function, an intravenous glucose tolerance test
(IVGTT) was initiated after the first steady-state period. A glucose bolus of 0.3
g/kg body wt was infused over 1 min at 150 min. Plasma samples for glucose,
insulin, and C-peptide were collected at 150, 152, 154, 156, 158, 160, 165, 170,
and 180 min. Following the IVGTT, a primed-continuous insulin infusion was
initiated and fixed at 80 mU/m2 per min through the 180-min clamp (180–360
min). A variable infusion of unlabeled glucose (180 g/l) was used to maintain
euglycemia during insulin infusion. Plasma glucose concentration was moni-
tored every 5 min during clamp using a OneTouch (LifeScan, Milpitas, CA)
blood glucose meter. The precision expressed as the coefficient of variation
(CV) of the OneTouch meter in 20 replicate assays of venous blood samples
was 3.4%. The CV of the glucose infusion rate at the steady state were 15.6%
in CON subjects and 15.5% in FDR subjects before bed rest and 21.1% in CON
subjects and 22.5% in FDR subjects after bed rest.

The target blood glucose concentration was 5 mmol/l. Samples for deter-
mining plasma insulin and C-peptide were drawn at 0, 120, 240, 270, 300, 330,
and 360 min. Urine samples were collected at 0 min and 360 min. Oxygen
consumption (VO2) and carbon dioxide production (VCO2) were measured
during steady state using indirect calorimetry with a flow-through canopy gas
analyzer system (Deltatrac; Datex, Helsinki, Finland) as previously described
(25).
Biochemical and tracer analyses. Blood samples for plasma insulin, C-
peptide, FFAs, and triglycerides and blood samples for glucose and glycerol
enrichment determination were centrifuged immediately at 4°C, and plasma
samples were stored at �80°C. Plasma insulin and C-peptide concentrations
were determined by AutoDELPHIA time-resolved fluoroimmunoassay
(PerkinElmer Wallac Oy, Turku, Finland). FFAs were quantified by an
enzymatic colorimetric method (Wako, Richmond, VA). A1C was measured by
high-performance liquid chromatography on a Bio-Rad Variant (Bio-Rad
Laboratories, Hercules, CA). Plasma triglyceride concentration was deter-
mined with Triglyceride GPO-PAP (Roche Diagnostics, Mannheim, Germany).
Total and HDL cholesterol were analyzed with an enzymatic colorimetric test
(Roche Diagnostics). LDL cholesterol was calculated from the Friedewald
formula (26), and VLDL cholesterol was calculated as plasma triglycerides
divided by 2.2. Plasma was analyzed enzymatically for glycerol and lactate
(FA-C kit; Wako Chemical, Neuss, Germany) on an automatic analyzer (Cobas
Fara; Roche, Basel, Switzerland). Stable isotope enrichments were measured
as previously described (27).
Calculations: IVGTT and �-cell test. The area under the curve (AUC) was
calculated using a trapezoidal method for glucose and insulin during the
first-phase insulin response (FPIR), 0–10 min of the IVGTT. PHI1 (ö ratio) was
calculated as (AUCinsulin [0–10 min]/AUCglucose [0–10 min]) and the incremen-
tal FPIR during the IVGTT as (AUCinsulin [0–10 min] � AUCbasal [ins 0 � 10
min]). The insulin secretion disposition index expressing the inverse hyper-
bolic relationship between insulin secretion and insulin action may be a better
estimate of the “true” in vivo pancreatic �-cell insulin secretion capacity. The
peripheral insulin secretion disposition index (Di-peripheral.) was calculated as
FPIR � M. Furthermore, we calculated the hepatic insulin secretion disposi-
tion index (Di-hepatic) as FPIR/HIR, where HIR is the hepatic insulin resistance
index, which was calculated as the product of mean fasting plasma insulin
concentration and basal hepatic glucose production (28). The HIR as well as
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FIG. 1. Study outline. The experimental protocol presented as a figure showing activities undertaken during the study.
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the peripheral and hepatic insulin secretion disposition indexes have been
described in more detail and validated in previous studies (28–30).
Hyperinsulinemic-euglycemic clamp: glucose infusion rates and indi-

