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Despite the fact that astrocytes are the most abundant glial cells, critical for brain function, few studies have dealt with their possible
role in neurodegenerative diseases like Parkinson’s disease (PD). This article explores relevant evidence on the involvement of
astrocytes in experimental PD neurodegeneration from a molecular signaling perspective. For a long time, astrocytic
proliferation was merely considered a byproduct of neuroinflammation, but by the time being, it is clear that astrocytic
dysfunction plays a far more important role in PD pathophysiology. Indeed, ongoing experimental evidence suggests the
importance of astrocytes and dopaminergic neurons’ cross-linking signaling pathways. The Wnt-1 (wingless-type MMTV
integration site family, member 1) pathway regulates several processes including neuron survival, synapse plasticity, and
neurogenesis. In PD animal models, Frizzled (Fzd) neuronal receptors’ activation by the Wnt-1 normally released by astrocytes
following injuries leads to -catenin-dependent gene expression, favoring neuron survival and viability. The transient receptor
potential vanilloid 1 (TRPV1) capsaicin receptor also participates in experimental PD genesis. Activation of astrocyte TRPV1
receptors by noxious stimuli results in reduced inflammatory response and increased ciliary neurotrophic factor (CNTF)
synthesis, which enhances neuronal survival and differentiation. Another major pathway involves IxB kinase (IKK)
downregulation by ARL6ip5 (ADP-ribosylation-like factor 6 interacting protein 5, encoded by the cell differentiation-associated,
JWA, gene). Typically, IKK releases the proinflammatory NF-«B (nuclear factor kappa-light-chain-enhancer of activated B cells)
molecule from its inhibitor. Therefore, by downregulating NF-xB inhibitor, ARL6ip5 promotes an anti-inflammatory response.
The evidence provided by neurotoxin-induced PD animal models guarantees further research on the neuroprotective potential
of normalizing astrocyte function in PD.

1. Introduction

Parkinson’s disease (PD) is the second most common neuro-
degenerative disease following Alzheimer’s disease. It is
characterized by loss of dopaminergic neurons in the mid-
brain [1, 2] and bradykinesia, rigidity, and tremor as main
clinical symptoms. Regularly, patients also display nonmotor
symptoms like cognitive impairment, mood disorders, sleep
alterations, dysautonomia, and hallucinations [1].

Typical, though not only, histopathological changes are
the progressive loss of the nigrostriatal dopaminergic path-
way and hence of the striatal dopaminergic tone [2]. Over
the last 40 years, administration of the amino acid precursor
of dopamine L-DOPA (L-3,4-dihydroxy-L-phenylalanine) to
parkinsonian patients has been considered the most effective
symptomatic treatment [3].

Abnormal accumulation of misfolded protein aggregates
[4] as the Lewy bodies, made of a-synuclein [5], appears to be
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one of the physiopathological hallmarks of the disease. One
major target of a-synuclein is Rab-1 (a member of the Ras
superfamily of monomeric G proteins, Rab GTPase family),
a key molecular switch of the endoplasmic reticulum-Golgi
traffic pathway [6]. The a-synuclein accumulation-induced
endoplasmic reticulum stress is likely a leading disruptive
mechanism, responsible for the so-called “unfolded protein
response” adaptive reaction [7], cytoprotective when moder-
ate but deleterious when highly activated [8, 9]. Accumula-
tion of a-synuclein may also originate abnormal synaptic
connectivity or synaptopathy at nigrostriatal pathways and
intrastriatal interneuronal connections, presumably most
apparent at the initial stages of the disease.

Notwithstanding the fact that astrocytes are the most
abundant glial subtype and are critical for brain function,
only a few studies have historically focused on their putative
role in neurodegenerative diseases like PD. Recently, how-
ever, several studies have reported that genes known to have
a causative role in PD are expressed in astrocytes and have
important roles in their function [10], suggesting that astro-
cyte dysfunction may be relevant for PD development. Fur-
thermore, a-synuclein aggregates in astrocytes contributing
to such dysfunction [11].

