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A novel defined m7G regulator
signature to investigate the
association between molecular
characterization and
clinical significance in
lung adenocarcinoma

Yi Dong †, Yingge Li †, Yi Yao* and Qibin Song*

Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
Background: About170 chemical modifications to RNAs have been identified,

which significantly affect gene expression. Dysregulation of RNA modifications

induced by abnormal expression or mutations in RNA modifiers might result in

cancer. The most frequent RNA modifications are N6-methyladenosine (m6A),

5-methylcytosine (m5C), and N7-methylguanosine (m7G). Lung cancer is the

leading cause of cancer-related deaths globally. The present study aimed to

investigate whether the expression of the m7G-related genes is linked to lung

cancer cases with lung adenocarcinoma (LUAD), which accounts for about

40% of lung cancer cases.

Methods: A total of 12 m7G-related differentially expressed genes (DEGs) were

identified in LUAD patients by The Cancer Genome Atlas (TCGA). The least

absolute shrinkage and selection operator (LASSO) Cox regression method was

used to build a four-gene risk model. Then, LUAD patients in the TCGA cohort

were divided into low- and high-risk groups based on their risk scores for

subsequent molecular and clinical research.

Results: Compared to the low-risk group, the high-risk group had a decreased

overall survival (OS) (P=0.047). The risk score and stage were independent

factors for predicting the OS of LUAD (P=0.0004 and P<0.0001, respectively).

Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses based

on the two groups showed that the DEGs were metabolically and hormonally

related. The high-risk group showed a higher mutation rate and lesser immune

cell infiltration, especially in TP53, KRAS, and MET. The expression level of PD-

L1 and CTLA4 was high in the high-risk group (P<0.05). The high-risk group is

more sensitive to anti-cancer therapy with lower IC50 and higher

immunophenoscore (IPS).
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Conclusions: In this study, we developed a novel LUAD stratification model

based on m7G-related genes that successfully predicts the prognosis of LUAD

patients and serves as a guide for clinically personalized treatment.
KEYWORDS

m7G, lung adenocarcinoma, prognosis, immunity, mutation
Introduction

Lung cancer is one of the most common types of cancer. As a

leading cause of cancer mortality worldwide, several

investigations have been conducted to manage the disease,

including early diagnosis, advanced instruments, and

improved treatments (1). Lung cancer is a heterogeneous

tumor classified into different histological subtypes, including

adenocarcinoma, squamous carcinoma (commonly referred to

as non-small cell lung cancer), and small cell lung cancer.

Comprehensive biological research has improved our

understanding of this disease and contributed to the

development of medications, such as targeted therapy and

immunotherapy, ushering in a new era of precision medicine

(2). Despite significant advances, several issues, from the

mechanism to effective therapies, need to be resolved. In

addition to oncogene activation, epigenetic factors, such as

DNA methylat ion, chromatin architecture, histone

modifications, and noncoding RNA regulation, play a role in

lung cancer development (3). Most eukaryotic cells go through a

range of biological processes known as co-transcriptional or

post-transcriptional modifications. A recent study indicated that

mRNA translation modulation plays a critical role in cancer

progression (4). In tRNA, >90 distinct modified nucleosides

have been identified; N7-methylguanosine (m7G) is one of the

most conserved molecules (5). Protein synthesis is regulated by

tRNA modification, essential for correct codon identification

and reading frame preservation. Moreover, dysregulated tRNA

modification has been linked to mitochondrial illnesses,

neurological disorders, and cancer (6). Sustaining proliferative

signaling, evading growth suppressors, resisting cell death,

enabling replicative immortality, inducing angiogenesis,

activating invasion and metastasis, reprogramming energy

metabolism, and evading immune destruction are among the

eight hallmarks of cancer in the multistep development of

human tumors (7). Furthermore, some studies have shown

that tRNA modification dysregulation may have an impact on

all these processes. For example, the overexpression of tRNA

alters the tRNA expression landscape and boosts cellular

metabolic activity and proliferation rates in vitro (8). The

whole-exome sequencing technology has provided a wealth of
02
knowledge about genes and diseases, and another study found