rect calorimetry. Glucose infusion rates were calculated as the mean of
steady-state glucose infusion rates during the predefined insulin-stimulated
steady-state period from 150 to 180 min. Basal and insulin-stimulated glucose
and lipid oxidation were calculated according to the methods of Frayn (31).
Stable isotope tracer calculations. The total rate of glucose/glycerol
appearance was calculated as Ra (endogenous) � Rd � Ftotal/Eglucose, where Ra

and Rd are the respective rates of appearance and disappearance (�mol � kg
fat-free mass [FFM]�1 � min�1), and Ftotal is the total infusion rate of
glucose/glycerol tracer (�mol � kg FFM�1 � min�1). Eglucose/glycerol is the
enrichment of glucose/glycerol in plasma expressed as tracer-to-tracee ratio
(TTR). The Ra of glucose is a measure of endogenous glucose production and
represents hepatic glucose production in the basal state, and Ra of glycerol is
a measure of whole-body lipolysis in the basal state (32).
Statistics. Statistical analysis was performed with the SAS statistical analysis
package (version 9.1; SAS Institute, Cary, NC). One-way ANOVAs were
performed to test for differences between groups before and after bed rest.

Paired-sample t tests were used to detect statistically significant differences
within groups in response to bed rest. The Kolmogorov-Smirnov test was used
to test whether data were normally distributed before and/or after logarithmic
transformation of nonnormally distributed data. Correlations were calculated
using Pearson or Spearman correlation coefficient. Values of P � 0.05 were
considered significant. Data are presented as means � SD.

RESULTS

Clinical characteristics. The groups were matched for
age and BMI (Table 1). FDR subjects were characterized
by a significantly higher total fat mass and fat percent-
age than CON subjects before and after bed rest. FDR
subjects had a greater trunk fat mass (FM) (g)–to–total
FM (g) ratio, a lower leg FM (g)–to–total FM (g) ratio,
and a higher percentage trunk FM–to–leg FM ratio (P �
0.0001) before and after the bed rest intervention com-
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FIG. 2. The average glucose infusion rate (M value) in response to 9 days of bed rest in CON and FDR subjects, respectively. The solid line
represents the average M value change in CON and FDR subjects in response to bed rest.

TABLE 1
Clinical characteristics of male study participants before and after bed rest

Before bed rest After bed rest
FDR group CON group FDR group CON group

n 13 20 13 20
Age (years) 26.4 � 4.4 25.0 � 1.0 26.4 � 4.4 25.0 � 1.0
Weight (kg) 84.0 � 11.7 82.5 � 10.1 83.6 � 11.6 82.2 � 10.4
Height (m) 1.84 � 0.06 1.85 � 0.05 1.84 � 0.06 1.85 � 0.05
FFM (kg) 58.6 � 5.4 63.8 � 4.7 58.4 � 5.5 63.6 � 4.8†
BMI (kg/m2) 24.9 � 3.1 24.1 � 2.3 24.8 � 3.1 23.9 � 2.4
VO2max (ml � min�1 � kg�1) 39.1 � 6.7 43.5 � 6.0 37.5 � 6.6 42.8 � 4.9†
Systolic blood pressure (mmHg) 126 � 11 128 � 11 128 � 8 126 � 9
Diastolic blood pressure (mmHg) 71 � 10 68 � 3 71 � 8 70 � 7
Waist-to-hip ratio 0.88 � 0.06 0.85 � 0.04 0.87 � 0.06 0.86 � 0.04
Total FM (kg) 21.7 � 9.1 14.3 � 7.5* 21.5 � 9.6 14.5 � 7.8†
Whole-body fat percentage (%) 25.0 � 8.3 16.9 � 7.0* 24.9 � 9.0 17.1 � 7.3†
Trunk FM–to–total FM ratio 0.58 � 0.03 0.48 � 0.04* 0.58 � 0.04 0.49 � 0.04†
Leg FM–to–total FM ratio‡ 0.29 � 0.04 0.37 � 0.02* 0.29 � 0.04 0.37 � 0.03†
% trunk FM–to–leg FM ratio 2.06 � 0.37 1.31 � 0.18* 2.07 � 0.45 1.33 � 0.22†
Triglycerides (mmol/l) 1.1 � 0.4 0.9 � 0.4 1.3 � 0.5 1.0 � 0.5§
Total cholesterol (mmol/l) 4.5 � 1.0 3.9 � 0.8 4.4 � 0.8 3.7 � 0.9§
HDL cholesterol (mmol/l) 1.2 � 0.3 1.2 � 0.3 1.1 � 0.3� 1.1 � 0.3�
LDL cholesterol (mmol/l) 2.8 � 0.3 2.2 � 0.7 2.7 � 0.7 2.0 � 0.5†
VLDL cholesterol (mmol/l) 0.5 � 0.2 0.4 � 0.2 0.6 � 0.2� 0.4 � 0.2†
A1C (%) 5.1 � 0.3 5.1 � 0.2 NM NM

