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A B S T R A C T

Structural and functional brain abnormalities have been widely identified in dementia, but with variable replicability and significant overlap. Alzheimer's disease
(AD) and Binswanger's disease (BD) share similar symptoms and common brain changes that can confound diagnosis. In this study, we aimed to investigate correlated
structural and functional brain changes in AD and BD by combining resting-state functional magnetic resonance imaging (fMRI) and diffusion MRI. A group
independent component analysis was first performed on the fMRI data to extract 49 intrinsic connectivity networks (ICNs). Then we conducted a multi-set canonical
correlation analysis on three features, functional network connectivity (FNC) between ICNs, fractional anisotropy (FA) and mean diffusivity (MD). Two inter-
correlated components show significant group differences. The first component demonstrates distinct brain changes between AD and BD. AD shows increased
cerebellar FNC but decreased thalamic and hippocampal FNC. Such FNC alterations are linked to the decreased corpus callosum FA. AD also has increased MD in the
frontal and temporal cortex, but BD shows opposite alterations. The second component demonstrates specific brain changes in BD. Increased FNC is mainly between
default mode and sensory regions, while decreased FNC is mainly within the default mode domain and related to auditory regions. The FNC changes are associated
with FA changes in posterior/middle cingulum cortex and visual cortex and increased MD in thalamus and hippocampus. Our findings provide evidence of linked
functional and structural deficits in dementia and suggest that AD and BD have both common and distinct changes in white matter integrity and functional
connectivity.

1. Introduction

Alzheimer's disease (AD) is the most common cause of dementia in
older individuals (Strittmatter et al., 1993). In the first decade of the
21st century, mortality caused by AD increased by 71%, making AD the
sixth leading cause of death in the United States (Alzheimer's, 2015).
Vascular cognitive impairment and dementia (VCID), the second most
common cause of dementia, has become a major public health concern
because of the realization of its impact on the pathogenesis of AD
(Corriveau et al., 2016; Kalaria et al., 2008; Rosenberg, 2017; Yin et al.,
2014). The most common form of VCID is sub-cortical ischemic vas-
cular dementia (SIVD), which can be divided into two subtypes: Bins-
wanger's disease (BD) and lacunar state. In contrast to lacunar state, BD
presents insidiously and follows a slowly progressive course similar to
AD (Chui, 2007; Rosenberg et al., 2016). The clinical distinction be-
tween AD and BD can be challenging because of their overlapping
symptoms as well as their high prevalence in elderly individuals.
Therefore, additional neuroimaging features are needed to distinguish
these two conditions and make the diagnosis more certain.

Neuroimaging techniques, such as functional magnetic resonance
imaging (fMRI), structural MRI (sMRI) and diffusion MRI (dMRI) are
more specific and biologically based approaches for detecting brain
changes and have been widely employed to probe brain alterations in
many brain diseases. White matter (WM) injury on sMRI serves as a
prominent brain marker for BD, though about 30% of typical AD pa-
tients show similar lesions (Bennett et al., 1990; Bozzali et al., 2002;
Delbeuck et al., 2003; Rosenberg, 2017). dMRI assesses WM ultra-
structure by quantifying diffusion of water within WM tracts. Mounting
evidence has shown dMRI to be more sensitive to WM injury than T2
and fluid-attenuated inversion recovery on sMRI, detecting abnormal
diffusion in radiographically normal appearing regions. A wide range of
WM abnormalities in both AD and BD have been identified in dMRI
studies (Chua et al., 2008; Douaud et al., 2011; Graña et al., 2011;
Kantarci et al., 2010). For example, Stahl and colleagues have found
that AD patients show reduced fractional anisotropy (FA) in the sple-
nium of the corpus callosum and the temporal lobe (Stahl et al., 2007).
FA differences between AD and healthy controls (HCs) were also
identified in the bilateral posterior cingulate cortex (PCC) and the
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bilateral superior longitudinal fasciculus (Parente et al., 2008). Studies
also identified similar WM abnormalities in BD. A previous study de-
monstrated that reductions of FA in both regions of the corpus cal-
losum, more in anterior than posterior brain regions in BD patients,
suggesting axonal damage and demyelination of fibers (Engelhardt
et al., 2009).

fMRI measures brain activity in the gray matter (GM) by evaluating
changes associated with blood flow. Investigating resting-state brain
functional connectivity from fMRI provides a means for understanding
the mechanisms and relevance of the functional relationships between
brain regions. AD is characterized by widespread GM changes and
disconnection of cortical and sub-cortical regions (Challis et al., 2015;
Khazaee et al., 2015; Wu et al., 2013; Zhou et al., 2010). The default-
mode network, one of the most widely-studied resting-state networks, is
significantly affected by AD. Research has shown that AD patients have
decreased resting-state/task activity in the default-mode and hippo-
campal regions, suggesting disrupted connectivity between these re-
gions (Celone et al., 2006; Greicius et al., 2004). Studies also identified
atypical functional connectivity between the hippocampus and several
default-mode regions, such as medial prefrontal cortex (mPFC) and PCC
(Sorg et al., 2007; Wang et al., 2006). Hence, atypical functional net-
work properties may provide another important biomarker of AD. A
recent study combined graph theoretical approaches with machine
learning methods to study the AD-related fMRI changes. They showed
that three graphic metrics, clustering coefficient, local efficiency, and
normalized local efficiency successfully separated patients with AD and
healthy controls with 100% accuracy (Khazaee et al., 2015). Although
it has also been suggested that resting-state fMRI may provide addi-
tional valuable biomarkers of BD (Huisa and Rosenberg, 2014), very
limited studies have investigated resting-state functional connectivity
in this condition.

Quantitative functional and structural brain alterations have been
identified in AD and BD, but many investigations favor one data type
only, leaving potentially hidden relationships between different ima-
ging modalities undetected. Therefore, studies of multimodal features
are needed to clarify disparate findings in neural imaging (Calhoun
et al., 2006; Calhoun and Sui, 2016). During the past decade, increasing
studies have used multimodal data to investigate brain changes in AD
(Dai et al., 2012; Dyrba et al., 2015; Jung et al., 2015; Prasad et al.,
2015). However, these studies typically analyze each modality in-
dependently, thus still not evaluating interactions between them. Data
fusion is an alternative strategy which analyzes multimodal data jointly
and can effectively detect multimodal brain changes related to diseases.
The multi-set canonical correlation analysis (MCCA) is one of the pro-
mising methods for the exploration of co-impairments in multimodal
imaging data. Specifically, it is a data-driven method that decomposes
features of each modality into spatial maps (SMs) and their corre-
sponding canonical variants (Li et al., 2009; Sui et al., 2012), and aim to
identify co-varying brain patterns among two or more modalities by
maximizing the inter-modality correlations between canonical variants.
The superior performance of MCCA in achieving jointly associated
multimodal components have been shown in comprehensive simulation
studies (Correa et al., 2010a, 2010b; Li et al., 2009). Although MCCA is
primarily designed to find associations in multi-modalities (Correa
et al., 2010a, 2010b; Li et al., 2009), it is also suitable for identifying
joint alterations among different modalities in diseases (Lahat et al.,
2015; Sui et al., 2012). MCCA has been successfully applied in nu-
merous studies for the exploration of diseases-related multimodal co-
alterations. For example, Croitor-Sava et al. have found that the mul-
timodal information captured by this method can contribute to the
brain tumor classification (Croitor-Sava et al., 2011). Correa et al. also
showed interesting joint alterations between fMRI and gray matter
volume using MCCA, with schizophrenia patients having larger func-
tional activity in motor areas and smaller activity in temporal areas
(Correa et al., 2008). Sui and her colleagues used MCCA to analyze
three types of neuroimaging features from fMRI, sMRI, and dMRI and

identified one multimodal component which is not only group differ-
entiating but also highly correlated with the schizophrenic cognitive
impairments (Sui et al., 2015). More importantly, their results of this
joint component integrated many separated findings in single modality
studies (Hoptman et al., 2010; Potkin et al., 2008; Turner et al., 2013).
Taken together, the MCCA method is believed to be a powerful tool for
finding the potential linkages between multi-modalities and assessing
the brain impairments associated with these linked components.

Though multimodal brain changes have been widely studied in
many brain disorders, to our knowledge, no report has used fMRI and
dMRI data fusion to investigate both commonalities and differences
between AD and BD. Understanding the joint changes in different
modalities related to AD and BD may advance our knowledge of de-
mentia's mechanism and provide potential multimodal biomarkers for
better clinical diagnosis of different dementias. Therefore, in this study,
we conducted a fusion analysis to investigate correlated functional and
structural brain changes in AD and BD. Results may reveal important
joint brain abnormalities which cannot be detected from a single
modality.

2. Materials and methods

2.1. Subjects and dataset acquisition

Subjects were collected from an ongoing study of VCID at the
University of New Mexico (UNM). In total 124 subjects received MRI
scans, including 34 HCs, 18 patients with AD, 16 patients with BD, 11
patients with mixed dementia (AD+BD), 12 patients with leukoar-
aiosis, 8 patients dementia with Lewy bodies, 8 patients with fronto-
temporal dementia, 7 patients with Parkinson's disease and 10 patients
with psychiatric disorders. HCs were recruited from the community
with normal neuropsychological and neurological examinations and
patients were recruited from the neurologists' cognitive disorders
clinics.

Clinical consensus diagnoses were established after at least one year
of clinical follow-up. All patients met the diagnostic and statistical
manual of mental disorders (DSM-5R) criteria for dementia
(Association, A. P, 2013). Patients diagnosed with AD presented with
insidious onset of predominant amnestic disorder associated with one
additional cognitive domain, following NINCDS-ADRDA clinical criteria
for probable AD (McKhann et al., 1984; McKhann et al., 2011). In ad-
dition, they conformed to the recent biological diagnostic criteria for
AD, which includes the biomarkers of the AD pathophysiologic process,
low cerebrospinal fluid (CSF) Αβ1–42/Αβ1–40 and elevated phospho-
Tau181 (Jack et al., 2018). White matter hyperintensities (WMH) on
FLAIR MRI were analyzed by both the semiquantitative visual scale of
Fazekas (Fazekas et al., 1987) and the quantitative measurement of
WMH volume using an automated program (JIM, http://www.xinapse.
com/Manual/). Patients diagnosed with BD met both the Erkinjuntti
criteria (Erkinjuntti, 2002) for subcortical vascular dementia and the
recent consensus statement for BD (Rosenberg et al., 2016). These pa-
tients had predominant dysexecutive syndrome and neurological ex-
amination evidence consistent with cerebrovascular injury. All BD pa-
tients showed extensive WMH in their MRI scans. Clinical diagnosis of
BD was supported in the majority through the absence of AD bio-
markers (normal phospho-Tau181). Subjects had been assessed with
cognitive tests. Cognitive tests were administered by a trained research
psychologist (JP) and trained research coordinators and scored ac-
cording to standard procedures. Standardized (T) scores were calcu-
lated for each test. Average composite T-scores were calculated for five
domains (Table 1): memory (Hopkins Verbal Learning Test-Delay, Rey
Complex Figure Test-Long Delay), executive function (Digit Span
Backwards, Trail Making Test B, Stroop - Interference Score, and Con-
trolled Oral Word Association [FAS]), attention (Digit Span Forward,
and Trial Making Test A), language (Boston Naming 60 item test,
Controlled Oral Word Association [Animals]) and processing speed
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(Digit Symbol and Symbol Search, both based on WAIS-3). Research has
demonstrated that objective tests should focus on multiple cognitive
domains to increase the ability to detect full cognitive impairments
(Bondi et al., 2014; Ferman et al., 2013; Loewenstein et al., 2009). We
believed that the use of summarized scores for different cognitive do-
mains helps capture more reliable cognitive impairments in dementia.