that tRNAGluUUC and tRNAArgCCG were elevated in the

metastatic breast cancer cell lines, suggesting that it could

boost the translational efficiency of disease-promoting genes,

leading to a pro-metastatic state (9). A recent next-generation

sequencing study discovered a group of tRNAs that can

distinguish between normal and breast cancer samples as well

as favorable prognosis from poor prognosis, implying them as

putative cancer prognostic indicators (10). Some studies

demonstrated that m7G promotes the translation of specific

cell cycle regulatory and carcinogenic mRNAs enriched in the

corresponding m7G-tRNA cognate codons, preventing

ribosome pausing and ribosome collision-mediated translation

inhibition (11). The RNA methyltransferase complex METTL1/

WDR4 (methyltransferase like 1; ortholog of Trm8/WD repeat

domain 4) catalyzes the m7G modification of a subset of tRNAs

that are upregulated in certain malignancies (12). The levels of

METTL1/WDR4 and m7G tRNA modifications are increased in

human intrahepatic cholangiocarcinomas (ICCs), and cell cycle

promoting mRNAs, such as those encoding cyclin A2, cyclin D2,

CDK6, CDK8, and oncogenic mRNAs such as epidermal growth

factor receptor (EGFR), were most translationally affected by

m7G tRNAs (13). Currently, several studies are underway to

uncover new fascinating cancer functioning secrets. However,

the specific mechanism underlying lung cancer is yet to be

elucidated. Herein, we conducted a comprehensive

investigation to compare the expression levels of these m7G-

related genes in normal and lung adenocarcinoma (LUAD)

samples, to further analyze the prognostic significance and

interaction between m7G and tumor microenvironment

(TME), and to provide directions for future research.
Materials and methods

Dataset collection and procession

The m7G regulators were collected from previously

published studies (Supplemental Files m7G gene) and the

GSEA website (http://www.gsea-msigdb.org/). The dataset of

RNA sequencing (RNA-seq) data and corresponding clinical
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features of patients were obtained from the TCGA databases

(https://portal.gdc.cancer.gov/repository). The workflow is

shown in Figure 1.
Identification of m7G-related regulators
with differential expression

Herein, we retrieved 29 m7G-related genes from The Cancer

Genome Atlas (TCGA) dataset. Differentially expressed genes

(DEGs) with |log2FC| > 0.5 and false discovery rate (FDR)< 0.05

were identified using the “limma” program. The expression of all

these m7G-related genes is shown in the heatmap. The Search

Tool for the Retrieval of Interacting Genes (STRING) (https://

string-db.org/) was used to create protein-protein interaction

(PPI) networks for the m7G-related genes, which were then

visualized by Cytoscape. In order to determine the central

elements, we identified the top five hub genes from the PPI

network via the MCC technique in the Cytohubba plugin.
Development of the m7G-related gene
prognostic model

Unsupervised consensus clustering was performed to cluster

the tumor samples into subgroups based on the expression matrix

of m7G regulators using the ConsensusClusterPlus R package to

identify the m7G regulator-mediated subtypes. Clustering was

performed using the following parameters: number of repetitions

= 50; pItem = 0.8 (resampling 80% of any sample); pFeature = 1

(resampling 80% of any protein); clustering algorithm = k means

method. We created a heatmap of differentially expressed m7G-

associated genes and clinical characteristics based on this

clustering method. To narrow down the putative genes and
Frontiers in Oncology 03
build a predictive model, researchers used the least absolute

shrinkage and selection operator (LASSO) Cox regression model

(R package “glmnet”). Subsequently, the m7G-related DEGs and

their coefficients were retained, and the penalty parameter (l) was
determined using the minimum criteria. The risk score was

calculated after centralization and standardization (applying the

“scale” function in R) of TCGA expression data, and the risk score

formula was as follows: Risk Score =o
n

i
Xi � Yi : X: coefficients, Y:

gene expression level). Next, we employed Cox regression analysis

to evaluate the correlation between each gene and survival status

in the TCGA cohort to assess the prognostic value of the DEGs.

To prevent omissions and for further studies, we set the P-value at

0.2. Thus, genes with P-values< 0.05 were extracted for survival

analysis using the online tool (http://kmplot.com/analysis/), and

we calculated an immunologic infiltration score for these genes in

LUAD. The data were obtained from UCSC (https://xenabrowser.

net/). The R package of “psych” (version 2.1.6) was used to

calculate the immunological score for each oncogene.
Independent prognostic analysis of
the model

The TCGA LUAD patients were classified into low- and

high-risk subgroups based on the median risk score, and the

overall survival (OS) was compared between the two subgroups

using Kaplan-Meier analysis. The “prcomp” function in the

“stats” R package was used for principal component analysis

(PCA) based on the risk model-associated gene signature. A 1-,

2-, and 3-year receiver operator characteristic (ROC) curve study

was conducted using the “survival” and “timeROC” R packages.