Data are means � SD. *Significant difference between FDR and CON groups before bed rest, P � 0.05. †Significant difference between FDR
and CON groups after bed rest, P � 0.05. ‡Log-transformed data. §P � 0.05 between FDR and CON groups after bed rest. �Significant
difference before vs. after bed rest; P � 0.05. NM, not measured.
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pared with CON subjects (P � 0.0001). We showed
significantly higher plasma LDL and VLDL cholesterol
levels and a lower VO2max in FDR subjects after bed rest
(Table 1) as well as a borderline significant higher levels
of plasma triglycerides and total cholesterol in FDR
subjects after bed rest (all P � 0.05).

We assessed the habitual degree of physical activity
before the bed rest experiments using the International
Physical Activity Questionnaire (33). No difference of
habitual physical activity was seen between groups with
time spent sitting before bed rest 7.2 � 0.6 h/day in CON
subjects versus 6.5 � 0.9 h/day in FDR subjects.
Impact of bed rest on insulin sensitivity. FDR and
CON subjects responded to bed rest with a decrease in
whole-body insulin sensitivity (P � 0.01), as measured by
the hyperinsulinemic-euglycemic clamp technique (Fig. 2).
FDR subjects became more insulin resistant after bed rest
compared with CON subjects, as determined by the ho-
meostasis model assessment index (P � 0.05) (Table 3).
Data from the hyperinsulinemic-euglycemic clamps indi-

cated lower glucose uptake rates before the intervention
in FDR subjects compared with CON subjects (P � 0.05)
(Table 2). However, this difference was not statistically
significant when insulin action was expressed in relation
to FFM (Table 2). Fasting blood glucose levels were not
significantly different between groups, whereas plasma
insulin levels tended to be higher in FDR subjects than in
CON subjects after bed rest (P � 0.058).

We found significant differences in plasma C-peptide
levels between the two groups before and after bed rest
(Table 2) as well as significantly higher levels of fasting
plasma insulin (P � 0.05) in FDR compared with CON
subjects on days 1 and 7 of bed rest and significantly
higher levels of fasting plasma C-peptide on days 1, 2, 3, 5,
7, and 9 of bed rest (Fig. 3).
Impact of bed rest on insulin secretion during IVGTT.
No significant differences were detected in FPIR, total
AUC, or PHI1 between the groups, either before or after
the intervention. Insulin secretion expressed in relation
to the degree of muscle insulin resistance (Di-peripheral)

TABLE 2
Results of IVGTT, hyperinsulinemic-euglycemic clamp, and indirect calorimetry in male study participants before and after bed rest