We included all available subjects 1) with head motion ≤ 3° and≤
3mm; 2) with functional data providing near full brain successful
normalization (detailed procedures are provided in the supplementary
materials) for the ICA and the fusion analysis because larger samples
provide more a robust and stable estimation of components (Calhoun
et al., 2001; Calhoun et al., 2009; Li et al., 2009). These criteria resulted
in a total of 113 subjects. Only the HC, AD, and BD groups were further
analyzed in subsequent statistical analyses (31 HCs, 15 patients with
AD and 15 patients with BD).

2.2. Imaging parameters

Participants were scanned during the eyes-closed rest condition.
fMRI Scans were acquired on a 3 T dedicated head scanner (Siemens
TIM Trio). Two different head coils were employed during different
stages of recruitment, a 12-channel radio-frequency (RF) coil and a 32-
channel RF coil with a multi-band sequence. The 12-channel fMRI data
were scanned using gradient-echo echo planar imaging (EPI) which had
FOV=240mm, with a 3.5 mm slice thickness and 30% distance factor,
a 3.75× 3.75mm in-plane resolution, TR=2000ms, TE= 29ms,
anterior-posterior (AP) phase encoding direction, and 165 measure-
ments collected for a total acquisition time of 5.5min. The 32-channel
fMRI data were scanned using a multi-band EPI sequence which had a
FOV=248mm, 3x3x3 mm voxel resolution, multi-band factor= 8,
TR=460ms, TE= 29ms, anterior-posterior phase encoding direction,
and 650 measurements collected for a total acquisition time of 5min.
Data for distortion correction were collected using two additional EPI
spin-echo sequences run in AP and posterior-anterior (PA) phase en-
coding directions. The image resolution, echo-spacing, and bandwidth
of the EPI fMRI sequence and the EPI spin-echo sequence were mat-
ched.

The 12-channel dMRI sequence had 35 gradient directions,
b= 800 s/mm2 and 5 b= 0 measurements for an acquisition time of
6min. The b= 0 measurements were interleaved after every six non-
zero b-value measurements. dMRI data were obtained in the axial di-
rection along the AC–PC line. The FOV was 256×256mm with a 2mm
slice thickness, 72 slices, 128×128 matrix size, voxel
size= 2mm×2mm×2mm, TE=84ms, TR=9000ms, NEX=1,
partial Fourier encoding of 3/4, and with a GRAPPA acceleration factor
of 2. The 32-channel dMRI used a multi-band sequence consisting 165
gradient directions with b-values= 800, 1600, and 2400 s/mm2, and
eight b= 0 values, uniformly distributed over the whole sphere. Data
were collected axially with an approximately equal number of volumes
in the AP/PA phase encoding directions. The diffusion sequence had
2mm isotropic resolution with 72 slices, TR=4000ms, TE= 108ms,
and a multi-band factor, MB=3 (13min).

fMRI preprocessing was performed using a combination of tool-
boxes: AFNI3 (https://afni.nimh.nih.gov), SPM12 (http://www.fil.ion.
ucl.ac.uk/spm/), GIFT4.0b (http://mialab.mrn.org/software/gift), and

custom code written in MATLAB. We performed rigid body motion
correction using the toolbox in SPM to correct subject head motion,
followed by the slice-timing correction to account for timing differences
in slice acquisition. Then the fMRI data were despiked using the AFNI3
3dDespike algorithm to mitigate the impact of outliers. The fMRI data
were subsequently warped to a Montreal Neurological Institute (MNI)
template and were resampled to 3mm3 isotropic voxels. All functional
images were smoothed using a Gaussian kernel (FWHM=6mm). For
the 32-channel fMRI data, additional distortion correction was con-
ducted. A distortion field was calculated from the AP and PA phase-
encoded EPI data by the TOPUP/FSL algorithm (Andersson et al.,
2003). This distortion field was then used to correct the fMRI images.
This was followed by motion correction and spatial normalization steps.
Based on the 6 realignment parameters, we calculated the mean of the
absolute translation and the mean of the absolute rotation for the se-
lected subjects. We compared these head motion parameters among
groups using analysis of variance (ANOVA). The results show that there
is no group difference on the head motion (translation: p= .1566; ro-
tation: p= .2131).

dMRI preprocessing was similar for the 12-channel and the 32-
channel RF coil data. The preprocessing steps consisted of a) Distortion
and Motion correction and b) Quality control check. The data proces-
sing was primarily based on the FSL software (//fsl.fmrib.ox.ac.uk)
with a custom MATLAB routine for quality check. The distortion cor-
rection methods were different for the two coils data sets. In the case of
the 32-channel RF coil, the diffusion data was collected in the AP and
the PA phase encoding directions. We first estimated the distortion field
by the TOPUP/FSL routine based on the reversed phase encoding dif-
fusion data. Then EDDY/FSL together with the distortion field was
applied to correct for distortion as well as motion related artifacts. This
ability to calculate the distortion field was not available for the 12-
channel data. In this case, the FLIRT/FSL algorithm with 12 degrees of
freedom, affine transformation, and mutual information as the cost
function was used for motion correction by registering the images to the
first b= 0 image. This was followed by a MATLAB routine which
checked for signal dropout because of motion and/or the presence of
excessive motion as reported by the motion correction algorithm. A
subject was excluded from further analysis if it had>10% of bad vo-
lumes. Similar to fMRI, we compared the mean of the absolute trans-
lation and the mean of the absolute rotation among groups and found
no group difference on the head motion (translation: p= .3511; rota-
tion: p= .6222).

2.3. Feature extraction

2.3.1. fMRI feature
Functional network connectivity (FNC) between components was

calculated and used as the fMRI feature. Spatial GICA was performed on
preprocessed fMRI data to define the regions of interest. Principal
components analysis (PCA) was firstly performed on each subject to
reduce subject-specific data into 120 principal components which pre-
serve>99% of the variance. Secondly, the first level reduced data were
concatenated and then reduced to 100 principal components using
expectation maximization algorithm (Erhardt et al., 2011). Thirdly, the
infomax algorithm was used to decompose the second level reduced

Table 1
Participant demographics.

Phenotypic HC: Mean (s.d) AD: Mean (s.d) BD: Mean (s.d) P value (ANOVA)

Age (61 subjects) 63.94 (8.19) 66.4667 (8.85) 67.40 (6.13) 0.3253
Executive (61 subjects) 51.42 (4.73) 44.79 (7.15) 40.40 (9.08) 6.38e-7
Memory (61 subjects) 53.25 (10.67) 30.93 (9.93) 47.07 (11.23) 6.50e-8
Attention (61 subjects) 52.84 (7.49) 39.80 (10.40) 40.40 (10.77) 6.04e-6
Language (61 subjects) 54.32 (7.55) 42.86 (9.70) 42.67 (8.40) 1.52e-5
Processing Speed (61 subjects) 55.23 (6.55) 43.42 (12.70) 44.27 (9.42) 7.18e-6
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group data into 100 independent components (ICs) and estimate the
group level spatial maps (SMs). ICASSO was applied on 20 ICA runs and
the best-run was chosen to stabilize the estimation (Ma et al., 2011).
ICASSO is a software package which is capable of investigating the
relations between estimates from ICA (Himberg and Hyvarinen, 2003).
The SMs and their corresponding time-courses (TCs) were back-re-
constructed based on the group SMs using a spatially constrained al-
gorithm called group information guided ICA (GIG-ICA) (Du et al.,
2016; Du and Fan, 2013). We selected a relatively high model order
(number of ICs, C=100) for the functional parcellation of brain
components to probe more detailed inter-connected information of the
functional regions. Using such a high model order is consistent with our
previous static and dynamic FNC studies in other brain disorders
(Damaraju et al., 2014; Fu et al., 2017; Fu et al., 2018; Rashid et al.,
2016; Rashid et al., 2014).

After obtaining subject-specific SMs and TCs of all ICs, one-sample t-
test maps for each SM and the mean power spectra of each TC were
computed. We chose a set of ICs that cover the majority of sub-cortical
and cortical GM as intrinsic connectivity networks (ICNs) for FNC
feature extraction by visual inspection using the same criteria described
in our previous studies (Allen et al., 2014; Damaraju et al., 2014; Fu
et al., 2018; Rashid et al., 2016). That is, those components identified as
ICNs should exhibit peak activations in gray matter, low spatial overlap
with known vascular, ventricular, motion, and susceptibility artifacts,
and should have TCs dominated by low-frequency fluctuations (Allen
et al., 2014). The selected ICNs were categorized into different func-
tional domains according to anatomy and prior knowledge of their
function. We defined additional hippocampal domain because we want
to highlight the hippocampal regions that are typically involved in
dementia studies. It should be noted that the organization of different
ICNs into different functional domains is just used for better visuali-
zation of the results and does not have any influence on the fusion
analysis. Before calculating the FNC between ICNs, the following post-
ICA processing steps were conducted on the TCs to remove remaining
noise sources: 1) detrending linear, quadratic, and cubic trends; 2)
conducting multiple regressions of the 6 realignment parameters and
their temporal derivatives; 3) de-spiking detected outliers; 4) low-pass
filtering with a cut-off frequency of 0.15 Hz. The Pearson correlation
coefficient between TCs was calculated after post-processing as the
measure of the fMRI feature.

2.3.2. dMRI feature
The fractional anisotropy (FA) and the mean diffusivity (MD) maps

were calculated by the DTIFIT/FSL algorithm. The FA images were non-
linearly spatially normalized to an FA MNI template (FNIRT/FSL) and
then this transformation was also applied to the MD images to trans-
form them to the MNI template. This resulted in a 91x109x91 matrix
with the voxel size of 2x2x2 mm for FA and MD maps. The FA and MD
maps were smoothed using a Gaussian kernel (FWHM=6mm) before
the fusion analysis.

2.4. Fusion analysis

Since the data were scanned using two different head coils, before
the fusion analysis, we corrected the head coil effect from the fMRI and
dMRI features. Among 113 subjects used in the fusion analysis, 76
subjects (including 20 HCs, 13 AD patients, 6 BD patients, and 37 other
patients) were scanned with a 32-channel RF coil and 37 subjects (in-
cluding 11 HCs, 2 AD patients, 9 BD patients, and 15 other patients)
were scanned with a 12-channel RF coil. A generalized linear model
(GLM) was applied to the features of 31 HCs to estimate the effect of the
different head coils. We used only the features from HC for the esti-
mation to avoid confounding effects related to diseases. After obtaining
the effect of head coils, we regressed out this effect from all subjects.
The confounding effect of head coils was removed from each feature
(FNC, FA, and MD).