Univariate and multivariable Cox regression models were used

to analyze the risk score and clinical parameters, such as age

and stage.
FIGURE 1

Workflow diagram. Specific workflow of data analysis.
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Functional enrichment analysis of DEGs
based on the model

According to themedian risk score, LUAD patients in the TCGA

cohort were divided into two categories. Selective criteria (|log2FC|≥ 1

and FDR< 0.05) were used to identify the DEGs between the

subgroups derived from the risk model. The “clusterProfiler”

software was used to conduct the GO enrichment analysis, and the

web tool Enrichr was used to conduct Kyoto Encyclopedia of Genes

and Genomes (KEGG) enrichment analysis based on these DEGs

(https://maayanlab.cloud/Enrichr/).
Estimation of TME and mutation
between the subgroups

The tumor mutation burden (TMB) score for each patient was

generated using the somatic mutation data of LUAD patients

collected from the TCGA database. The TMB was compared

between the two groups, and the survival probability was

combined with the risk level. The Estimation of Stromal and

Immunological Cells in Malignant Tumors using Expression Data

(ESTIMATE, https://bioinformatics.mdanderson.org/estimate/

index.html) platform was used to compute the stromal,

immune, and ESTIMATE scores of samples in the TCGA

database, which were validated in multiple ways. To further

examine the mechanism of immunotherapy, we compared the

expression of immune-checkpoint-related genes, including PD-L1

and CTLA4, and evaluated the tumor immune dysfunction and

exclusion (TIDE) score to identify the patients who would benefit

from immune checkpoint inhibitor (ICI). The TIDE score was

acquired after uploading the gene expression file as the

instruction, and the immunophenoscore was computed via The

Cancer Immunome Atlas (https://tcia.at/) (14). To determine the

proportion of invading immune cells and analyze the efficiency of

immune-related pathways, single-sample Gene Set Enrichment

Analysis (ssGSEA) was carried out using the “gsva” software

package. Furthermore, the immune cell proportion score for

each group was compared to predict the efficacy of

immunotherapy. The drug sensitivity was evaluated using the

“pRRophetic” R package and the concentration that inhibited 50%

of cellular growth (IC50).
Statistical analysis

For DEG analysis, the “limma” R package was utilized, and

the Pearson’s chi-square test was employed to evaluate the

differences in the composition. Next, we employed the Kaplan-

Meier (K-M) method with a two-sided log-rank test to compare

the patient OS between subgroups. To assess the risk model’s

independent predictive efficiency, we used univariate and
Frontiers in Oncology 04
multivariate Cox regression models. The immune cell

infiltration and immunological pathway activation were

assessed using the Mann-Whitney test. All statistical studies

were carried out using the R programming language (v4.1.2).
Results

Identification of DEGs between normal
and tumor tissues

The expression data of 29 m7G-related genes in 59 normal

and 535 LUAD tissues were extracted from the TCGA database,

and 12 DEGs that met the criteria (|log2FC| > 0.5 and FDR< 0.05)

were identified: DCPS, EIF4E1B, EIF4E3, EIF4G3, LARP1, LSM1,

METTL1, NCBP1, NCBP2, NCBP2L, NSUN2, andWDR4. Among

these, EIF4E3 was downregulated, and all the others were

upregulated in tumor specimens. The RNA expression of these

genes was presented as heatmaps in Figure 2A. To further explore

the interactions of these m7G-related regulators, we conducted a

PPI analysis. A total of 28 nodes and 118 edges were detected in

the network when the minimum required interaction score for the

PPI analysis was set at 0.4 (Figure 2B). In Figure 2C, the

correlation network containing all the m7G-related genes was

presented; EIF4E1B, EIF4E2, EIF4E, NCBP1, and NCBP2 were

identified as hub genes. Figure 2D shows the mutations of m7G

regulators based on the TCGA LUAD cohort of different datasets.
Tumor classification and comparison
based on DEGs

To explore the connections between the expression of the 12

m7G-related DEGs and LUAD, a consensus clustering analysis

was conducted with all LUAD in the TCGA cohort. After

increasing the clustering variable (k) from 2 to 10, we found

that the intragroup correlations were the highest, and the

intergroup correlations were lowest when the value of k = 2.