Before bed rest After bed rest
FDR group CON group FDR group CON group

n 13 20 13 20
Fasting plasma glucose (mmol/l)

Basal 4.8 � 0.4 4.6 � 0.4 4.8 � 0.3 4.6 � 0.4
Insulin-stimulated state 5.2 � 0.4 5.2 � 0.3 5.2 � 0.3 5.1 � 0.3

Fasting plasma insulin (pmol/l)*
Basal 32 � 10 28 � 10 51 � 22† 37 � 18†
Insulin-stimulated state 777 � 126 769 � 176 833 � 160 832 � 160

Fasting plasma C-peptide (pmol/l)
Basal 522 � 117 376 � 168‡ 678 � 201† 472 � 187†§
Insulin-stimulated state 495 � 156 323 � 182‡ 641 � 238† 412 � 212†§

Fasting plasma glycerol (�mol/l)*
Basal 65 � 17 89 � 35‡ 67 � 18 65 � 28†
Insulin-stimulated state 26 � 8 27 � 16 28 � 11 27 � 10

Fasting plasma lactate (mmol/l)*
Basal 0.6 � 0.1 0.7 � 0.3 0.8 � 0.3† 0.7 � 0.2
Insulin-stimulated state 1.1 � 0.2 1.2 � 0.4 1.0 � 0.4 1.1 � 0.2†

Fasting plasma free fatty acids (�mol/l)
Basal 366 � 76 461 � 227 283 � 128 258 � 131†
Insulin-stimulated state 10.8 � 6.5 8.8 � 4.2 11.5 � 5.6 9.2 � 4.5

M value (mg � min�1 � kg body wt�1)
Insulin-stimulated state 9.9 � 2.0 11.3 � 1.5‡ 8.0 � 2.2† 8.4 � 1.7†

M value (mg � min�1 � FFM�1)
Insulin-stimulated state 13.9 � 2.1 14.4 � 1.7 11.1 � 2.5† 10.7 � 2.0†

Glucose oxidation rate (mg � min�1 � FFM�1)
Basal 1.8 � 0.4 1.6 � 0.5 2.5 � 0.7† 2.5 � 0.9†
Insulin-stimulated state 4.7 � 0.7 4.5 � 0.6 4.5 � 0.7 4.3 � 0.7

Fat oxidation rate (mg � min�1 � FFM�1)
Basal 0.9 � 0.2 1.0 � 0.3 0.6 � 0.3† 0.6 � 0.4†
Insulin-stimulated state 0.01 � 0.24 0.05 � 0.28 -0.03 � 0.28 0.05 � 0.26

Nonoxidative glucose metabolism
(mg � min�1 � FFM�1)

Insulin-stimulated state 9.2 � 1.8 9.9 � 1.7 6.6 � 2.3† 6.5 � 2.0†
Respiration quotient 0.83 � 0.02 0.82 � 0.03 0.87 � 0.04† 0.86 � 0.05†

Basal
Insulin-stimulated state 0.96 � 0.03 0.95 � 0.03 0.96 � 0.04 0.95 � 0.03

FPIR (pmol � l�1 � min�1)* 2,173 � 1,704 1,866 � 932 3,368 � 4,047† 3,023 � 1,702†
AUC10min (pmol � l�1 � min�1) 2,440 � 1,734 2,132 � 967 3,766 � 4,134† 3,355 � 1,765†
PHI1* 18.0 � 12.7 17.2 � 7.2 27.6 � 24.2† 27.3 � 13.5†