Next, FA and MD feature masks were created to extract significant
dMRI features for fusion analysis. That is, for the FA feature, we cal-
culated the individual mask for each subject by setting voxels which
are> 90% of the whole brain mean to 1. Next, we computed a feature
mask for all subjects by setting voxels which are included in>90% of
the subjects to 1. For the MD feature, we generated a feature mask by
excluding the ventricles and other possible CSF regions. The 2D FNC
feature and the 3D dMRI features (FA and MD inside the feature masks)
of each subject were reshaped into a one-dimensional non-zero vector
and stacked one by one, forming a matrix with dimensions of subject x
[number of features] for each feature, respectively. To make different
features into the same range with the same average sum of squares, the
feature matrix was normalized. We used a single normalization factor
for each feature to guarantee that the relative scaling within a feature
was preserved, but the units between features were the same (Sui et al.,
2011).

The normalized features were jointly analyzed by MCCA, which is
capable of characterizing the linked patterns among different features.
Research has shown that MCCA can detect flexible co-occurring ab-
normalities from different modalities and is a powerful tool to provide
additional information of brain disorders which cannot be captured in
single modality analysis (Correa et al., 2008; Li et al., 2009; Sui et al.,
2015). The flowchart of the MCCA approach is displayed in Fig. 1.
MCCA is an extension of traditional CCA method which is used to find
the optimal transformed coordinate system which can maximize the
correlation between the canonical variants of different data features.
Different from two-way CCA, MCCA is a multiple-stage optimization
method which explores the linear combination of components that
maximizes the correlations between canonical variants in each stage (Li
et al., 2009). Consistent with our previous studies, we used the mod-
ified minimum description length (MDL) criterion to estimate the
number of components for each feature (FNC, FA, and MD) (Li et al.,
2007). The final component number for fusion analysis was set as the
maximum value of the estimated component number for each feature,
which maximally retains the joint information (Sui et al., 2013).

2.5. Correlation analysis and group difference detection

The association between canonical variants of paired-features was
measured by the Pearson correlation coefficient. A permutation test was
conducted to mitigate against overfitting. We permutated each feature
across subjects and then performed MCCA on the permutated data 2000
times. Then we calculated the correlation between canonical variants to
generate the null distribution. If the correlations between canonical
variants of components (regressed out the group label information)
from the original data are larger than 95% of the correlations between
canonical variants from the permutated data, we set these components
as components of interest (COIs). ANOVA was performed on HC, AD,
and BD groups for each canonical variant of COIs (control covariates:
age and gender). If the ANOVA results show significant group difference
in canonical variants, a GLM was applied to examine the effect of di-
agnosis on each canonical variant of COIs (control covariates: age and
gender) between pairs of groups (HC vs. AD, HC vs. BD, and AD vs. BD).

3. Results

3.1. Spatial maps of identified intrinsic connectivity networks

The resulting SMs of ICNs are displayed in Fig. 2. Among 100 es-
timated ICs, 49 of them were identified as ICNs and arranged into 8
different groups based on their anatomical and presumed functional
properties: sub-cortical domain (SC), hippocampal domain (HIP), au-
ditory domain (AUD), visual domain (VIS), sensorimotor domain (SEN),
cognitive-control domain (CC), default-mode domain (DM), and cere-
bellar domain (CER). Our manual organization of ICNs is similar to the
ordering results obtained by various empirical methods, such as
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Fig. 1. Flowchart of the multi-set canonical correlation analysis (MCCA) on multiple features, which enabels capturing multimodal alterations. Step 1: extract
functional network connectivity (FNC) features from fMRI data and fractional anisotropy (FA)/mean diffusivity (MD) features from dMRI data; Step 2: run MCCA
method on these features. The MCCA optimizes an objective function of the correlation matrix of the canonical variants from multiple random vectors such that the
canonical variants achieve maximum overall correlation. The MCCA will separate each feature into canonical variants (Ai) and spatial maps (Ci) and the canonical
variants will have high correlations across modalities. In our present study, the feature matrix of each modality is decomposed into 26 canonical variants and 26
corresponding spatial maps (SMs), M=26. The canonical variants represent how the components distributed in participants. AD, Alzheimer's disease; BD,
Binswanger's disease.

Fig. 2. Spatial maps (SMs) of the 49 identified intrinsic connectivity networks (ICNs), arranged into eight functional domains. The number of ICNs arranged to each
functional domain is provided. Each color in the SMs corresponds to a different ICN. Components labels and peak coordinates are provide in Table S1.
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spectral clustering and modularity optimization (Allen et al., 2014;
Rubinov and Sporns, 2010).

3.2. Feature maps of fMRI and dMRI

We calculated FNC between ICNs as the fMRI feature and voxel-wise
FA and MD maps as the dMRI features for fusion analysis. The mean
FNC, mean FA and mean MD across all subjects are displayed in Fig. 3.
It can be observed that ICNs from the same functional domain are
highly correlated with each other while ICNs from different functional
domains are less correlated or even negatively correlated. We can also
observe clear patterns of fiber density and myelination in WM from the
FA map and the patterns of water diffusion within brain tissue from the
MD map.

3.3. Joint components of interests

The number of components estimated using modified MDL was 26,
18, and 22 for the FNC feature, FA feature and MD feature respectively.
Therefore, we chose M=26 for fusion analysis. Although MCCA was
conducted on the extracted features of interest, for the M=26 case, a
considerable amount of variance was still retained for each feature
(95% for FNC, 98% for FA and 97% for MD). We aimed to investigate
significant joint components of these three features and to explore
whether the joint components discriminate between groups. Among the
26 derived joint components, the first ten components passed the per-
mutation test (p < .05, false discovery rate (FDR) corrected). After
regressing out the label information from the canonical variants, we
found that the correlations between the canonical variants of the first
two components still pass the permutation test (p < .05, FDR cor-
rected). The canonical variants of these two joint components are sig-
nificantly different between groups. The canonical variants of the first
component show significant differences between AD and HC
(p= 7.15×10−4, 0.0126, 0.0282 for FNC, FA and MD respectively,
FDR corrected), between AD and BD (p= .0215, 0.0121, 0.0089 for
FNC, FA and MD respectively, FDR corrected), and between BD and HC
(p= .0343 for MD, FDR corrected). The canonical variants of the
second component show significant differences between BD and HC
groups (p= .0204, 4.93× 10−4, 2.03×10−5 for FNC, FA and MD
respectively, FDR corrected), and between AD and BD (p= .0071,

0.0067, 0.0022 for FNC, FA and MD respectively, FDR corrected). Fig. 4
displays the SMs of the first component, which were adjusted according
to the box plots shown in Fig. 5. The red regions/links in subplots (A)
and (C) of Fig. 4 indicate higher values in AD than in HC/BD and the
blue regions/links in subplots (B) and (C) indicate higher values in HC/
BD than in AD. In subplot (D) of Fig. 4, the red regions indicate a re-
lationship that AD>HC > BD and the blue regions indicate a re-
lationship that AD<HC < BD. Similarly, Fig. 6 displays the SMs of
the second component, in which the red regions/links indicate higher
values in BD than in HC/AD and the blue regions/links indicate higher
values in HC/AD than in BD. For each component, the SMs are trans-
formed into Z scores and visualized at a given threshold (|Z| > 2),
where the highlighted regions have relatively more contribution to this
component (Li et al., 2009; Sui et al., 2012) and are supposed to be
impaired in the patient groups if the corresponding canonical variants
show significant group difference.

It should be noted that, although the difference between BD and HC
in the first component (i.e., significant for MD feature only) and the
difference between AD and HC in the second component are modest,
the AD and BD groups exhibit distinct alteration patterns for both
components. For the first joint component, the AD and BD groups show
changes in opposite directions (compared with the HC group, the ca-
nonical variants of the AD group increased while the canonical variants
of the BD group decreased). In contrast, for the second joint component,
the AD and BD groups generally have similar brain changes but with
different degrees (compared with the HC group, the canonical variants
of the AD and the BD groups both increased in FA and MD). As dis-
played in Figs. 5 and 7, the canonical variants of different features re-
main highly correlated even after regressing out group labels.

The SMs of the first component show that AD has lower FA in body,
genu, and splenium of corpus callosum. No area of increased FA is
observed. AD has higher MD in the medial superior frontal cortex, su-
perior temporal cortex, and temporal pole, and lower MD in the left
superior frontal cortex. Interestingly, BD shows opposite MD changes in
these brain regions. The observed dMRI patterns are highly correlated
with changes in FNC. FNC between the cerebellum and DM and VIS
domains increases in AD while FNC involving the temporal pole, tha-
lamus and hippocampus decreases.

The SMs of the second component show that BD has higher FA in the
middle cingulate cortex (MCC), PCC, precuneus, lingual gyrus and

Fig. 3. Mean of functional network connectivity (FNC) feature, fractional anisotropy (FA) feature, and mean diffusivity (MD) feature across subjects. FNC is caculated
by Pearson correlation coefficient between time-courses (TCs) of indepenedent components (ICs). FA and the MD maps were calculated by the DTIFIT/FSL algorithm.
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cerebral peduncles, and lower FA in anterior corona radiata, internal
capsule, and posterior thalamic radiations. Moreover, the BD group has
significantly increased MD in Heschl's gyrus, hippocampus, middle
temporal cortex, and thalamus. These structural brain changes are as-
sociated with increased MCC/PCC related between-domains FNC and
decreased MCC/PCC related within-domain FNC. Thalamus and lingual
gyrus involving between-domains FNC also decreases in the BD group.

4. Discussion

In this paper, we investigated brain co-alterations from two mod-
alities (fMRI and dMRI) across three diagnostic groups (HC, AD, and
BD). To our knowledge, this is the first study to clarify AD and BD
related brain changes in different MRI modalities via a functional-
structural data fusion model. Note that the joint components with
group-discriminating canonical variants do not mean that all regions
that contribute to the component are significantly impaired. We
transformed the SMs into Z scores and highlighted those regions with

relatively more contribution to the components (|Z| > 2), which are
more likely to be impaired in patients. We found that 1) brain changes
in fMRI FNC, dMRI FA, and dMRI MD are highly correlated with each
other; 2) AD and BD share both similar and different (and in some cases
opposite) functional and structural brain changes. The overall results
demonstrate that investigating multimodal brain imaging data through
fusion analysis might help to capture more brain disorders relevant
information and advance our knowledge of the relationships between
functional and structural abnormalities in the brain.