The TCGA cohort of LUAD could be divided into two clusters

based on 12 DEGs (Figure 3A). The heatmap displayed the gene

expression profile and the clinical features, such as tumor stage,

age (≤60 or > 60 years), and survival status (alive or dead). No

significant difference was observed in the clinical features

between the two clusters (Figure 3B). The overall survival (OS)

time was also compared between the two clusters, but no obvious

differences were detected (P = 0.374, Figure 3D). We also

examined the expression of these DEGs and mutation rate

between the two clusters (Figures 3C, E). The m7G-related

genes in cluster 1 were underexpressed compared to cluster 2,

while the mutation rates were reversed. Thus, whether both the

expression and mutational status of these genes can affect the

prognosis need further experimental and clinical investigations.
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Development of a prognostic gene
model in the TCGA cohort

The gene expression levels of 482 LUAD samples were

submitted for primary screening of survival-related genes

using univariate Cox regression analysis. To avoid omission,

we set the criteria to 0.2 and included LARP1 and NCBP2L in

the risk model development (Figure 4A). The 4-gene signature

was built according to the optimum l value employing LASSO

Cox regression analysis. The risk score was calculated as follows:

risk score = (0.001013 × LARP1 exp.) + (-0.715684 × NCBP2L

exp.) + (0.068453 × WDR4 exp.) + (0.059285 × NCBP1 exp.).

Next, we analyzed these extracted gene signatures in LUAD and

found that overexpression was related to a poor survival
Frontiers in Oncology 05
outcome (Figures 4B–D) and a lower immunologic infiltration

score in LUAD via the UCSC dataset (Figures 4E–G).

Patients were divided into low- and high-risk subgroups

based on the median score calculated by the risk score formula

(Figure 5A). The clinal parameters between the two groups are

summarized in Table 1, and no significant differences were

detected in the clinical features between the two groups. PCA

showed that patients with different risks were well-separated into

two groups (Figure 5B). Patients in the high-risk group had more

deaths and shorter survival time than those in the low-risk group

(Figures 5C, D, P = 0.047). A time-dependent receiver operating

characteristic (ROC) analysis was applied to evaluate the

sensitivity and specificity of the prognostic model.

Consequently, the area under the ROC curve (AUC) was 0.616
A B

D

C

FIGURE 2

Expression of the 29 m7G-related genes and the interactions among the genes. (A) Heatmap of the m7G-related genes between the normal
(N, brilliant blue) and the tumor tissues (T, red). P-values are shown as *P < 0.05, **P < 0.01; ***P < 0.001; green represented low expression,
while red represented high expression. (B) Correlation network of the m7G-related genes (red line: positive correlation; blue line: negative
correlation. The intensity of the colors reflected the strength of the relevance). (C) PPI network showed the interactions of the m7G-related
genes (the bigger and deeper the circle is, the most important gene it might be). (D) Comparison of mutation data among different datasets via
cBioPortal.
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for 1-year, 0.624 for 2-year, and 0.619 for 3-year survival

(Figure 5E), confirming the sensitivity of the risk model.
Independent prognostic value of the
risk model

Univariate and multivariable Cox regression analyses were

used to evaluate whether the risk score derived from the gene

signature model could serve as an independent prognostic factor.

The univariate Cox regression analysis indicated that both the risk

score and stage were independent significant prognostic factors

predicting poor survival in the TCGA cohorts (hazard ratio (HR)

= 2.1213, 95% confidence interval (CI): 1.4017-3.2102; HR =
Frontiers in Oncology 06
2.7619, 95% CI:1.9922−3.8291, respectively; Figure 6A). And they

were further proved by multivariate analysis (Figure 6B).

Combined with the P-value of univariate analysis, age was not

included in multivariate analysis. In addition, we generated a

heatmap of clinical features (Figure 6C) and found that the age

and the survival status of the patients were equivalent between the

low- and high-risk subgroups (Table 1).
Functional analyses based on the
risk model

The “limma” R package was used to extract DEGs, and

FDR< 0.05 and |log2FC | ≥ 1 criteria were applied to further
A

B

D E

C

FIGURE 3

(A) Tumor classification based on the m7G-related DEGs. LUAD patients were grouped into two clusters according to the consensus clustering
matrix (k = 2). (B) Heatmap and the clinicopathological characteristics of the two clusters are classified by these DEGs. (C) Comparisons of the
expression levels of the differently expressed m7G-related genes between the two clusters. (D) K-M OS curves for the two clusters.
(E) Comparisons of the mutation status in differently expressed m7G-related genes between the two clusters.
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investigate the variations in gene functions and pathways

between the risk model subgroups. In the TCGA cohort, 128

DEGs were identified between the low- and high-risk groups. In

the high-risk group, 83 genes were upregulated, while 45 genes

were downregulated. These DEGs were then used for gene

ontology (GO) enrichment analysis and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway analysis. The findings

revealed that DEGs were primarily enriched in functional

categories and pathways l inked to hormones and

metabolism (Figure 7).
Comparison of the mutations and
immune activity between subgroups