This review aims at summarizing the evidence for
astrocyte participation in experimental PD genesis, the
probable neuroprotective effect of molecules like GDNF
(glial-derived neurotrophic factor), MANF (mesencephalic
astrocyte-derived neurotrophic factor), and CNTF (ciliary
neurotrophic factor), and the involved pathological cascades
described so far, illustrating the potential use of these find-
ings in developing new-generation neuroprotective agents.
Following PubMED searches performed using “Parkinson’s
Disease, astrocytes, molecular signaling” strings, relevant
papers published in English or Spanish before January 1,
2018, were included, while reference sections were also scru-
tinized out of these publications for new studies.

2. Role of Astrocyte Dysfunction in the
Genesis of Experimental Parkinson’s Disease

The glia accounts for over 50% of brain cells, comprising var-
ious cell subtypes, of which astrocytes are the most abundant
[12, 13]. Although astrocytes were documented 100 years
ago, relatively few studies have been designed to dig into their
role in neurological disorders and diseases over time. Astro-
cytes can be both helpful and harmful in PD [14, 15], and a
key aspect of PD pathophysiology is neuroinflammation in
the central nervous system (CNS), for long considered a
downstream response to dopaminergic neuronal death,
definitely including the concurrence of reactive astrocytes
[16, 17]. However, ongoing evidence suggests that astrocytes
have a role in setting up PD pathophysiology. Astrocytes
may have neuroprotective effects by producing factors like
the glial cell line-derived neurotrophic factor (GDNF) [18],
the mesencephalic astrocyte-derived neurotrophic factor
(MANF) [19], and the ciliary neurotrophic factor (CNTF)
[20]. Recently, a relative increase in the astrocytic level of
senescence markers, inflammatory cytokines, and metallo-
proteinases was observed on postmortem substantia nigra
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specimens of five PD patients compared with five controls,
illustrating astrocytes’ relevance in PD [21]. Furthermore,
astrocytes and fibroblasts developed senescent phenotypes
when exposed to the neurotoxin paraquat in human cell
cultures, and conversely, neurodegeneration was attenuated
in response to paraquat in a senescent astrocyte-selectively
depleted mouse model [21].

This section reviews evidence from a molecular signaling
perspective about the participation of astrocytes in the gene-
sis of experimental PD and the involved molecular cascades.

2.1. Wnt/B-Catenin Signaling Cascade. The Wntl (wing-
less-type MMTV (mouse mammary tumor virus) integra-
tion site family, member 1) pathway has emerged as an
essential signaling cascade regulating differentiation, neuron
survival, axonal extension, synapse formation, neurogenesis,
and many other processes in developing and adult tissues
[22]. Little is known on the role of Wnt agonists in the mid-
brain [23]. In healthy human progenitor-derived astrocytes
(PDAs), f-catenin leads to modulation of genes relevant to
regulating aspects of glutamate neurotransmission [24].
However, the expression of Wnt components in adult
astrocytes [25, 26] and the identification of activated
midbrain astrocytes as candidate components of Wntl sig-
naling suggest that astrocytes may be relevant sources of
Wntl [27]. Using the proneurotoxin MPTP- (1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine-) lesioned mouse model,
92 mRNA species molecular profiling in the midbrain
revealed a specific, robust, and persistent increase in the
expression of the canonical Wntl agonist, but not of Wnt3a
or Wnt5a, during MPTP-induced dopaminergic degeneration
[28]. The activated astrocytes rescued mesencephalic dopami-
nergic neurons from MPP+-induced tyrosine hydroxylase-
positive (TH™) neuron toxicity promoting dopaminergic neu-
rogenesis through Wntl/B-catenin signaling activation [28].
Further evidence supports that the Wnt signaling system
may be reinforced following injury in the adult CNS [29].
Likewise, some studies suggest that Wnt/f-catenin activation
reduces neurodegeneration in mouse models of Alzheimer’s
disease [30, 31].

Growing evidence endorses the critical participation of
Wntl in PD genesis. The neuroprotective effects of the Wnt
pathway could be blocked by a Wntl antibody [28], and
also, the Wntl-targeted interfering RNA-induced Wntl
depletion in midbrain astrocytes resulted in a substantial
decrease in TH" neuron survival upon serum deprivation
and 6-OHDA or MPP+ treatment in neuron-astrocyte
cocultures [32].

Furthermore, the Fzd-1 immunofluorescent signal largely
increased in the rescued TH" neurons in dopaminergic DA
neurons cocultured with midbrain astrocytes, oppositely to
the dramatic Fzd-1 receptor downregulation observed in puri-
fied neurons, either in vitro or in vivo, following the neuro-
toxic insult [32].