4.1. Distinct functional and structural brain co-alterations in AD and BD

The SMs of the first component displayed in Fig. 4 show distinct
brain alteration trends between AD and BD groups. Both increased and
decreased cerebellar FNC is observed in the AD group. The cerebellum
is connected to many brain networks and contributes to complex brain
functions, such as cognitive and sensorimotor processing (O'reilly et al.,
2009; Schmahmann et al., 2007). Previous studies have shown that the

Fig. 4. Spatial maps (SMs) of joint component 1 that are significantly group-discriminating. (A)-(B) functional network connectivity (FNC); (C) fractional anisotropy
(FA); (D) mean diffusivity (MD). The SMs visualized at |Z| > 2. The positive values in (A) and (C) represent Alzheimer's disease (AD) > healthy control (HC)/
Binswanger's disease (BD), while the positive values in (D) represent AD>HC > BD. The negative values in (B) and (C) represent AD<HC/BD, while the negative
values in (D) represent AD<HC < BD.
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cerebellar functional connectivity is affected by dementias (Bai et al.,
2011; Castellazzi et al., 2014), especially AD, and such abnormalities
are associated with cognitive decline (Zheng et al., 2017). However, the
findings in cerebellar connectivity are inconsistent and even contra-
dictory to some extent, since both increased and decreased cerebellum
related functional connectivity have been identified in AD (Castellazzi
et al., 2014; Zheng et al., 2017). Our current study performed ICA de-
composition using a high model order which can provide more detailed
functional parcellation of the brain. Both increased and decreased CER
related FNC is identified in AD patients, suggesting that cerebellar
connectivity might have different abnormalities and the definition of
the regions of interest might be a possible source of previous disparities.
The superior medial frontal gyrus also shows atypical FNC in the AD
group, especially with inferior frontal gyrus (IFG), which is consistent
with previous findings on dorsolateral prefrontal cortex (DLPFC) con-
nectivity in AD (Allen et al., 2007; Park et al., 2016; Wang et al., 2006).
DLPFC is highly associated with many cognitive functions which are

commonly affected in AD. The identified increased FNC within the CC
domain might support the hypothesis that AD patients recruit more
resources in the prefrontal cortex to compensate for cognitive function
loss (Grady et al., 2003). Decreased hippocampus FNC (e.g. FNC be-
tween hippocampus and PCC) is found in our study as well, which is
also compatible with the disconnection hypothesis (Wang et al., 2006).

Identified WM changes in the AD group are mainly located in
DLPFC, temporal cortex, and corpus callosum. AD patients have sig-
nificantly decreased FA in genu, body, and splenium of corpus cal-
losum. Similar findings have been reported in previous work on AD
(Douaud et al., 2011). Atypical FA in corpus callosum has been shown
to be a useful measure for monitoring disease progression (Acosta-
Cabronero et al., 2012). It is argued that axon loss in the corpus cal-
losum, a region of usually high anisotropy, will result in a decrease in
the FA of that region (Rose et al., 2000). Wallerian degeneration of
these WM fiber tracts secondary to axon loss is assumed to be a major
contributing factor of WM changes in AD (Bozzali et al., 2002). Our

Fig. 5. Group comparisons of canonical variants of joint component 1 and correlations between canonical variants. Top row: boxplot of canonical variants of each
feature component, with p values of generalized linear model (GLM) test between pair-groups(stars indicate significant group difference after False discovery rate
[FDR] correction). Middle row: Pearson correlations between canonical variants of each feature component and p values of the permutation test. Bottom row:
Pearson correlations between canonical variants of each feature component after regressing out group labels and p values of the permutation test. FNC, functional
network connectivity; FA, fractional anisotropy; MD, mean diffusivity; HC, healthy controls; AD, Alzheimer's disease; BD, Binswanger's disease.
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results are in line with these findings and further show that the FA
changes in AD are highly associated with changes in functional brain
connectivity. These associations might reveal potential relationships
between WM ultrastructural damages and functional brain disconnec-
tions in dementia.

Increased MD in AD is detected in the superior medial frontal gyrus,
superior temporal gyrus (STG) and temporal pole. MD is a common
measure of translational diffusion, which increases in the presence of
tissue damage (Stebbins and Murphy, 2009). MD is suggested to be a
sensitive marker of neurodegeneration related to AD (Henf et al., 2018).
Previous studies have documented a wide range of increased MD in AD,
especially in temporal lobes and frontal lobes (Bozzali et al., 2002; Salat
et al., 2010; Stahl et al., 2007). Our results demonstrate that MD can
have distinct changes in different cortical regions (both increased and
decreased MD were observed in the AD group), which might underlie
different tissue alterations in AD. It should be noted that the temporal
and frontal cortex show both functional and structural changes in the
AD patients and such co-alterations might indicate responses to brain

system injury to, at least temporarily, remediate network organization
to maintain task performance (Bookheimer et al., 2000; Grady et al.,
2003). Another interesting observation in our current study is that AD
group and BD group have opposite MD changes in the temporal and
frontal cortex. Such differences between AD and BD groups suggest that
dysfunction in AD and BD may be caused by distinct types of WM da-
mage.

4.2. Similar functional and structural brain co-alterations in AD and BD

The results in Figs. 6 and 7 show that AD and BD patients also share
similar brain alterations, but such alterations are more severe in the BD
group. FNC between DM and some sensory regions (e.g. regions within
VIS and SEN) increases while FNC within DM decreases in the BD
group. Since DM is anti-correlated with the sensory domains, the higher
correlations represent the weaker negative FNC (closer to zero). In that
case, the atypical DM FNC reveals the diminished connections with the
DM in BD. DM and its functional connectivity are associated with aging

Fig. 6. Spatial maps (SMs) of joint component 2 that are significantly group-discriminating. (A)-(B) functional network connectivity (FNC); (C) fractional anisotropy
(FA); (D) mean diffusivity (MD). The SMs visualized at |Z| > 2. The positive values represent Binswanger's disease (BD) > healthy control (HC)/Alzheimer's disease
(AD), while the negative values represent BD < HC/AD.
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and are also highly affected by AD (Agosta et al., 2012; Jones et al.,
2011; Wang et al., 2007; Wang et al., 2006). AD patients have been
reported both decreased positive functional connectivity within DM and
decreased negative functional connectivity (less negative, closer to
zero) between DM and its anti-correlated networks (Klaassens et al.,
2017; Wang et al., 2006). Such disconnection between DM and the
other brain regions has been interpreted by decreased resting-state DM
activity (Greicius et al., 2004). The identified increased PCC-MCC FA in
the current study might imply decreased DM GM activations in the
patients' groups. Therefore, the positive correlation between decreased
DM FNC and increased DM FA extends the disconnection hypothesis
(Greicius et al., 2004) by showing that functional disconnections might
be mediated through WM damage. Paracentral lobule involved FNC
also shows significant changes (both increased and decreased FNC with
different brain regions) in the BD group. Recent research has reported
increased paracentral lobule functional connectivity in AD (Tucholka
et al., 2018; Zhao et al., 2018). Our results highlight that distinct FNC

changes in the paracentral lobule may be more associated with de-
mentia in BD.

AD and BD patients share similar structural brain changes in some
other brain regions besides those DM regions (PCC-MCC and pre-
cuneus). Compared with the HCs, patients have decreased FA in ante-
rior corona radiate, internal capsule, and posterior thalamic radiation.
Decreased FA in posterior thalamic radiation has been widely reported
in AD (Mayo et al., 2017; Zhu et al., 2015). Our results are in line with
these previous findings and further show that BD patients have more FA
changes in these brain regions, which might be associated with more
severe WM damages. BD patients also show increased FA in lingual
gyrus and cerebral peduncle. Lingual gyrus has been demonstrated to
be highly related to age (Ibrahim et al., 2009) and AD (Yetkin et al.,
2006). The degraded linguistic abilities in some AD patients are re-
ported, even before the onset of the disease (Garrard et al., 2004;
Venneri et al., 2008). The observed atypical FA in lingual gyrus reveals
that such brain damage may be common in BD patients, suggesting that

Fig. 7. Group comparisons of canonical variants of joint component 2 and correlations between canonical variants. Top row: boxplot of canonical variants of each
feature component, with p values of generalized linear model (GLM) test between pair-groups(stars indicate significant group difference after False discovery rate
[FDR] correction). Middle row: Pearson correlations between canonical variants of each feature component and p values of the permutation test. Bottom row:
Pearson correlations between canonical variants of each feature component after regressing out group labels and p values of the permutation test. FNC, functional
network connectivity; FA, fractional anisotropy; MD, mean diffusivity; HC, healthy controls; AD, Alzheimer's disease; BD, Binswanger's disease.
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BD might also result in degraded linguistic abilities.
The thalamus and middle temporal gyrus have significant increased

MD, but decreased FNC between them, especially in BD patients.
Increased MD indicates tissue structural damage in these regions, which
might further result in alterations of structural connections between
them. Previous studies have combined resting-state fMRI with dMRI to
demonstrate that resting-state functional connectivity reflects a large
degree of underlying structural connectivity (Greicius et al., 2009).
Therefore, damage to WM might result in both changes in MD through
the loss of barriers to free diffusion (Stebbins and Murphy, 2009) and
changes in functional connectivity through the alterations of structural
connections. AD and BD patients have increased MD in some other
regions, including Heschl's gyrus and hippocampus. Hippocampus is
one of the major neural structures involving episodic memory, which is
severely impaired by AD and other dementias (Rosenberg, 2017;
Soininen and Scbeltens, 1998). The MD value of hippocampus is a
sensitive measure of early degeneration in AD and it has great dis-
criminating power between AD and normal aging (Kantarci et al., 2001;
Kavcic et al., 2008; Li et al., 2013; Rose et al., 2008; Stebbins and
Murphy, 2009). Our current study reveals the presence of hippocampus
MD alterations in both AD and BD (although it is only significant for
BD), suggesting hippocampus WM changes to be a common cause of
memory impairments in different types of dementia.

5. Potential limitations and future directions

In this study, we used GICA and MCCA to investigate multimodal
brain alterations in AD and BD. GICA and MCCA are two data-driven
decomposition approaches that identify brain components based on the
co-varying patterns of the brain. One limitation of our study is the re-
latively small sample size of the targeted groups (HC, AD, and BD).
Therefore, we have taken careful steps to maximize reliability. First, we
used all available subjects, including HC, AD, BD, and the other patients
in the GICA. Previous studies have shown that individual subject results
are well captured within GICA (Allen et al., 2012; Du and Fan, 2013).
The identified ICNs in the present studies are highly consistent with
previous high-model order ICA studies (Allen et al., 2014; Damaraju
et al., 2014; Fu et al., 2017; Fu et al., 2018), indicating that the defined
components are very common and not biased by specific types of brain
disorders. We also provided GICA results using only the targeted groups
(61 subjects) in the supplementary materials and the overall results
supported our arguments that more subjects in the GICA can provide
more reliable estimates and the FNC features are not biased by the other
patient groups. Second, we included all subjects with good data quality
in the MCCA for capturing reliable co-varying components. We per-
formed a permutation test for identifying the components of interesting.
The results showed that, although the joint components were estimated
using all available subjects, significant inter-modalities correlations
were observed within the target groups, even the group labels have
been regressed out (passed the permutation test, FDR corrected). These
results demonstrated that identified joint components capture the real
inter-subjects co-variability of the targeted subjects, which is not in-
fluenced by the group labels and the overfitting of the fusion method.
Third, we regressed out age, gender, and head coil effects during the
analysis to remove any potential confounding effects that might have
influences on the results. We view this study as the discovery phase for
potential biomarkers because all the analysis in this study can be easily
implemented to compute features from new coming subjects, and this
provides an attractive framework going forward for leveraging and
applying the identified neuroimaging features to new data.

This manuscript is based on a dataset collected from an ongoing
VCID study, in which new subjects are continuously recruited.
Therefore, we would like to validate our current observations using
more subjects in the future. Another limitation is our current study only
focused on the statistical difference among groups. Whether such group
differences are valuable biomarkers for clinical diagnosis should be

considered and investigated in future studies with more subjects and
greater statistical power. Patients with psychiatric diseases are used in
the GICA and the fusion analysis but are not investigated through sta-
tistical analysis because of the limited number of subjects (≤ 8 after
subject selections). We can extend our analysis to search for potential
multimodal brain alterations for psychiatric diseases when more sub-
jects with psychiatric diseases have been recruited.