The comparison of the mutations between the subgroups

showed a higher TMB in the high-risk group than the low-risk

group, as well as some oncogenes, including KRAS; also, the

survival probability in high TMB was better, especially for those

with a low-risk level (Figure 8). Reportedly, m7G could reshape

the microenvironment, especially the immune cell infiltration

(15). Combined with functional analyses, we further compared

the enrichment scores of 16 types of immune cells and the

activity of 13 immune-related pathways between the low and

high-risk groups employing ssGSEA. In the TCGA cohort

(Figures 9E, F), the high-risk subgroup had lower infiltration

of immune cells, including dendritic cells (DCs), induced DCs

(iDCs), neutrophils, and macrophages, than the low-risk

subgroup. Regarding the immune-related pathways, the scores

of inflammation-promoting and MHC-class I cells were higher
Frontiers in Oncology 07
in the high-risk group, while the type II interferon (IFN)

response was lower (Figures 9E, F). Compared to the low-risk

group, the mutation state of oncogenes, including EGFR and

MET, was significantly different in the high-risk group,

indicating their potential role in predicting the efficacy of

target therapy. In addition to the well-known predictors for

ICIs, newly identified predictors, such as TIDE, are frequently

employed and strongly advised for evaluating the immune

response and immune evasion. Also, the expression of PD-L1

and CTLA4 was higher in the high-than the low-risk group

(Figures 9A–C). Furthermore, we compared the degree of

stromal cell infiltration (stromal score) across three unique

patterns. As an immune desert, high-risk patients had higher

stromal scores compared to low-risk patients, indicating that

high-risk LUAD had more nontumor components, such as

immune cells and stromal cells, indicating a higher tumor

purity (Figure 9D).
Prediction value in anticancer therapy

In the current study, TIDE was significantly elevated in the

low-risk group, indicating that immunotherapy was less effective

(16), which was consistent with the immunophenoscore (IPS)

analyses (Figures 10A–D). Owing to the shortage of PD-L1 in

predicting the efficacy of immunotherapy, whether our model

could be better in prediction is to be explored. The results

demonstrated a crucial role of m7G in mediating the clinical

response to ICI treatment by the impact on TMB, immune cell

infiltration, immunogenicity, and checkpoint expressions. These
A

B D

E F G

C

FIGURE 4

Clinical signature of the extracted m7G-related genes for risk model. (A) Univariate Cox regression analysis of m7G-related genes for risk model.
(B–D) K-M survival analyses for OS among LUAD stratified by gene expression level. (E–G) Immune score of m7G-related genes for the risk
model in LUAD, the relationships between immune score and expression were all negative.
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features might provide insights into the m7G-regulated immune

microenvironment in LUAD and identify numerous potential

immunotherapeutic targets. Regarding common drug

sensitivity, including the chemotherapy and target therapy, we

found that high-risk group was significantly more sensitive to

Gemcitabine, Docetaxel, Paclitaxel, Crizotinib, Erlotinib,

Gefit inib, and Rapamycin than the low-risk group

(Figures 10E–L). Moreover, Rapamycin is an mTOR inhibitor,

which was in agreement with a previous study, wherein

METTL1 accelerated proliferation and autophagy through the

AKT/mTORC1 signaling cascade (17).
Discussion

m7G is a methyl group added to the seventh N of RNA

guanine, increasing the RNA stability (18). The dysregulation of

tRNA underlies cancer development and is associated with a

high metabolic and proliferative status, resulting in
Frontiers in Oncology 08
dysregulation of biological and pathological functions (19).

Currently, the underlying mechanisms of m7G modification in

cancer are not understood comprehensively; thus, we

investigated the potential value of the m7G-related genes in

diagnostic and therapeutic strategies for LUAD.