Interestingly, exogenous activation of Wnt signaling with
a specific GSK-3f (glycogen synthase kinase 3) antagonist
sharply amplified astrocyte-induced DA neuroprotection in
MPP+-treated astroglia-neuron cocultures. Glial inserts or
Wntl direct addition to purified DA neurons just before
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FI1GURE 1: Wnt/f-catenin signaling cascade in Parkinson’s disease. Upon insult, Wnt/f-catenin activation stimulates neurogenesis in mouse
models of Parkinson’s and Alzheimer’s diseases. In mammalians, the signaling pathway is activated when the Wnt ligand binds to its Frizzled
(FZD) receptor. The protein complex of FZD, LRP5/6, CK1, and GSK-3 3 marks 3-catenin protein for degradation in the proteasome. Unless
B-catenin undergoes degradation, it will be translocated to the nucleus to regulate the proliferation and survival of dopaminergic neurons.

MPP+ insult largely conferred neuroprotection, which was
blocked by a Wntl antibody or the Wnt antagonist Fzd-1-
cysteine-rich domain, supporting the critical role of Wntl
in dopaminergic neuron survival [28]. Over and above, phar-
macological inhibition of GSK-3 activity increased neuro-
blasts’ population and promoted their migration towards
the rostral migratory stream and the lesioned striatum in
PD animal models [33]. Inhibiting GSK-33 enhanced den-
dritic arborization and survival of the granular neurons and
stimulated neural stem cell-to-neuronal phenotype differen-
tiation in the hippocampus of PD animal models. Figure 1
summarily illustrates the Wnt/f-catenin/Fdz-1 pathway.

2.2. Transient Receptor Potential Vanilloid 1 (TRPV1). Tran-
sient receptor potential vanilloid 1 (TRPV1), the capsaicin
receptor, is involved in nociception, is highly expressed in
sensory neurons [34], and may also modulate neuronal func-
tion in other brain areas [35], control motor behavior [36],
and regulate neuroinflammation [37]. The TRPV1 channel
is expressed in neuronal and nonneuronal cells, where it is
involved in the regulation of neurotransmitter release, and
postsynaptically, where it influences neurotransmitter signal-
ing [38]. In astrocytes, TRPV1 channels are responsible for
Ca®" entry from the extracellular space, accounting for
nearly 20% of total Ca** events occurring in hippocampal
astrocytes. Besides, the TRPV1 channels have been linked
to some forms of long-term potentiation of glutamatergic
transmission and GABAergic transmission regulation [39,
40]. Capsaicin-mediated activation of TRPV1 on astrocytes
increases CNTF endogenous synthesis in vivo, increasing
dopaminergic neuron viability through activation of the
CNTF receptor alpha subunit (CNTFRa) and preventing
neurodegeneration after MPP+ and 6-OHDA administra-

tion in PD rat models [41, 42]. Activation of TRPV1 in
a PD rat model was recently associated with a reduced
expression of the TNF-« and interleukin-1f proinflamma-
tory cytokines, the reactive oxygen species/reactive nitrogen
species (ROS/RNS) generated by NADPH oxidase at the
microglia, and the inducible nitric oxide synthase or reactive
astrocyte-derived myeloid peroxidase [43]. The relevance of
this pathway to PD is further supported by the increased
TRPV1 and CNTF levels in GFAP" (glial fibrillary acidic
protein-positive) astrocytes and CNTFRa on dopaminergic
neurons found in PD patients [41]. The TRPV1-CNTF
pathway is summarized in Figure 2.