6. Conclusion

In this study, we used a multivariate method to investigate brain co-
alterations in AD and BD. This is the first study to link functional and
structural brain abnormalities in different types of dementia using data
fusion. The results show that patients with AD and patients with BD
exhibit similar brain changes in middle and posterior cingulate cortex,
lingual gyrus, thalamus, thalamic radiation, Heschl's gyrus, and hip-
pocampus, but also have distinct brain alterations in callosum, some
superior frontal, and temporal regions. Our current work provides
evidence of both commonalities and differences in functional brain
connectivity and in WM integrity between the dementia groups, and
point to the use of fusion analysis using multimodal features as a
powerful tool for characterizing linked alterations in brain structure
and function.

Acknowledgments

This work is supported by the National Institutes of Health (NIH)
grants (1UH2NS100598-01, PI: Rosenberg; R01EB006841,
R01REB020407, and P20GM103472, PI: Calhoun).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2019.101937.

References

Alzheimer's, A., 2015. 2015 Alzheimer's disease facts and figures. Alzheimers Dement. 11,
332. https://doi.org/10.1016/j.jalz.2015.02.003.

Acosta-Cabronero, J., Alley, S., Williams, G.B., Pengas, G., Nestor, P.J., 2012. Diffusion
tensor metrics as biomarkers in Alzheimer's disease. PLoS One 7, e49072. https://doi.
org/10.1371/journal.pone.0049072.

Agosta, F., Pievani, M., Geroldi, C., Copetti, M., Frisoni, G.B., Filippi, M., 2012. Resting
state fMRI in Alzheimer's disease: beyond the default mode network. Neurobiol.
Aging 33, 1564–1578. https://doi.org/10.1016/j.neurobiolaging.2011.06.007.

Allen, G., Barnard, H., McColl, R., Hester, A.L., Fields, J.A., Weiner, M.F., Ringe, W.K.,
Lipton, A.M., Brooker, M., McDonald, E., 2007. Reduced hippocampal functional
connectivity in Alzheimer disease. Arch. Neurol. 64, 1482–1487. https://doi.org/10.
1001/archneur.64.10.1482.

Allen, E.A., Erhardt, E.B., Wei, Y., Eichele, T., Calhoun, V.D., 2012. Capturing inter-
subject variability with group independent component analysis of fMRI data: a si-
mulation study. Neuroimage. 59, 4141–4159. https://doi.org/10.1016/j.
neuroimage.2011.10.010.

Allen, E.A., Damaraju, E., Plis, S.M., Erhardt, E.B., Eichele, T., Calhoun, V.D., 2014.
Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24,
663–676. https://doi.org/10.1093/cercor/bhs352.

Andersson, J.L., Skare, S., Ashburner, J., 2003. How to correct susceptibility distortions in
spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage
20, 870–888. https://doi.org/10.1016/S1053-8119(03)00336-7.

Association, A. P, 2013. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®).
American Psychiatric Pub.

Bai, F., Liao, W., Watson, D.R., Shi, Y., Yuan, Y., Cohen, A.D., Xie, C., Wang, Y., Yue, C.,
Teng, Y., 2011. Mapping the altered patterns of cerebellar resting-state function in
longitudinal amnestic mild cognitive impairment patients. J. Alzheimers Dis. 23,
87–99. https://doi.org/10.3233/JAD-2010-101533.

Bennett, D.A., Wilson, R.S., Gilley, D.W., Fox, J.H., 1990. Clinical diagnosis of
Binswanger's disease. J. Neurol. Neurosurg. Psychiatry 53, 961–965. https://doi.org/
10.1136/jnnp.53.11.961.

Bondi, M.W., Edmonds, E.C., Jak, A.J., Clark, L.R., Delano-Wood, L., McDonald, C.R.,
Nation, D.A., Libon, D.J., Au, R., Galasko, D., 2014. Neuropsychological criteria for
mild cognitive impairment improves diagnostic precision, biomarker associations,
and progression rates. J. Alzheimers Dis. 42, 275–289. https://doi.org/10.3233/JAD-
140276.

Bookheimer, S.Y., Strojwas, M.H., Cohen, M.S., Saunders, A.M., Pericak-Vance, M.A.,

Z. Fu, et al. NeuroImage: Clinical 26 (2020) 101937

11

https://doi.org/10.1016/j.nicl.2019.101937
https://doi.org/10.1016/j.nicl.2019.101937
https://doi.org/10.1016/j.jalz.2015.02.003
https://doi.org/10.1371/journal.pone.0049072
https://doi.org/10.1371/journal.pone.0049072
https://doi.org/10.1016/j.neurobiolaging.2011.06.007
https://doi.org/10.1001/archneur.64.10.1482
https://doi.org/10.1001/archneur.64.10.1482
https://doi.org/10.1016/j.neuroimage.2011.10.010
https://doi.org/10.1016/j.neuroimage.2011.10.010
https://doi.org/10.1093/cercor/bhs352
https://doi.org/10.1016/S1053-8119(03)00336-7
http://refhub.elsevier.com/S2213-1582(19)30287-6/rf0040
http://refhub.elsevier.com/S2213-1582(19)30287-6/rf0040
https://doi.org/10.3233/JAD-2010-101533
https://doi.org/10.1136/jnnp.53.11.961
https://doi.org/10.1136/jnnp.53.11.961
https://doi.org/10.3233/JAD-140276
https://doi.org/10.3233/JAD-140276


Mazziotta, J.C., Small, G.W., 2000. Patterns of brain activation in people at risk for
Alzheimer's disease. N. Engl. J. Med. 343, 450–456. https://doi.org/10.1056/
Nejm200008173430701.

Bozzali, M., Falini, A., Franceschi, M., Cercignani, M., Zuffi, M., Scotti, G., Comi, G.,
Filippi, M., 2002. White matter damage in Alzheimer's disease assessed in vivo using
diffusion tensor magnetic resonance imaging. J. Neurol. Neurosurg. Psychiatry 72,
742–746. https://doi.org/10.1136/jnnp.72.6.742.

Calhoun, V.D., Sui, J., 2016. Multimodal fusion of brain imaging data: A key to finding
the missing link (s) in complex mental illness. Biol. Psychiatry 1, 230–244. https://
doi.org/10.1016/j.bpsc.2015.12.005.

Calhoun, V.D., Adali, T., Pearlson, G.D., Pekar, J., 2001. A method for making group
inferences from functional MRI data using independent component analysis. Hum.
Brain Mapp. 14, 140–151. https://doi.org/10.1002/Hbm.1048.

Calhoun, V., Adali, T., Giuliani, N., Pekar, J., Kiehl, K., Pearlson, G., 2006. Method for
multimodal analysis of independent source differences in schizophrenia: combining
gray matter structural and auditory oddball functional data. Hum. Brain Mapp. 27,
47–62. https://doi.org/10.1002/hbm.20166.

Calhoun, V.D., Liu, J., Adalı, T., 2009. A review of group ICA for fMRI data and ICA for
joint inference of imaging, genetic, and ERP data. Neuroimage. 45, S163–S172.
https://doi.org/10.1016/j.neuroimage.2008.10.057.

Castellazzi, G., Palesi, F., Casali, S., Vitali, P., Sinforiani, E., Wheeler-Kingshott, C.A.,
D'Angelo, E., 2014. A comprehensive assessment of resting state networks: bidirec-
tional modification of functional integrity in cerebro-cerebellar networks in de-
mentia. Front. Neurosci. 8, 223. https://doi.org/10.3389/fnins.2014.00223.

Celone, K.A., Calhoun, V.D., Dickerson, B.C., Atri, A., Chua, E.F., Miller, S.L., DePeau, K.,
Rentz, D.M., Selkoe, D.J., Blacker, D., 2006. Alterations in memory networks in mild
cognitive impairment and Alzheimer's disease: an independent component analysis.
J. Neurosci. 26, 10222–10231. https://doi.org/10.1523/JNEUROSCI.2250-06.2006.

Challis, E., Hurley, P., Serra, L., Bozzali, M., Oliver, S., Cercignani, M., 2015. Gaussian
process classification of Alzheimer's disease and mild cognitive impairment from
resting-state fMRI. Neuroimage. 112, 232–243. https://doi.org/10.1016/j.
neuroimage.2015.02.037.

Chua, T.C., Wen, W., Slavin, M.J., Sachdev, P.S., 2008. Diffusion tensor imaging in mild
cognitive impairment and Alzheimer's disease: a review. Curr. Opin. Neurol. 21,
83–92. https://doi.org/10.1097/WCO.0b013e3282f4594b.

Chui, H.C., 2007. Subcortical ischemic vascular dementia. Neurol. Clin. 25, 717–740.
https://doi.org/10.1016/j.ncl.2007.04.003.

Correa, N.M., Li, Y.-O., Adali, T., Calhoun, V.D., 2008. Canonical correlation analysis for
feature-based fusion of biomedical imaging modalities and its application to detec-
tion of associative networks in schizophrenia. IEEE J.Select. Topics Signal Process. 2,
998–1007. https://doi.org/10.1109/JSTSP.2008.2008265.

Correa, N.M., Adali, T., Li, Y.-O., Calhoun, V.D., 2010a. Canonical correlation analysis for
data fusion and group inferences. IEEE Signal Process. Mag. 27, 39–50. https://doi.
org/10.1109/MSP.2010.936725.

Correa, N.M., Eichele, T., Adalı, T., Li, Y.-O., Calhoun, V.D., 2010b. Multi-set canonical
correlation analysis for the fusion of concurrent single trial ERP and functional MRI.
Neuroimage. 50, 1438–1445. https://doi.org/10.1016/j.neuroimage.2010.01.062.

Corriveau, R.A., Bosetti, F., Emr, M., Gladman, J.T., Koenig, J.I., Moy, C.S., Pahigiannis,
K., Waddy, S.P., Koroshetz, W., 2016. The science of vascular contributions to cog-
nitive impairment and dementia (VCID): a framework for advancing research prio-
rities in the cerebrovascular biology of cognitive decline. Cell. Mol. Neurobiol. 36,
281–288. https://doi.org/10.1007/s10571-016-0334-7.

Croitor-Sava, A., Martinez-Bisbal, M., Laudadio, T., Piquer, J., Celda, B., Heerschap, A.,
Sima, D., Van Huffel, S., 2011. Fusing in vivo and ex vivo NMR sources of information
for brain tumor classification. Meas. Sci. Technol. 22, 114012. https://doi.org/10.
1088/0957-0233/22/11/114012.

Dai, Z., Yan, C., Wang, Z., Wang, J., Xia, M., Li, K., He, Y., 2012. Discriminative analysis
of early Alzheimer's disease using multi-modal imaging and multi-level character-
ization with multi-classifier (M3). Neuroimage. 59, 2187–2195. https://doi.org/10.
1016/j.neuroimage.2011.10.003.

Damaraju, E., Allen, E., Belger, A., Ford, J., McEwen, S., Mathalon, D., Mueller, B.,
Pearlson, G., Potkin, S., Preda, A., 2014. Dynamic functional connectivity analysis
reveals transient states of dysconnectivity in schizophrenia. NeuroImage Clin. 5,
298–308. https://doi.org/10.1016/j.nicl.2014.07.003.