Herein, the mRNA expression of these 29 m7G-related genes

in control and cancer samples was elevated. The two groups

formed by the consensus clustering analysis of DEGs did not

exhibit any statistically significant differences in survival time. In

order to elucidate the function of these DEGs, we used Cox

univariate and LASSO Cox regression analysis to develop a four-

gene risk model. Based on the model’s score, the data were

divided into low- and high-risk groups. The survival rates were

better in the low- than the high-risk group. In both univariate

and multivariate studies, the risk score was determined as an

independent factor, and the ROC curve indicated its sensitivity.

Functional investigations indicated that the DEGs between the

two subgroups were associated with metabolic pathways, and

some of the DEGs were implicated in cancer transcriptional
A

B

D

E

C

FIGURE 5

Construction of the risk signature in the TCGA cohort. After Four candidate genes obtained by LASSO regression, the risk score is computed
base on these genes. (A) Distribution of patients based on the risk score. (B) PCA plot for LUAD in the entire TCGA dataset based on the risk
level. (C) Survival status of each patient (low-risk population: on the left side of the dotted line; high-risk population: on the right side of the
dotted line). (D) Survival analysis for OS in the low- and high-risk groups. (E) ROC curves demonstrated the predictive efficiency of the risk
score.
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dysregulation. We also examined the genetic features of high-

and low-risk individuals and found that the high-risk group had

a greater rate of somatic mutations in multiple genes, including

TP53, KRAS, and MET.

Tumorigenesis is the process wherein a tumor begins and

grows outside the limits of an organ or tissue. The effects of RNA

on writers, readers, and erasers may contribute to or avoid

certain cancer traits. Accumulating evidence shows that RNA

changes and the enzymes involved in their deposition, clearance,

and detection, play diverse roles in various malignancies (20). In

a recent study, METTL1 or WDR4 knockdown in mouse

embryonic stem cells resulted in a poor self-renewal capacity

and a disrupted differentiation program, demonstrating its

physiological role in mammalian systems. (12). In addition to

physiology, m7G plays a critical role in cancer. Also, m7G

methyltransferase WD repeat domain 4 (WDR4) expression

was abnormal in various malignancies and was linked to OS

and immune infiltration, according to a pan-cancer investigation

(21). Other studies demonstrated that another component of the

tRNA m7G methyltransferase complex, methyltransferase-like 1

(METTL1), was upregulated in some malignancies, such as

hepatocellular carcinoma and lung adenocarcinoma, and was

associated with poor patient prognosis and resistance to

chemotherapy (22, 23). Another study showed high METTL1

and WDR4 expression levels in lung cancer, facilitating m7G

tRNA modification, altering mRNA translation, and boosting

lung cancer development and invasion (24). In the current study,
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we verified that the DEGs, METTL1, and WDR4, were

upregulated in the TCGA cohort. Moreover, WDR4 was

extracted for risk model construction. Its high expression was

related to poor outcomes in LUAD across the K-M survival

curve, indicating its role in cancer, especially lung

adenocarcinoma. In the current analysis, eIF4E3 was

downregulated in LUAD compared to the normal samples. A

model indicated that eIF4E3 acted as a tissue-specific tumor

suppressor, repressing oncogenic transformation, and cancer

could be driven by the loss of the suppressive activity of

eIF4E3 (25). Another gene, the La-related protein 1 (LARP1),

has been shown to interact with 3000 mRNAs linked to cancer

pathways, including post-transcriptionally controlled mTOR

which was frequently dysregulated in cancer, promoting cell

motility, invasion, and anchorage-independent growth. (26).

Furthermore, interaction with the 3’-untranslated regions (3’-

UTRs) stabilized BCL2, encouraging ovarian cancer growth and

chemotherapy resistance (27). In lung adenocarcinoma, we

found that high expression levels of LARP1 are correlated with

poor survival and nuclear cap-binding protein 1 (NCBP1).

Interestingly, NCBP1 is required for capped RNA synthesis

and intracellular translation, and has recently been discovered

to interact with NCBP3 to induce CUL4B expression, promote

lung cancer cell growth, wound healing, migration, and

epithelial-mesenchymal transition (28). Although several

studies discovered the link between the sophisticated

molecular roles of tRNA alterations, selective mRNA
TABLE 1 Comparison of clinical parameters between the low-risk and the high-risk groups.