2.3. The JWA Gene (ADP-Ribosylation-Like Factor 6
Interacting Protein 5). Oxidative damage has been considered
a primary pathogenic mechanism of nigral dopaminergic
neuronal cell death in PD [44]. At the molecular level, both
DNA damage and abnormal activation of the known media-
tor of tissue damage and inflammation NF-«B (nuclear factor
kappa-light-chain-enhancer of activated B cells) have been
implicated in oxidative damage [45]. The NF-xB protein
complex exists as a cytoplasmic p50/p65 heterodimer which
binds to the IxB inhibitory subunit [46]. The activation of
NF-«B is mediated by the upstream IxB kinase (IKK), a
heterotrimer made of 2 catalytic subunits, IKKa and IKKp,
and the NF-«B essential modulator regulatory IKKy subunit
[47]. Exposure to various stimuli like oxidative stress, proin-
flammatory cytokines, and growth factors induces IKK
phosphorylation, leading to IxB polyubiquitination and
proteasomal degradation. In turn, IxB degradation induces
NF-«B translocation to the nucleus, where NF-«B binds to
its cognate DNA sequences and its coactivators to ultimately
regulate gene expression [48].
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F1GURE 2: TRPV1-CNTF signaling cascade in PD. Capsaicin-mediated stimulation of TRPV1 through activation of CNTFR« and the STAT
pathway increases dopaminergic neuron viability in PD rat models. Activation of TRPV1 has also been associated with a reduced expression
of the proinflammatory cytokines and reactive oxygen species/reactive nitrogen species in a PD rat model. TRPV1: transient receptor
potential vanilloid 1 channel; CNTFRa: ciliary neurotrophic factor receptor « subunit.

The ARL6ip5 (ADP-ribosylation-like factor 6 interacting
protein 5) or JWA gene codes for a novel microtubule bind-
ing protein regulating cancer cell migration via MAPK
cascades [49] and mediating leukemic cell differentiation
[50, 51]. It is also a key regulator of base excision repair of
oxidative stress-induced DNA damage by XRCC1 (X-ray
repair cross-complementing 1) stability regulation [52, 53].
Miao and colleagues reported that JWA knockout (KO)
astrocytes showed NF-xB pathway activation in dopami-
nergic neurons and neurodegeneration [54], suggesting
JWA downregulation of the NF-«B signaling pathway
[54]. Indeed, JWA downregulated the expression of IKKp
inhibiting NF-«xB signaling pathway activation [54].
Figure 3 summarizes the JWA/NF-«B pathway.

2.4. Nrf2-ARE Pathway in Parkinson’s Disease. Free radicals,
regularly produced at physiological levels, are required for
signaling and plasticity in the healthy brain. However,
oxidative stress appears when their production exceeds the
cellular antioxidant defense. High levels of free radicals are
neurotoxic leading to pathological processes and cell death
in time. Oxidative stress has been associated with neuronal
death and involved in the pathogenesis of multiple chronic
neurodegenerative diseases including Alzheimer’s disease,
PD, Huntington’s disease, amyotrophic lateral sclerosis, and
neurological illnesses [55, 56]. The nuclear factor erythroid
2-related factor 2 (Nrf2) antioxidant response element
(ARE) is a key in the Nrf2 antioxidant system pathway
upregulating an array of antioxidant and detoxifying
enzymes. Currently, as Nrf2 is considered a possible thera-
peutic target for treating oxidative stress-related disorders,
some studies have targeted Nrf2 to confer neuroprotection
in PD [55, 56]. The Nrf2 factor counteracted PD-related

neuronal cell death through the expression of cytoprotective
genes with anti-inflammatory and antioxidant properties.
Data from postmortem PD human brains and Nrf2
knockout mice indicate an association between Nrf2-ARE
pathway dysfunction and PD pathogenesis [57]. An Nrf2
deficiency increases MPTP sensitivity and exacerbates vul-
nerability to 6-OHDA both in vitro and in vivo. Trans-
plants of astrocytes overexpressing Nrf2 were protected
from 6-OHDA-induced damage in the living mouse [58-
61]. In postmortem brains of PD patients, p62 (nucleoporin
p62) and NQO1 (NAD(P)H dehydrogenase [quinone] 1)
were found partially sequestered in Lewy bodies, indicating
that Nrf2 compromised neuroprotective capacity [62]. Also,
Nrf2 activation by dimethyl fumarate protected the substan-
tia nigra neurons against a-synuclein toxicity in a murine PD
model, an effect not evident in Nrf2-knockout mice [62, 63].
The activation of Nrf2 upregulated brain heme oxygenase-1
(HO-1) and NQO1 and prevented MPTP-induced neuronal
death in the substantia nigra [62, 63]. Likewise, Nrf2-ARE
pathway activation by siRNA (small double-stranded inter-
fering RNAs) knockdown of Keapl (Kelch-like ECH-
associated protein 1) reduced oxidative stress partially pro-
tecting from MPTP neurotoxicity [64]. Some studies suggest
that Nrf2 activation in glial cells may be required to exert its
protective effects in PD and PD models [60, 61]. However,
glial Nrf2 nuclear translocation in the substantia nigra
was not found in PD brains [65], and in vitro studies show
that neuronal Nrf2 activation, even in the absence of glia,
induces neuroprotection against oxidative damage triggered
by parkinsonism-inducing neurotoxins [61, 66-70]. Uric
acid activated the Nrf2-ARE pathway by increasing mRNA
and the expression of Nrf2 and three Nrf2-responsive genes
and inhibited oxidative stress in MPTP-treated mice
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F1GURE 3: NF-xB/JWA/ARL6ip5 signaling pathway in PD. Both DNA damage and abnormal activation of the known mediator of tissue
damage and inflammation NF-«B have been implicated in oxidative damage. The ARL6ip5 downregulates IKK expression inhibiting NF-
kB signaling pathway activation. NF-xB: nuclear factor kappa-light-chain-enhancer of activated B cells; ARL6ip5: ADP-ribosylation-like