Data are means � SD. Respiration quotient � VCO2/VO2; FPIR � incremental area; AUC10min � total area under the IVGTT curve in the first 10 min;
PHI1 � AUCinsulin/AUCglucose. *Log-transformed data. †Significant difference before versus after bed rest; P � 0.05. ‡Significant difference between
FDR and CON groups before bed rest, P � 0.05. §Significant difference between FDR and CON groups after bed rest, P � 0.05.
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was similar in both groups before and after bed rest
(Table 3). When insulin secretion was calculated with
respect to the degree of HIR (Di-hepatic), we found lower
Di-hepatic in FDR subjects compared with CON subjects
before and after bed rest (P � 0.001), indicating a
disproportionality between insulin secretion and action.
Impact of bed rest on gaseous exchange measure-
ments. Basal glucose oxidation increased and basal fat
oxidation decreased (P � 0.05) in both groups in
response to bed rest (Table 2). The two groups also
exhibited a significant bed rest–induced decrease in
insulin-stimulated nonoxidative glucose metabolism
(P � 0.01). In contrast to the basal substrate turnover
rates, the insulin-stimulated glucose and fat oxidation
rates were not significantly affected by bed rest. Basal
respiration quotient rates were significantly increased, and
insulin-stimulated respiration quotient rates were similar
in both groups in response to bed rest. FDR subjects
demonstrated lower p-glycerol levels in the basal state
before the intervention than did CON subjects (P � 0.05)
(Table 2).
Stable isotope tracer kinetics. FDR subjects exhibited
a significantly increased HIR compared with CON subjects
before and after bed rest (P � 0.01) (Fig. 4). The absolute
rate of endogenous glucose production (Ra glucose) was
significantly elevated in FDR before and after bed rest
(Table 4). There were no significant differences in basal

whole-body lipolysis rate between the groups either before
or after bed rest (Table 4). However, we found a tendency
toward a decreased rate of whole-body lipolysis from
2.8 � 1.4 to 2.2 � 1.3 �mol � min�1 � kg FFM�1 in response
to bed rest when the two groups were combined (P �
0.07).

DISCUSSION

We have shown that bed rest causes a severe and similar
degree of whole-body insulin resistance in FDRs of pa-
tients with type 2 diabetes and matched CON subjects.
FDR subjects exhibit HIR, which, in contrast to healthy
CON subjects, deteriorates in response to physical inac-
tivity. FDR subjects exhibit reduced insulin secretion in
relation to their degree of HIR but not peripheral insulin
resistance.

The finding of a similar degree of whole-body insulin
resistance after bed rest does to some extent refute our
hypothesis that FDR subjects are more sensitive to the
deleterious effects of physical inactivity on metabolism.
However, the data suggest that a lower limit for whole-
body insulin action may have been reached in both groups
after exposure to bed rest, confirming the serious adverse
effects of physical inactivity on whole-body insulin action
in both groups. Although the CON group, in accordance
with previous studies (21), tended to be more insulin
sensitive than the FDR subjects prior to bed rest, neither

TABLE 3
Results from homeostasis model assessment of insulin resistance, peripheral and hepatic insulin secretion disposition index
(Di-peripheral and Di-hepatic)

Before bed rest After bed rest
FDR group CON group FDR group CON group

n 13 20 13 20
Basal HOMA-IR* 1.0 � 0.3 0.8 � 0.3 1.6 � 0.7† 1.1 � 0.5†‡
Di-peripheral (10�3 � pmol � l�1 � min�1 �

mg�1 � min�1 � kg FFM�1)* 28.9 � 20.9 27.4 � 15.9 34.8 � 33.5 32.7 � 17.6
Di-hepatic (pmol � l�1 � min�1 � �mol�1 �

min�1 � kg FFM�1 � pmol�1 � l�1)* 4.1 � 1.8 11.5 � 16.9§ 4.5 � 2.9 9.6 � 6.3‡

Data are means � SD. *Log-transformed data. †Significant difference before vs. after bed rest; P � 0.05. ‡Significant difference between FDR
and CON groups after bed rest, P � 0.05. §Significant difference between FDR and CON groups before bed rest, P � 0.05. Di-hepatic, measure
for hepatic insulin action; Di-peripheral, peripheral disposition index, measure for peripheral insulin action; HOMA-IR, homeostasis model
assessment of insulin resistance.
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the absolute nor relative decline of peripheral insulin
action was significantly greater in CON than in FDR
subjects, and so we cannot conclude that physical inactiv-
ity is more detrimental in CON than in FDR subjects. Also,
the greater impairment of hepatic insulin action in FDR
compared with CON subjects in response to bed rest could
be taken as supporting the opposite conclusion. The fact
that whole-body insulin resistance reached statistical sig-
nificance only when expressed as the M value in mg �
min�1 � kg body wt�1, but not when expressed in relation
to degree of lean body mass (Table 2), may be due to the
increased fat mass in FDR subjects and, to some extent,
the more limited statistical power of this compared with
other studies (2).

The physical activity questionnaires revealed no signif-
icant difference in daily physical activity level between
FDR and CON subjects. However, more detailed and
objective measurements of the daily physical activity level
are required to determine the extent to which insulin
resistance in FDR is due to a relatively lower level of
habitual physical activity.

The finding that insulin resistance due to physical
inactivity is fully explained by an impairment of nonoxi-
dative glucose metabolism in both study groups is consis-
tent with a major defect of muscle glycogen storage rate in
response to physical inactivity (34), which in turn may be
due to reduced muscle GLUT-4 content and activity and,
thus, an impairment of glucose transport into the cell
(35,36).

Using stable glucose isotopes, we found a higher rate of
hepatic glucose production (HGP) in nondiabetic FDR
subjects compared with CON subjects, which, in the
presence of fasting hyperinsulinemia, is interpreted as HIR
(Table 4). The disproportionately increased HGP in FDR
subjects is consistent with one other study (37), although
most previous studies (2,38,39) reported normal hepatic
glucose production in nondiabetic FDR. However, these
studies used radioactive (tritiated)-labeled glucose as
tracer, and the ambient and commonly elevated fasting
plasma insulin levels were not taken into account when
calculating hepatic insulin action (2). The nondiabetic
carriers of two of the most significant recently identified
type 2 diabetes susceptibility genes, TCF7L2 and FTO, are
characterized by a disproportionately elevated HGP (40–
42). Our findings from the present study of a significant
accentuation of HIR by bed rest in FDR subjects, which
was not seen in CON subjects, indicates that FDR subjects
may be more sensitive to physical inactivity at the site of
hepatic glucose metabolism and insulin action. While
fasting plasma insulin and C-peptide levels were similar on
the day before the bed rest study began (Table 2), signif-
icant differences of plasma insulin and C-peptide levels
were observed between groups already on day 1 during the

bed rest challenges (Fig. 3). The fact that these differences
did not become more pronounced during the 9-day bed
rest periods suggests that the effect of bed rest on hepatic
insulin action in FDR subjects was already present from
day 1.

Fat accumulation in the liver has been proposed as one
mechanism controlling insulin resistance in obesity and
type 2 diabetes (43–46). FDR subjects in this study were
characterized by altered regional fat distribution, with
more fat located in the upper body (e.g., abdomen) than in
the lower body (e.g., leg), in accordance with previous
studies (3,47). In support of an influence of total and
regional fat mass on HGP, the difference in the absolute
rate of HGP between the groups before and after bed rest
disappeared after correction for the significant contribu-
tion of total and abdominal fat masses. However, HIR was
elevated in FDR subjects even after correction for abdom-
inal and total fat content, indicating that factors other than
fat mass and distribution, including fasting plasma insulin,
may contribute to the elevated HIR in FDR subjects.