Covariates Type Total Low-Risk High-Risk P-value

Age ≤60 153 (31.74%) 84 (34.85%) 69 (28.63%) 0.1707

>60 329 (68.26%) 157 (65.15%) 172 (71.37%)

Gender Female 263 (54.56%) 133 (55.19%) 130 (53.94%) 0.8548

Male 219 (45.44%) 108 (44.81%) 111 (46.06%)

stage Stage I 261 (54.15%) 122 (50.62%) 139 (57.68%) 0.1522

Stage II 117 (24.27%) 57 (23.65%) 60 (24.9%)

Stage III 79 (16.39%) 46 (19.09%) 33 (13.69%)

Stage IV 25 (5.19%) 16 (6.64%) 9 (3.73%)

T T1 165 (34.23%) 79 (32.78%) 86 (35.68%) 0.8172

T2 253 (52.49%) 128 (53.11%) 125 (51.87%)

T3 44 (9.13%) 21 (8.71%) 23 (9.54%)

T4 17 (3.53%) 10 (4.15%) 7 (2.9%)

Unknown 3 (0.62%) 3 (1.24%) 0 (0%)

N N0 312 (64.73%) 151 (62.66%) 161 (66.8%) 0.2146

N1 90 (18.67%) 44 (18.26%) 46 (19.09%)

N2 68 (14.11%) 40 (16.6%) 28 (11.62%)

N3 2 (0.41%) 2 (0.83%) 0 (0%)

Unknown 10 (2.07%) 4 (1.66%) 6 (2.49%)

M M0 316 (65.56%) 160 (66.39%) 156 (64.73%) 0.363

M1 24 (4.98%) 15 (6.22%) 9 (3.73%)

Unknown 142 (29.46%) 66 (27.39%) 76 (31.54%)
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translational, control, and human cancer, a few underlying

molecular pathways are functionally related to specific tRNAs

and the network changes in human cancer (11). In the present

study, we evaluated the role of the m7G regulator in lung

adenocarcinoma. The K-M and ROC curves demonstrated that

the risk model based on these regulators performed adequately,

although an in-depth analysis is required.

The functional analysis of the DEGs between the risk

subgroups in the TCGA cohort revealed that some genes were

enriched in the hormone and metabolism-related functional

categories and pathways, implying that they may regulate

some hormone-related cancers, such as prostate cancer.

Prostate cancer development, growth, and metastasis depend
Frontiers in Oncology 10
initially on androgens. The study indicated that two major

pathways involved in prostate cancer progression, PI3K/Akt/

mTOR, and Ras/MAPK, intersect at the eukaryotic transcription

initiation factor eIF4E. Furthermore, phosphorylation of eIF4E

increased the rate of translation of oncogenic mRNAs,

increasing tumorigenicity and promoting resistance to

chemotherapy and endocrine therapy (29). While METTL1

also shared this mechanism, it boosted A549 cell growth and

colony formation by inhibiting autophagy via the Akt/mTOR

pathway (23). In addition to hormone-related tumors, several

factors, including inactivating mutations in tumor suppressors

(TP53) and activation of oncogenes (EGFR or MYC) in this

study, provided clinical insights into m7G in lung cancer. A
A

B

C

FIGURE 6

Univariate and multivariate Cox regression analyses for the risk score. (A) Univariate analysis for the TCGA cohort (stage: the degree of tumor
stage). (B) Multivariate analysis for the TCGA cohort. (C) Heatmap (green: low expression; red: high expression) for the connections between
clinicopathological features and the risk groups. We divided stages I and II as group 1 and the remaining as group 2.
A B

FIGURE 7

Functional analysis based on the DEGs between the two-risk groups in the TCGA cohort. (A) Bar graph for GO enrichment (the taller bar means
more genes are enriched, and the intensity of the color means the differences were obvious; q-value is the adjusted p-value). (B) Circle diagram
for KEGG pathways enrichment.
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recent study showed that WDR4 and WDR4-related m7G

methylation levels were upregulated in addition to the

common mechanisms of epithelial-mesenchymal transition,

activation of G2/M cell cycle transition, and apoptosis

inhibition. Another study showed that MYC triggered WDR4

transcription, thereby stabilizing and initiating the translation of

CCNB1 mRNA, which in turn increased PI3K and AKT

phosphorylation and decreased P53 protein levels (30). In the

high-risk group, a high mutation rate of KRAS and MYC was
Frontiers in Oncology 11
detected, which could be an orientation for further mechanism

and treatment-related studies or extract patient benefits from

target therapy.