factor 6 interacting protein 5.

improving behavioral performance and cognition. It also
increased TH" dopaminergic neurons and decreased GFAP*
astrocytes in the substantia nigra [71]. Astrocyte contribu-
tion to neuroprotection and the underlying neuroprotective
mechanisms are yet to be studied. Glutathione secretion from
astrocytes was increased following Nrf2-ARE activation
in vitro [55]. Figure 4 summarizes the Nrf2-ARE pathway.

2.5. Other Pathways Associated with Astrocyte Dysfunction in
PD. This section briefly reviews other less convincingly sup-
ported pathways as to their involvement in PD-related astro-
cytic dysfunction.

The toxic dopamine quinones resulting from cytosolic
mismanagement of dopamine excess can perpetuate dopami-
nergic dysfunction in PD [72]. They can be competitively
antagonized by other cysteine-rich molecules including
superoxide dismutase, glutathione, and metallothioneins
(MTs). They are a family of ubiquitous low-weight proteins,
of which MT1 appears to be expressed in astrocytes in
response to mechanical or toxic neuronal injury [43, 72, 73].
Interestingly, MT1 attenuated neurotoxin-induced neuronal
death both in vivo and in vitro [72-74].

In humans, the deglycase DJ-1 protein is encoded by the
PARK?7 gene, whose mutation causes one of the hereditary
forms of PD [75]. Interestingly, its overexpression in reactive
astrocytes has been reported in sporadic cases of PD [75],
suggesting a pathophysiological role in PD. Indeed, DJ-1
overexpression reduced rotenone neurotoxicity in neuron-

astrocyte cocultures, whereas the opposite was found after
DJ-1 deletion [75, 76]. Its exact mechanism of action in
astrocytes remains elusive, some data suggesting an effect
on mitochondrial function that in turn might favor the
release of paracrine-acting molecules [76, 77].

The enzymatic protein thrombin plays a key role in
the coagulation cascade and is upregulated upon CNS dam-
age [78, 79]. In normal conditions, thrombin activates the
protease-activated receptor (PAR) subtypes PAR-1, PAR-3,
and PAR-4 [78, 79], although it may bind to PAR-2 at high
concentration [79]. To date, the four known PAR subtypes
are associated with G proteins and determine multiple cellu-
lar responses [78, 79].

Ishida and colleagues studied the presence of the
thrombin-PAR pathway in human samples of the substantia
nigra pars compacta [78]. The thrombin precursor pro-
thrombin and the PAR-1 were observed only in astrocytes,
expressed at a higher level for the latter along with a higher
density of thrombin-positive vessels in PD brain specimens
compared with controls. In astrocyte cultures, PAR-1 activa-
tion by thrombin increased GDNF and glutathione peroxi-
dase expression, albeit not inflammatory molecules like IL-
1b, IL-6, IL-8, and MCP-1 and the nerve growth factor level.