Delbeuck, X., Van der Linden, M., Collette, F., 2003. Alzheimer'disease as a disconnection
syndrome? Neuropsychol. Rev. 13, 79–92. https://doi.org/10.1023/
A:1023832305702.

Douaud, G., Jbabdi, S., Behrens, T.E., Menke, R.A., Gass, A., Monsch, A.U., Rao, A.,
Whitcher, B., Kindlmann, G., Matthews, P.M., 2011. DTI measures in crossing-fibre
areas: increased diffusion anisotropy reveals early white matter alteration in MCI and
mild Alzheimer's disease. Neuroimage 55, 880–890. https://doi.org/10.1016/j.
neuroimage.2010.12.008.

Du, Y., Fan, Y., 2013. Group information guided ICA for fMRI data analysis. Neuroimage.
69, 157–197. https://doi.org/10.1016/j.neuroimage.2012.11.008.

Du, Y., Allen, E.A., He, H., Sui, J., Wu, L., Calhoun, V.D., 2016. Artifact removal in the
context of group ICA: A comparison of single-subject and group approaches. Hum.
Brain Mapp. 37, 1005–1025. https://doi.org/10.1002/hbm.23086.

Dyrba, M., Grothe, M., Kirste, T., Teipel, S.J., 2015. Multimodal analysis of functional and
structural disconnection in Alzheimer's disease using multiple kernel SVM. Hum.
Brain Mapp. 36, 2118–2131. https://doi.org/10.1002/hbm.22759.

Engelhardt, E., Moreira, D.M., Alves, G.S., Lanna, M.E.O., Alves, C.E.D.O., Ericeira-
Valente, L., Sudo, F.K., Laks, J., 2009. Binswanger's disease and quantitative frac-
tional anisotropy. Arq. Neuropsiquiatr. 67, 179–184. https://doi.org/10.1590/
S1980-57642009DN20400008.

Erhardt, E.B., Rachakonda, S., Bedrick, E.J., Allen, E.A., Adali, T., Calhoun, V.D., 2011.
Comparison of multi-subject ICA methods for analysis of fMRI data. Hum. Brain

Mapp. 32, 2075–2095. https://doi.org/10.1002/hbm.21170.
Erkinjuntti, T., 2002. Diagnosis and Management of Vascular Cognitive Impairment and

Dementia. Springer, Stroke-Vascular Diseases, pp. 91–109.
Fazekas, F., Chawluk, J.B., Alavi, A., Hurtig, H.I., Zimmerman, R.A., 1987. MR signal

abnormalities at 1.5 T in Alzheimer's dementia and normal aging. Am. J. Roentgenol.
149, 351–356. https://doi.org/10.2214/ajr.149.2.351.

Ferman, T.J., Smith, G.E., Kantarci, K., Boeve, B.F., Pankratz, V.S., Dickson, D.W., Graff-
Radford, N.R., Wszolek, Z., Van Gerpen, J., Uitti, R., 2013. Nonamnestic mild cog-
nitive impairment progresses to dementia with Lewy bodies. Neurology 81,
2032–2038. https://doi.org/10.1212/01.wnl.0000436942.55281.47.

Fu, Z., Tu, Y., Di, X., Du, Y., Pearlson, G., Turner, J., Biswal, B.B., Zhang, Z., Calhoun, V.,
2017. Characterizing dynamic amplitude of low-frequency fluctuation and its re-
lationship with dynamic functional connectivity: an application to schizophrenia.
Neuroimage 180, 619–631. https://doi.org/10.1016/j.neuroimage.2017.09.035.

Fu, Z., Tu, Y., Di, X., Du, Y., Sui, J., Biswal, B.B., Zhang, Z., de Lacy, N., Calhoun, V., 2018.
Transient increased thalamic-sensory connectivity and decreased whole-brain dyna-
mism in autism. NeuroImage. https://doi.org/10.1016/j.neuroimage.2018.06.003.

Garrard, P., Maloney, L.M., Hodges, J.R., Patterson, K., 2004. The effects of very early
Alzheimer's disease on the characteristics of writing by a renowned author. Brain
128, 250–260. https://doi.org/10.1093/brain/awh341.

Grady, C.L., McIntosh, A.R., Beig, S., Keightley, M.L., Burian, H., Black, S.E., 2003.
Evidence from functional neuroimaging of a compensatory prefrontal network in
Alzheimer's disease. J. Neurosci. 23, 986–993. https://doi.org/10.1523/JNEUROSCI.
23-03-00986.2003.

Graña, M., Termenon, M., Savio, A., Gonzalez-Pinto, A., Echeveste, J., Pérez, J., Besga, A.,
2011. Computer aided diagnosis system for Alzheimer disease using brain diffusion
tensor imaging features selected by Pearson's correlation. Neurosci. Lett. 502,
225–229. https://doi.org/10.1016/j.neulet.2011.07.049.

Greicius, M.D., Srivastava, G., Reiss, A.L., Menon, V., 2004. Default-mode network ac-
tivity distinguishes Alzheimer's disease from healthy aging: evidence from functional
MRI. Proc. Natl. Acad. Sci. U. S. A. 101, 4637–4642. https://doi.org/10.1073/pnas.
0308627101.

Greicius, M.D., Supekar, K., Menon, V., Dougherty, R.F., 2009. Resting-state functional
connectivity reflects structural connectivity in the default mode network. Cereb.
Cortex 19, 72–78. https://doi.org/10.1093/cercor/bhn059.

Henf, J., Grothe, M.J., Brueggen, K., Teipel, S., Dyrba, M., 2018. Mean diffusivity in
cortical gray matter in Alzheimer's disease: the importance of partial volume cor-
rection. NeuroImage Clin. 17, 579–586. https://doi.org/10.1016/j.nicl.2017.10.005.

Himberg, J., Hyvarinen, A., 2003. Icasso: software for investigating the reliability of ICA
estimates by clustering and visualization. In: 2003 IEEE XIII Workshop on Neural
Networks for Signal Processing (IEEE Cat. No. 03TH8718). IEEE, pp. 259–268.

Hoptman, M.J., Zuo, X.-N., Butler, P.D., Javitt, D.C., D'Angelo, D., Mauro, C.J., Milham,
M.P., 2010. Amplitude of low-frequency oscillations in schizophrenia: a resting state
fMRI study. Schizophr. Res. 117, 13–20. https://doi.org/10.1016/j.schres.2009.09.
030.

Huisa, B.N., Rosenberg, G.A., 2014. Binswanger's disease: toward a diagnosis agreement
and therapeutic approach. Expert. Rev. Neurother. 14, 1203–1213. https://doi.org/
10.1586/14737175.2014.956726.

Ibrahim, I., Horacek, J., Bartos, A., Hajek, M., Ripova, D., Brunovsky, M., Tintera, J.,
2009. Combination of voxel based morphometry and diffusion tensor imaging in
patients with Alzheimer's disease. Neuroendocrinol. Lett. 30, 39–45.

Jack, C.R., Bennett, D.A., Blennow, K., Carrillo, M.C., Dunn, B., Haeberlein, S.B.,
Holtzman, D.M., Jagust, W., Jessen, F., Karlawish, J., 2018. NIA-AA research fra-
mework: toward a biological definition of Alzheimer's disease. Alzheimers Dement.
14, 535–562. https://doi.org/10.1016/j.jalz.2018.02.018.

Jones, D., Machulda, M.M., Vemuri, P., McDade, E., Zeng, G., Senjem, M., Gunter, J.,
Przybelski, S., Avula, R., Knopman, D.S., 2011. Age-related changes in the default
mode network are more advanced in Alzheimer disease. Neurology. 77, 1524–1531.
https://doi.org/10.1212/WNL.0b013e318233b33d.

Jung, W.B., Lee, Y.M., Kim, Y.H., Mun, C.-W., 2015. Automated classification to predict
the progression of Alzheimer's disease using whole-brain Volumetry and DTI.
Psychiatry Investig. 12, 92–102. https://doi.org/10.4306/pi.2015.12.1.92.

Kalaria, R.N., Maestre, G.E., Arizaga, R., Friedland, R.P., Galasko, D., Hall, K., Luchsinger,
J.A., Ogunniyi, A., Perry, E.K., Potocnik, F., 2008. Alzheimer's disease and vascular
dementia in developing countries: prevalence, management, and risk factors. Lancet
Neurol. 7, 812–826. https://doi.org/10.1016/S1474-4422(08)70169-8.

Kantarci, K., Jack Jr., C.R., Xu, Y.C., Campeau, N.G., O'Brien, P.C., Smith, G.E., Ivnik, R.J.,
Boeve, B.F., Kokmen, E., Tangalos, E.G., 2001. Mild cognitive impairment and
Alzheimer disease: regional diffusivity of water. Radiology 219, 101–107. https://
doi.org/10.1148/radiology.219.1.r01ap14101.

Kantarci, K., Avula, R., Senjem, M., Samikoglu, A., Zhang, B., Weigand, S., Przybelski, S.,
Edmonson, H.A., Vemuri, P., Knopman, D.S., 2010. Dementia with Lewy bodies and
Alzheimer disease neurodegenerative patterns characterized by DTI. Neurology 74,
1814–1821. https://doi.org/10.1212/WNL.0b013e3181e0f7cf.

Kavcic, V., Ni, H., Zhu, T., Zhong, J., Duffy, C.J., 2008. White matter integrity linked to
functional impairments in aging and early Alzheimer's disease. Alzheimer's Dementia
4, 381–389. https://doi.org/10.1016/j.jalz.2008.07.001.

Khazaee, A., Ebrahimzadeh, A., Babajani-Feremi, A., 2015. Identifying patients with
Alzheimer's disease using resting-state fMRI and graph theory. Clin. Neurophysiol.
126, 2132–2141. https://doi.org/10.1016/j.clinph.2015.02.060.

Klaassens, B.L., van Gerven, J., van der Grond, J., de Vos, F., Möller, C., Rombouts, S.A.,
2017. Diminished posterior precuneus connectivity with the default mode network
differentiates normal aging from Alzheimer's disease. Front. Aging Neurosci. 9, 97.
https://doi.org/10.3389/fnagi.2017.00097.