Several physiological and pathological processes, including

the maturation of immune cells and immune response, are

influenced by RNA methylation (18). As stated previously,

m7G-related genes are associated with immune infiltration,

while the current findings indicated that the low-risk group

has a high level of immune cell infiltration, especially in different
A

B
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FIGURE 8

Comparison of immunity and genetic characteristics between high- and low-risk score groups based on the TCGA LUAD cohort.
(A, B) Comparison of the mutation status between low- (green box) and high-risk (red box) groups in the TCGA cohort. (C) Tumor mutation
burden between the two groups and patients with high risk had high burden. (D) Comparison of the survival probability with different levels of
tumor mutational burden. (E) The survival probability with different levels of tumor mutational burden and risk score.
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types of DCs that are antigen-presenting cells with critical roles

in the initiation and regulation of both innate and adaptive

immune responses. DCs also improve immunization and

tolerance by presenting antigens to T cells and sending

immunomodulatory signals via cytokines (31). In the TME,

before forming T cell responses, DCs needed to receive,

process, and display tumor-associated antigens on MHC

molecules and offer co-stimulation and soluble factors (32).

Another study showed that RNAs with methylation

modifications inhibited DC activation, and the higher the level

of modification, the fewer cytokines and activation factors. This

alteration suppressed the potential of RNA to activate DCs (33).

Next, we extracted the single risk model-related genes for

immune score analyses; the high gene expression was

correlated with a low score. Additionally, most immune-

related pathways did not exhibit significant differences except

for the inflammation promotion, MHC class I, and type II IFN
Frontiers in Oncology 12
response. JAK-STAT signaling pathway was activated by type II

IFN and exerted critical roles in both innate and adaptive

immunity (34). Moreover, type II IFN was not involved in the

development of cancer immunotherapy treatments due to its

ability to prevent tumor growth (35). Also, the immune scores

were significantly higher in the low-risk group than the high-risk

group and reflected a better outcome, while the high-risk group

indicated immune escape.

Many studies have focused on the prevention and early

detection of cancer and anticancer therapy. However, the

intricate mechanism restricts therapeutic efficiency. Also, RNA

misregulation may play a role in the cancer process, including

anticancer drug resistance. Typically, tRNA overexpression in

malignancies can block apoptosis by binding to cytochrome-c

and limiting caspase activation, resulting in castration-resistant

prostate cancer (CRPC) (19). The eukaryotic translation

initiation factor eIF4E is increased in 30% of cancers,
A B
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FIGURE 9

Comparison of immunity characteristics between high- and low-risk score groups based on the TCGA LUAD cohort. (A) comparison of the
tumor immune dysfunction and exclusion between the low- and high-risk groups indicated a better immune response in the high-risk group.
(B, C) Comparison of the immune checkpoints between low- and high-risk groups; the expression of PD-L1 and CTLA-4 was higher in the
high-risk group. (D) Immune score comparison between the two groups to estimate the difference in the immune microenvironment.
(E, F) Enrichment scores of 16 types of immune cells and 13 immune-related pathways between low- and high-risk groups in the TCGA. *P <
0.05; **P < 0.01; ***P < 0.001.
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including the M4/M5 subtypes of acute myeloid leukemia.

Furthermore, in leukemic blasts, a therapeutic study targeting

eIF4E exhibited clinical efficacy and related molecular responses,

but only 2/11 patients had disease progression (36). Thus, we

questioned whether finding some biomarkers to enhance

efficiency or a biomarker for predicting immunotherapy

efficacy would be beneficial. In this study, we assessed the

correlations between PD-L1 and CTLA4 with m7G regulators

and found that the expression levels were higher in the high-risk

group. As described previously, m7G influences the immune

cells and immune responses, and those who tolerated

immunotherapy had more methyltransferases in lung cancer

treatment (37). The immune checkpoint and TIDE indicated

that the high-risk group could benefit from immunotherapy. In

addition, the drug sensitivity analyses might guide drug therapy.

Taken together, the current findings suggested that m7G

regulators or the risk model could be employed as a prognosis

assessor as well as a biomarker for LUAD patients who would

benefit from anticancer therapy, although additional

investigations are essential.
Conclusions

In conclusion, this study demonstrated the importance of

m7G modification in LUAD and emphasized the vital role of
Frontiers in Oncology 13
m7G modification in shaping the heterogeneity and complexity

of the tumor microenvironment. Furthermore, the risk signature

score based on four m7G-related genes constituted an

independent risk factor for predicting OS. Notably, the current

findings have created a new gene signature for predicting the

prognosis of LUAD patients. They also orient new studies into

the links between m7G-related genes and the LUAD

microenvironment, improving the understanding of the

mechanism and drug discovery.
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