There is conflicting evidence on the neuroprotective
potential of GDNF from astrocytic origin [80]. Pretreat-
ment with GDNF attenuated neuronal death in dopamine-
depleted corpus striatum [80-82] while the GDNF level
in brain tissue from PD patients was comparable to that
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F1GURE 4: The Nrf2-ARE signaling pathway in Parkinson’s disease. Under unstressed conditions, oxidative molecules like ROS and RNS
activate the protective antioxidant pathway, dissociating the cytosolic Nrf2/Keapl complex. The Nrf2 factor translocates to the nucleus
where associated with bZip proteins trigger the expression of several homeostatic genes with the ARE sequence in their promoters,
including SOD, HO-1, GST, and NQO1. Upon inactivation, Nrf2 is sequestered by Keap1l and targeted for ubiquitination and proteasomal
degradation. Nrf2: nuclear factor (erythroid-derived 2)-related factor 2; Keapl: Kelch-like ECH-associated protein 1; bZip: basic region
leucine zipper (bZip) transcription factors; SOD: superoxide dismutase; HO-1: heme oxygenase-1; GST: glutathione S-transferase; NQO1:

NAD(P)H: quinone oxidoreductase-1.

found in control patients and higher in the nigrostriatal
dopaminergic region [83].

3. Restoring Astrocyte Function as a Preventive
Strategy against Dopaminergic
Neurodegeneration in Parkinson’s Disease

As hereinabove discussed, astrocytic dysfunction may largely
contribute to dopaminergic neurodegeneration [10, 16, 17].
The astrocytes release Wntl which may lengthen dopami-
nergic neuron survival by activating Fzd-1 receptors [84].
Addition of Wntl to purified DA neurons prevented MPP+
neurotoxicity [28], likely disclosing a promising neuropro-
tective therapy in PD and warranting clinical studies which,
at present, are lacking in this regard.

Capsaicin-mediated activation of astrocytic TRPV1 is
followed by CNTF release and CNTFRa activation on
dopaminergic neurons whose viability increases [41]. Indeed,
pretreatment with capsaicin 0.5 mg/kg largely reduced dopa-
minergic neurons’ death and improved behavioral outcomes
in MPTP-lesioned mice [43], while treatment with TRPV1
antagonists capsazepine and iodine-resiniferatoxin reversed
both effects. Similar results were observed in 6-OHDA-
lesioned mice [41, 42]. Capsaicin increased superoxide dis-
mutase and catalase levels and decreased lipid peroxidation
in the brain, suggesting an antioxidant effect [42].

Knocking down JWA in astrocytes has also been related
to DA neurodegeneration, likely by NF-xB disinhibition
[85]. Provided that NF-«B is a potent proinflammatory mol-
ecule [85], even though neuroprotection following exoge-
nous JWA or related compounds administration has not
been reported, a new experimental PD model unrelated to
dopaminergic neurotoxins may stem out of the above.

Large evidence supporting astrocyte involvement in the
genesis of experimental PD comes from cell culture studies
sparing any interaction with the glia which is functional in
the brain.

The potential neuroprotective effect of GDNF was
studied by inducing its expression in astrocytes through vec-
tor transfection in 6-OHDA- and MPTP-treated rats and
mice, respectively [80]. Overexpression of GDNF prevented
neurotoxicity, namely, neuronal death and behavioral abnor-
malities, even up to 14 weeks after transfection when astro-
cytic activation and astrogliosis were observed in the MPTP
model [80].

Silibinin or silybin is the major active constituent of the
standardized extract of the milk thistle seeds known as sily-
marin with potential hepatoprotective and antineoplasic
effects [86, 87] which showed neuroprotective effects in
MPTP-treated mice [88]. Silibinin also reduced glial activa-
tion, dependent on extracellular signal-regulated kinase
(ERK) and c-Jun N-terminal kinase (JNK) stress response
kinase activation [89, 90]. Accordingly, in vitro studies dem-
onstrated that silibinin suppressed astroglial activation inhi-
biting ERK and JNK phosphorylation in primary astrocytes
following MPP+ treatment [88].

Loss of Nrf2-mediated transcription exacerbated vulner-
ability to the neurotoxin 6-hydroxydopamine (6-OHDA) in
a Parkinson mice model and N27 rat dopaminergic neuronal
cell line. Also, astrocytes overexpressing Nrf2 transplantation
induced the Nrf2-ARE pathway protecting from 6-OHDA-
induced damage in the living mouse [61]. On the other hand,
Keapl siRNA administration in striatum primary astrocytes
upregulated the Nrf2-ARE pathway, protected from oxida-
tive stress, and modestly spared from MPTP-induced dopa-
minergic terminal damage [64]. Uric acid also exerted a
neuroprotective effect improving behavior and cognition in
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TaBLE 1: Potentially neuroprotective molecules upon astrocytic behavior modification.