Lahat, D., Adali, T., Jutten, C., 2015. Multimodal data fusion: an overview of methods,
challenges, and prospects. Proc. IEEE 103, 1449–1477. https://doi.org/10.1109/

Z. Fu, et al. NeuroImage: Clinical 26 (2020) 101937

12

https://doi.org/10.1056/Nejm200008173430701
https://doi.org/10.1056/Nejm200008173430701
https://doi.org/10.1136/jnnp.72.6.742
https://doi.org/10.1016/j.bpsc.2015.12.005
https://doi.org/10.1016/j.bpsc.2015.12.005
https://doi.org/10.1002/Hbm.1048
https://doi.org/10.1002/hbm.20166
https://doi.org/10.1016/j.neuroimage.2008.10.057
https://doi.org/10.3389/fnins.2014.00223
https://doi.org/10.1523/JNEUROSCI.2250-06.2006
https://doi.org/10.1016/j.neuroimage.2015.02.037
https://doi.org/10.1016/j.neuroimage.2015.02.037
https://doi.org/10.1097/WCO.0b013e3282f4594b
https://doi.org/10.1016/j.ncl.2007.04.003
https://doi.org/10.1109/JSTSP.2008.2008265
https://doi.org/10.1109/MSP.2010.936725
https://doi.org/10.1109/MSP.2010.936725
https://doi.org/10.1016/j.neuroimage.2010.01.062
https://doi.org/10.1007/s10571-016-0334-7
https://doi.org/10.1088/0957-0233/22/11/114012
https://doi.org/10.1088/0957-0233/22/11/114012
https://doi.org/10.1016/j.neuroimage.2011.10.003
https://doi.org/10.1016/j.neuroimage.2011.10.003
https://doi.org/10.1016/j.nicl.2014.07.003
https://doi.org/10.1023/A:1023832305702
https://doi.org/10.1023/A:1023832305702
https://doi.org/10.1016/j.neuroimage.2010.12.008
https://doi.org/10.1016/j.neuroimage.2010.12.008
https://doi.org/10.1016/j.neuroimage.2012.11.008
https://doi.org/10.1002/hbm.23086
https://doi.org/10.1002/hbm.22759
https://doi.org/10.1590/S1980-57642009DN20400008
https://doi.org/10.1590/S1980-57642009DN20400008
https://doi.org/10.1002/hbm.21170
http://refhub.elsevier.com/S2213-1582(19)30287-6/rf0185
http://refhub.elsevier.com/S2213-1582(19)30287-6/rf0185
https://doi.org/10.2214/ajr.149.2.351
https://doi.org/10.1212/01.wnl.0000436942.55281.47
https://doi.org/10.1016/j.neuroimage.2017.09.035
https://doi.org/10.1016/j.neuroimage.2018.06.003
https://doi.org/10.1093/brain/awh341
https://doi.org/10.1523/JNEUROSCI.23-03-00986.2003
https://doi.org/10.1523/JNEUROSCI.23-03-00986.2003
https://doi.org/10.1016/j.neulet.2011.07.049
https://doi.org/10.1073/pnas.0308627101
https://doi.org/10.1073/pnas.0308627101
https://doi.org/10.1093/cercor/bhn059
https://doi.org/10.1016/j.nicl.2017.10.005
http://refhub.elsevier.com/S2213-1582(19)30287-6/rf0240
http://refhub.elsevier.com/S2213-1582(19)30287-6/rf0240
http://refhub.elsevier.com/S2213-1582(19)30287-6/rf0240
https://doi.org/10.1016/j.schres.2009.09.030
https://doi.org/10.1016/j.schres.2009.09.030
https://doi.org/10.1586/14737175.2014.956726
https://doi.org/10.1586/14737175.2014.956726
http://refhub.elsevier.com/S2213-1582(19)30287-6/rf0255
http://refhub.elsevier.com/S2213-1582(19)30287-6/rf0255
http://refhub.elsevier.com/S2213-1582(19)30287-6/rf0255
https://doi.org/10.1016/j.jalz.2018.02.018
https://doi.org/10.1212/WNL.0b013e318233b33d
https://doi.org/10.4306/pi.2015.12.1.92
https://doi.org/10.1016/S1474-4422(08)70169-8
https://doi.org/10.1148/radiology.219.1.r01ap14101
https://doi.org/10.1148/radiology.219.1.r01ap14101
https://doi.org/10.1212/WNL.0b013e3181e0f7cf
https://doi.org/10.1016/j.jalz.2008.07.001
https://doi.org/10.1016/j.clinph.2015.02.060
https://doi.org/10.3389/fnagi.2017.00097
https://doi.org/10.1109/Jproc.2015.2460697


Jproc.2015.2460697.
Li, Y.O., Adalı, T., Calhoun, V.D., 2007. Estimating the number of independent compo-

nents for functional magnetic resonance imaging data. Hum. Brain Mapp. 28,
1251–1266. https://doi.org/10.1002/hbm.20359.

Li, Y.-O., Adali, T., Wang, W., Calhoun, V.D., 2009. Joint blind source separation by
multiset canonical correlation analysis. IEEE Trans. Signal Process. 57, 3918–3929.
https://doi.org/10.1109/Tsp.2009.2021636.

Li, Y.-D., Dong, H.-B., Xie, G.-M., Zhang, L.-j., 2013. Discriminative analysis of mild
Alzheimer's disease and normal aging using volume of hippocampal subfields and
hippocampal mean diffusivity: an in vivo magnetic resonance imaging study. Am. J.
Alzheimers Dis. Other Dement. 28, 627–633. https://doi.org/10.1177/
1533317513494452.

Loewenstein, D.A., Acevedo, A., Small, B.J., Agron, J., Crocco, E., Duara, R., 2009.
Stability of different subtypes of mild cognitive impairment among the elderly over a
2-to 3-year follow-up period. Dement. Geriatr. Cogn. Disord. 27, 418–423. https://
doi.org/10.1159/000211803.

Ma, S., Correa, N.M., Li, X.-L., Eichele, T., Calhoun, V.D., Adali, T., 2011. Automatic
identification of functional clusters in FMRI data using spatial dependence. IEEE
Trans. Biomed. Eng. 58, 3406–3417. https://doi.org/10.1109/Tbme.2011.2167149.

Mayo, C.D., Mazerolle, E.L., Ritchie, L., Fisk, J.D., Gawryluk, J.R., Initiative, A. s. D. N.,
2017. Longitudinal changes in microstructural white matter metrics in Alzheimer's
disease. NeuroImage Clin. 13, 330–338. https://doi.org/10.1016/j.nicl.2016.12.012.

McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., Stadlan, E.M., 1984.
Clinical diagnosis of Alzheimer's disease report of the NINCDS-ADRDA Work Group*
under the auspices of Department of Health and Human Services Task Force on
Alzheimer's Disease. Neurology 34, 939. https://doi.org/10.1212/WNL.34.7.939.

McKhann, G.M., Knopman, D.S., Chertkow, H., Hyman, B.T., Jack Jr., C.R., Kawas, C.H.,
Klunk, W.E., Koroshetz, W.J., Manly, J.J., Mayeux, R., 2011. The diagnosis of de-
mentia due to Alzheimer's disease: recommendations from the National Institute on
Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's
disease. Alzheimers Dement. 7, 263–269. https://doi.org/10.1016/j.jalz.2011.03.
005.

O'reilly, J.X., Beckmann, C.F., Tomassini, V., Ramnani, N., Johansen-Berg, H., 2009.
Distinct and overlapping functional zones in the cerebellum defined by resting state
functional connectivity. Cereb. Cortex 20, 953–965. https://doi.org/10.1093/cercor/
bhp157.

Parente, D.B., Gasparetto, E.L., da Cruz Jr., L.C., Domingues, R.C., Baptista, A.C.,
Carvalho, A.C., Domingues, R.C., 2008. Potential role of diffusion tensor MRI in the
differential diagnosis of mild cognitive impairment and Alzheimer's disease. AJR Am.
J. Roentgenol. 190, 1369–1374. https://doi.org/10.2214/AJR.07.2617.

Park, B.-Y., Kim, M., Seo, J., Lee, J.-M., Park, H., 2016. Connectivity analysis and feature
classification in attention deficit hyperactivity disorder sub-types: a task functional
magnetic resonance imaging study. Brain Topogr. 29, 429–439. https://doi.org/10.
1007/s10548-015-0463-1.

Potkin, S., Turner, J., Brown, G., McCarthy, G., Greve, D., Glover, G., Manoach, D., Belger,
A., Diaz, M., Wible, C., 2008. Working memory and DLPFC inefficiency in schizo-
phrenia: the FBIRN study. Schizophr. Bull. 35, 19–31. https://doi.org/10.1093/
schbul/sbn162.

Prasad, G., Joshi, S.H., Nir, T.M., Toga, A.W., Thompson, P.M., 2015. Brain connectivity
and novel network measures for Alzheimer's disease classification. Neurobiol. Aging
36, S121–S131. https://doi.org/10.1016/j.neurobiolaging.2014.04.037.

Rashid, B., Damaraju, E., Pearlson, G.D., Calhoun, V.D., 2014. Dynamic connectivity
states estimated from resting fMRI identify differences among schizophrenia, bipolar
disorder, and healthy control subjects. Front. Hum. Neurosci. 8, 897. https://doi.org/
10.3389/Fnhum.2014.00897.

Rashid, B., Arbabshirani, M.R., Damaraju, E., Cetin, M.S., Miller, R., Pearlson, G.D.,
Calhoun, V.D., 2016. Classification of schizophrenia and bipolar patients using static
and dynamic resting-state fMRI brain connectivity. Neuroimage. 134, 645–657.
https://doi.org/10.1016/j.neuroimage.2016.04.051.

Rose, S.E., Chen, F., Chalk, J.B., Zelaya, F.O., Strugnell, W.E., Benson, M., Semple, J.,
Doddrell, D.M., 2000. Loss of connectivity in Alzheimer's disease: an evaluation of
white matter tract integrity with colour coded MR diffusion tensor imaging. J.
Neurol. Neurosurg. Psychiatry 69, 528–530. https://doi.org/10.1136/jnnp.69.4.528.

Rose, S.E., Andrew, L., Chalk, J.B., 2008. Gray and white matter changes in Alzheimer's
disease: a diffusion tensor imaging study. J. Magn. Reson. Imaging 27, 20–26.
https://doi.org/10.1002/jmri.21231.

Rosenberg, G.A., 2017. Binswanger's disease: biomarkers in the inflammatory form of
vascular cognitive impairment and dementia. J. Neurochem. 144, 634–643. https://
doi.org/10.1111/jnc.14218.

Rosenberg, G.A., Wallin, A., Wardlaw, J.M., Markus, H.S., Montaner, J., Wolfson, L.,
Iadecola, C., Zlokovic, B.V., Joutel, A., Dichgans, M., 2016. Consensus statement for
diagnosis of subcortical small vessel disease. J. Cereb. Blood Flow Metab. 36, 6–25.
https://doi.org/10.1038/jcbfm.2015.172.

Rubinov, M., Sporns, O., 2010. Complex network measures of brain connectivity: uses and
interpretations. Neuroimage. 52, 1059–1069. https://doi.org/10.1016/j.neuroimage.
2009.10.003.

Salat, D., Tuch, D., Van der Kouwe, A., Greve, D., Pappu, V., Lee, S., Hevelone, N., Zaleta,
A., Growdon, J., Corkin, S., 2010. White matter pathology isolates the hippocampal
formation in Alzheimer's disease. Neurobiol. Aging 31, 244–256. https://doi.org/10.
1016/j.neurobiolaging.2008.03.013.

Schmahmann, J.D., Weilburg, J.B., Sherman, J.C., 2007. The neuropsychiatry of the
cerebellum—insights from the clinic. Cerebellum 6, 254–267. https://doi.org/10.

1080/14734220701490995.
Soininen, H.S., Scbeltens, P., 1998. Early diagnostic indices for the prevention of

Alzheimer's disease. Ann. Med. 30, 553–559. https://doi.org/10.3109/
07853899809002604.

Sorg, C., Riedl, V., Mühlau, M., Calhoun, V.D., Eichele, T., Läer, L., Drzezga, A., Förstl, H.,
Kurz, A., Zimmer, C., 2007. Selective changes of resting-state networks in individuals
at risk for Alzheimer's disease. Proc. Natl. Acad. Sci. 104, 18760–18765. https://doi.
org/10.1073/pnas.0708803104.