We are unaware of any previous studies demonstrating
development of HIR by physical inactivity, and the data in
this study suggest that this feature is primarily seen in
subjects with preexisting visceral obesity and/or a positive
family history of type 2 diabetes. The extent to which the
mechanism by which bed rest accentuates HIR in FDR
subjects may be explained by excessive hepatic fat accu-
mulation is unknown and requires exact determinations of
hepatic fat content. However, the idea that lipogenesis and
hepatic fat content may increase disproportionately more
in FDR than in CON subjects in response to bed rest is
supported by the finding of significantly higher levels of
plasma triglycerides, LDL, and VLDL cholesterol in the
FDR subjects after bed rest (Table 1), which, in turn,
theoretically may be due to a disproportionately reduced
LPL activity in the FDR subjects. To this end, insulin, per
se, stimulates hepatic lipogenesis (48), and we speculate
that the sequence of events may be that plasma insulin
levels increase primarily to compensate for whole-body
insulin resistance in response to physical inactivity. Sub-
sequently, elevation of endogenous plasma insulin levels
promotes increased hepatic triglyceride synthesis and fat
accumulation, leading to a greater rate of gluconeogenesis
and HIR, which is predominantly seen in the FDR subjects
with elevated visceral fat accumulation and whole-body
insulin resistance as well as HIR.

The absolute rate of appearance of glycerol was similar
in the two groups before and after bed rest, so the lower
plasma glycerol levels in the FDR subjects before bed rest
may reflect an increased rate of hepatic uptake of glycerol
and gluconeogenesis in the FDR. The rate of whole-body
lipolysis and basal fat oxidation decreased to a similar
extent in FDR and CON subjects in response to bed rest,

TABLE 4
Tracer kinetics in basal state in male study participants before and after bed rest

Before bed rest After bed rest
FDR group CON group FDR group CON group

n 13 20 13 20
Ra glucose (�mol � min�1 � kg FFM�1) 16.0 � 4.7 9.7 � 4.1* 15.0 � 6.0 10.4 � 3.7†
Ra glycerol (�mol � min�1 � kg FFM�1) 2.7 � 1.4 2.8 � 1.4 2.1 � 1.3 2.2 � 1.3
HIR index (�mol � min�1 � kg FFM�1 � pmol�1 � l�1) 539 � 272 282 � 158* 729 � 335‡ 384 � 217§

Data are means � SD. *Significant difference between FDR and CON groups before bed rest, P � 0.05. †Significant difference between FDR
and CON groups after bed rest, P � 0.05. ‡Significant difference before versus after bed rest; P � 0.05. §Log-transformed data.
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which may explain why no differences were observed in
plasma glycerol levels after bed rest. Differences in utili-
zation of other gluconeogenetic substrates and/or differ-
ences in glycogenolysis may explain the increased HGP in
FDR subjects after bed rest.

Defective insulin secretion, either as an absolute mea-
sure or when calculated as the disposition index (Di), has
been reported in previous studies of nondiabetic individ-
uals with a genetic predisposition to type 2 diabetes
(49,50), including nondiabetic carriers of the type 2 diabe-
tes risk alleles of the TCF7L2 genotype (40,41). In this
study, the Di was lower in FDR subjects when calculated
in relation to the degree of hepatic, but not peripheral,
insulin action. Despite the impaired insulin secretion rel-
ative to hepatic insulin action, this did not result in overt
hyperglycemia in the FDR subjects after bed rest. Accord-
ingly, overt hyperglycemia and type 2 diabetes may not
develop until insulin secretion is significantly reduced
when seen in relation also to the degree of impairment of
whole-body insulin action and nonoxidative glucose me-
tabolism in FDR subjects. Finally, this study documents
that insulin secretion increases significantly in FDR and
healthy CON subjects in response to bed rest (Table 3).

In conclusion, 9 days of bed rest causes severe whole-
body insulin resistance and a compensatory increase of
insulin secretion in healthy young men with and without a
positive family history of type 2 diabetes. While whole-
body insulin resistance converged toward similar levels in
both groups during bed rest, HIR was aggravated in FDR
subjects only in response to bed rest, which in turn may be
related to the presence of visceral obesity. FDR subjects
exhibit reduced insulin secretion when seen in relation to
their degree of HIR but not peripheral insulin resistance.
The results underscore the importance of avoiding physi-
cal inactivity even for relatively short periods in healthy
subjects with and without a positive family history of
diabetes.
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