Molecule Proposed mechanism of action Tested PD models
Capsaicin Activation of TRPV1 in astrocytes MPTP (mouse), 6-OHDA (rat)
GDNPF (vector transfection) GDNF overexpression in astrocytes MPTP (mouse), 6-OHDA (rat)
Silibinin Suppression of astrocyte activation (via ERK/JNK phosphorylation) MPTP (mouse)

GDNEF: glial cell line-derived neurotrophic factor; MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; TRPV1: transient receptor potential vanilloid 1
channel; ERK/JNK: extracellular signal-regulated kinase/c-Jun N-terminal kinase.

MPTP mice, increased TH* dopaminergic neurons, and
decreased GFAP™ astrocytes in the substantia nigra [71]. All
in all, experimental evidence supports a key role for astro-
cytes in the Nrf2-ARE and neuroprotection. The Nrf2-ARE
pathway poses as a promising therapeutic target for reducing
or preventing cell death in PD.

Table 1 summarizes astrocyte-interacting drugs with pos-
sible neuroprotective effects.

4. Conclusion

Despite the fact that astrocytes, the most abundant glial cells,
are critical for brain function, their role in PD was long con-
sidered a byproduct of neuroinflammation. However, the
bulk of ongoing evidence suggests that astrocyte dysfunction
might occupy a central position in the genesis of experimen-
tal PD [14, 15].

Three main pathways contributing to PD development
involving astrocytes could be identified. Firstly, noxious
stimuli increase Wntl synthesis in astrocytes [27, 28] modi-
tying gene expression in DA neurons upon Fzd receptor acti-
vation and f3-catenin nuclear translocation [32]. Secondly,
noxious stimuli and perhaps inflammation too stimulate
astrocytic TRPV1 reducing oxidative species generation,
releasing CNTF [41, 42], modifying gene expression, and
improving dopaminergic neuron survival and viability [41].
Last but not least, the JWA gene induces astrocytic ARL6ip5
synthesis, which inhibits IKKf lowering the level of the active
NF-«B level [54], a potent inductor of inflammatory
responses. The relevance of other pathways involving metal-
lothioneins, DJ-1 protein, thrombin, and GDNF is less clear,
though might turn out as equally important.

The pursuit of neuroprotective strategies in PD is a top
priority as once and again negative results have been
obtained so far [91]. The pathways herein discussed disclose
interesting targets to be explored in this regard. Certain mol-
ecules like capsaicin [43] and silibinin [88] have shown
unquestionably interesting effects in rodent PD models. They
are naturally found in chili peppers and cardum, respectively;
they have sometimes been used for therapeutic purposes.
Needless to say that before clinical trials in PD may be envis-
aged, studies in primate PD models are needed. Results are
hitherto encouraging, and more data are hopefully coming
forth in the near future. Overexpression of GDNF by vector
transfection has also shown some efficacy in rodent models
[80] contrasting with the lack of clinical benefit after intrapu-
taminal or intracerebroventricular infusions of GDNF in PD
patients [92, 93]. Nevertheless, an eventual benefit from
GDNF infusion might be limited by its reach to and bioavail-

ability at the site of interest, making drug delivery a crucial
aspect of GDNF therapy worth exploring.

Knocking out JWA increased NF-«B activity in DA neu-
rons [54] presumably depicting a new PD model, eventually
surpassing the limitations of neurotoxin PD models which
do not accurately reproduce full PD pathophysiology [94].
The JWA knockout mouse developed a PD-like phenotype
with selective loss of dopaminergic neurons in the substantia
nigra pars compacta and monoaminergic neurotransmitter
level in the corpus striatum [85]. Constitutive expression of
NEF-«B, a known promoter of inflammatory responses, par-
ticipates in neurogenesis, neuritogenesis, and plasticity while
inducible NF-«B expression leads to glial proinflammatory
responses, neuronal proapoptotic responses and death, vas-
cular inflammation, and increased endothelial permeability
[95]. Inducing experimental inflammation, a PD hallmark
[96], might advantageously reproduce the whole spectrum
of the disease bearing other brain areas compromised. Fur-
ther research is warranted to fully characterize this plausible
new model.
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