Stahl, R., Dietrich, O., Teipel, S.J., Hampel, H., Reiser, M.F., Schoenberg, S.O., 2007.
White matter damage in Alzheimer disease and mild cognitive impairment: assess-
ment with diffusion-tensor MR imaging and parallel imaging techniques. Radiology.
243, 483–492. https://doi.org/10.1148/radiol.2432051714.

Stebbins, G., Murphy, C., 2009. Diffusion tensor imaging in Alzheimer's disease and mild
cognitive impairment. Behav. Neurol. 21, 39–49. https://doi.org/10.3233/Ben-2009-
0234.

Strittmatter, W.J., Saunders, A.M., Schmechel, D., Pericak-Vance, M., Enghild, J.,
Salvesen, G.S., Roses, A.D., 1993. Apolipoprotein E: high-avidity binding to beta-
amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer
disease. Proc. Natl. Acad. Sci. 90, 1977–1981. https://doi.org/10.1073/pnas.90.5.
1977.

Sui, J., Pearlson, G., Caprihan, A., Adali, T., Kiehl, K.A., Liu, J., Yamamoto, J., Calhoun,
V.D., 2011. Discriminating schizophrenia and bipolar disorder by fusing fMRI and
DTI in a multimodal CCA+ joint ICA model. Neuroimage 57, 839–855. https://doi.
org/10.1016/j.neuroimage.2011.05.055.

Sui, J., Adali, T., Yu, Q., Chen, J., Calhoun, V.D., 2012. A review of multivariate methods
for multimodal fusion of brain imaging data. J. Neurosci. Methods 204, 68–81.
https://doi.org/10.1016/j.jneumeth.2011.10.031.

Sui, J., He, H., Pearlson, G.D., Adali, T., Kiehl, K.A., Yu, Q., Clark, V.P., Castro, E., White,
T., Mueller, B.A., 2013. Three-way (N-way) fusion of brain imaging data based on
mCCA+ jICA and its application to discriminating schizophrenia. NeuroImage. 66,
119–132. https://doi.org/10.1016/j.neuroimage.2012.10.051.

Sui, J., Pearlson, G.D., Du, Y., Yu, Q., Jones, T.R., Chen, J., Jiang, T., Bustillo, J., Calhoun,
V.D., 2015. In search of multimodal neuroimaging biomarkers of cognitive deficits in
schizophrenia. Biol. Psychiatry 78, 794–804. https://doi.org/10.1016/j.biopsych.
2015.02.017.

Tucholka, A., Grau-Rivera, O., Falcon, C., Rami, L., Sánchez-Valle, R., Lladó, A., Gispert,
J.D., Molinuevo, J.L., Initiative, A. s. D. N., 2018. Structural connectivity alterations
along the Alzheimer's disease continuum: reproducibility across two independent
samples and correlation with cerebrospinal fluid amyloid-β and tau. J. Alzheimers
Dis. 61, 1575–1587. https://doi.org/10.3233/JAD-170553.

Turner, J.A., Damaraju, E., Van Erp, T.G., Mathalon, D.H., Ford, J.M., Voyvodic, J.,
Mueller, B.A., Belger, A., Bustillo, J., McEwen, S.C., 2013. A multi-site resting state
fMRI study on the amplitude of low frequency fluctuations in schizophrenia. Front.
Neurosci. 7, 137. https://doi.org/10.3389/fnins.2013.00137.

Venneri, A., McGeown, W.J., Hietanen, H.M., Guerrini, C., Ellis, A.W., Shanks, M.F.,
2008. The anatomical bases of semantic retrieval deficits in early Alzheimer's disease.
Neuropsychologia. 46, 497–510. https://doi.org/10.1016/j.neuropsychologia.2007.
08.026.

Wang, L., Zang, Y., He, Y., Liang, M., Zhang, X., Tian, L., Wu, T., Jiang, T., Li, K., 2006.
Changes in hippocampal connectivity in the early stages of Alzheimer's disease:
evidence from resting state fMRI. Neuroimage. 31, 496–504. https://doi.org/10.
1016/j.neuroimage.2005.12.033.

Wang, K., Liang, M., Wang, L., Tian, L., Zhang, X., Li, K., Jiang, T., 2007. Altered func-
tional connectivity in early Alzheimer's disease: a resting-state fMRI study. Hum.
Brain Mapp. 28, 967–978. https://doi.org/10.1002/hbm.20324.

Wu, X., Li, J., Ayutyanont, N., Protas, H., Jagust, W., Fleisher, A., Reiman, E., Yao, L.,
Chen, K., 2013. The receiver operational characteristic for binary classification with
multiple indices and its application to the neuroimaging study of Alzheimer's disease.
IEEE/ACM Trans. Comput. Biol. Bioinforma. 10, 173–180. https://doi.org/10.1109/
TCBB.2012.141.

Yetkin, F.Z., Rosenberg, R.N., Weiner, M.F., Purdy, P.D., Cullum, C.M., 2006. FMRI of
working memory in patients with mild cognitive impairment and probable
Alzheimer's disease. Eur. Radiol. 16, 193–206. https://doi.org/10.1007/s00330-005-
2794-x.

Yin, X., Liu, C., Gui, L., Zhao, L., Zhang, J., Wei, L., Xie, B., Zhou, D., Li, C., Wang, J.,
2014. Comparison of medial temporal measures between Binswanger's disease and
Alzheimer's disease. PLoS One 9, e86423. https://doi.org/10.1371/journal.pone.
0086423.

Zhao, Q., Lu, H., Metmer, H., Li, W.X., Lu, J., 2018. Evaluating functional connectivity of
executive control network and frontoparietal network in Alzheimer's disease. Brain
Res. 1678, 262–272. https://doi.org/10.1016/j.brainres.2017.10.025.

Zheng, W., Liu, X., Song, H., Li, K., Wang, Z., 2017. Altered functional connectivity of
cognitive-related cerebellar subregions in Alzheimer's disease. Front. Aging Neurosci.
9, 143. https://doi.org/10.3389/Fnagi.2017.00143.

Zhou, J., Greicius, M.D., Gennatas, E.D., Growdon, M.E., Jang, J.Y., Rabinovici, G.D.,
Kramer, J.H., Weiner, M., Miller, B.L., Seeley, W.W., 2010. Divergent network con-
nectivity changes in behavioural variant frontotemporal dementia and Alzheimer's
disease. Brain. 133, 1352–1367. https://doi.org/10.1093/brain/awq075.

Zhu, Q.-Y., Bi, S.-W., Yao, X.-T., Ni, Z.-Y., Li, Y., Chen, B.-Y., Fan, G.-G., Shang, X.-L.,
2015. Disruption of thalamic connectivity in Alzheimer's disease: a diffusion tensor
imaging study. Metab. Brain Dis. 30, 1295–1308. https://doi.org/10.1007/s11011-
015-9708-7.

Z. Fu, et al. NeuroImage: Clinical 26 (2020) 101937

13

https://doi.org/10.1109/Jproc.2015.2460697
https://doi.org/10.1002/hbm.20359
https://doi.org/10.1109/Tsp.2009.2021636
https://doi.org/10.1177/1533317513494452
https://doi.org/10.1177/1533317513494452
https://doi.org/10.1159/000211803
https://doi.org/10.1159/000211803
https://doi.org/10.1109/Tbme.2011.2167149
https://doi.org/10.1016/j.nicl.2016.12.012
https://doi.org/10.1212/WNL.34.7.939
https://doi.org/10.1016/j.jalz.2011.03.005
https://doi.org/10.1016/j.jalz.2011.03.005
https://doi.org/10.1093/cercor/bhp157
https://doi.org/10.1093/cercor/bhp157
https://doi.org/10.2214/AJR.07.2617
https://doi.org/10.1007/s10548-015-0463-1
https://doi.org/10.1007/s10548-015-0463-1
https://doi.org/10.1093/schbul/sbn162
https://doi.org/10.1093/schbul/sbn162
https://doi.org/10.1016/j.neurobiolaging.2014.04.037
https://doi.org/10.3389/Fnhum.2014.00897
https://doi.org/10.3389/Fnhum.2014.00897
https://doi.org/10.1016/j.neuroimage.2016.04.051
https://doi.org/10.1136/jnnp.69.4.528
https://doi.org/10.1002/jmri.21231
https://doi.org/10.1111/jnc.14218
https://doi.org/10.1111/jnc.14218
https://doi.org/10.1038/jcbfm.2015.172
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/j.neurobiolaging.2008.03.013
https://doi.org/10.1016/j.neurobiolaging.2008.03.013
https://doi.org/10.1080/14734220701490995
https://doi.org/10.1080/14734220701490995
https://doi.org/10.3109/07853899809002604
https://doi.org/10.3109/07853899809002604
https://doi.org/10.1073/pnas.0708803104
https://doi.org/10.1073/pnas.0708803104
https://doi.org/10.1148/radiol.2432051714
https://doi.org/10.3233/Ben-2009-0234
https://doi.org/10.3233/Ben-2009-0234
https://doi.org/10.1073/pnas.90.5.1977
https://doi.org/10.1073/pnas.90.5.1977
https://doi.org/10.1016/j.neuroimage.2011.05.055
https://doi.org/10.1016/j.neuroimage.2011.05.055
https://doi.org/10.1016/j.jneumeth.2011.10.031
https://doi.org/10.1016/j.neuroimage.2012.10.051
https://doi.org/10.1016/j.biopsych.2015.02.017
https://doi.org/10.1016/j.biopsych.2015.02.017
https://doi.org/10.3233/JAD-170553
https://doi.org/10.3389/fnins.2013.00137
https://doi.org/10.1016/j.neuropsychologia.2007.08.026
https://doi.org/10.1016/j.neuropsychologia.2007.08.026
https://doi.org/10.1016/j.neuroimage.2005.12.033
https://doi.org/10.1016/j.neuroimage.2005.12.033
https://doi.org/10.1002/hbm.20324
https://doi.org/10.1109/TCBB.2012.141
https://doi.org/10.1109/TCBB.2012.141
https://doi.org/10.1007/s00330-005-2794-x
https://doi.org/10.1007/s00330-005-2794-x
https://doi.org/10.1371/journal.pone.0086423
https://doi.org/10.1371/journal.pone.0086423
https://doi.org/10.1016/j.brainres.2017.10.025
https://doi.org/10.3389/Fnagi.2017.00143
https://doi.org/10.1093/brain/awq075
https://doi.org/10.1007/s11011-015-9708-7
https://doi.org/10.1007/s11011-015-9708-7

	In search of multimodal brain alterations in Alzheimer's and Binswanger's disease
	Introduction
	Materials and methods
	Subjects and dataset acquisition
	Imaging parameters
	Feature extraction
	fMRI feature
	dMRI feature

	Fusion analysis
	Correlation analysis and group difference detection

	Results
	Spatial maps of identified intrinsic connectivity networks
	Feature maps of fMRI and dMRI
	Joint components of interests

	Discussion
	Distinct functional and structural brain co-alterations in AD and BD
	Similar functional and structural brain co-alterations in AD and BD

	Potential limitations and future directions
	Conclusion
	Acknowledgments
	Supplementary data
	References




