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SUMMARY

Personalized kinetic models can predict potential biomarkers and drug targets.
Here, we provide a step-by-step approach for building an executable mathemat-
ical model from text and integrating transcriptomic datasets. We additionally
describe the steps to personalize the mechanistic model and to stratify patients
with triple-negative breast cancer (TNBC) based on in silico signaling dynamics.
This protocol can also be applied to any signaling pathway for patient-specific
modeling.
For complete details on the use and execution of this protocol, please refer to
Imoto et al. (2022).

BEFORE YOU BEGIN

The temporal activation dynamics of signaling pathways play important roles for cell fate decisions

(Purvis and Lahav, 2013). Therefore, we hypothesized that signaling dynamics can be further utilized

as prognostic biomarkers for human diseases. However, the majority of available data obtained from

patients represent static snapshots taken at a single point in time, and not time-resolved dynamics.

To overcome this problem, we developed a Patient-Specific Modeling in Python (Pasmopy), an

open-source package for the development of dynamic pathway models that are individualized to

patient-specific data (Imoto et al., 2022). Using this tool, users can generate personalized mecha-

nistic models from The Cancer Genome Atlas (TCGA) transcriptomic data and time-course training

data for signaling activity obtained from cell lines, perform patient-specific simulations, and stratify

patients based on in silico signaling dynamics. This protocol describes in detail the step-by-step

method for model construction of the ErbB signaling network, parameterization of the models, inte-

gration of transcriptomic data, and stratification of breast cancer patients based on signaling dy-

namics. This model-based stratification can be applied to any signaling pathway and other types

of cancer by replacing the input model descriptions as well as the training and clinical datasets.

Overall, the personalized kinetic modeling approach presented herein can facilitate the identifica-

tion of key molecular mechanisms in individual patients, which would otherwise be difficult by solely

analyzing correlations between individual gene signatures and clinical outcomes.

Manual installation of required package components

Timing: 10 min

1. Clone the package and move to the breast_cancer/ directory:
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Note: This repository contains all the codes for transcriptomic data integration, model con-

struction, patient-specific simulations, and model-based stratification.

2. Install all Python packages required for the patient-specific simulations:

3. Install all R packages required for the transcriptomic data analysis:

All the required R packages above can be installed via executing ‘‘install_requirements.R’’.

4. (Optional) Install BioMASS.jl for parameter estimation:

Testing execution environment for patient-specific modeling

Timing: 1–4 h (depending on the number of available CPU cores)

5. Install and run pytest:

>git clone https://github.com/pasmopy/breast_cancer.git

>cd breast_cancer

>python -m pip install -r requirements.txt

$ R

> install.packages("dplyr")

> install.packages("edgeR")

> install.packages("sva")

> install.packages("tibble")

> install.packages("data.table")

> install.packages("stringr")

> install.packages("BiocManager")

> BiocManager::install("BioinformaticsFMRP/TCGAbiolinksGUI.data")

> BiocManager::install("BioinformaticsFMRP/TCGAbiolinks")

> install.packages("biomaRt")

> install.packages("cluster")

> install.packages("ComplexHeatmap")

> install.packages("circlize")

> install.packages("viridisLite")

>julia

>using Pkg; Pkg.add("BioMASS")
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KEY RESOURCES TABLE

STEP-BY-STEP METHOD DETAILS

Transcriptomic data integration

Timing: 30 min

CRITICAL: Steps 1 through 8 require approximately 11 GB of memory space and 6.3 GB of

hard disk space.

In this step, we first obtain transcriptomic data of cancer patients from TCGA database (Weinstein

et al., 2013) and normalize the transcriptomic data to be utilized for personalized modeling. We

also obtain transcriptomic data of cell lines from the Cancer Cell Line Encyclopedia (CCLE) (Barretina

et al., 2012), which is used for parameter determination and for training of the ErbB network model

(Imoto et al., 2022). Subsequently, the batch effect in these datasets is removed using ComBat-seq

(Zhang et al., 2020) so they can be merged and handled equally as model inputs. The details of this

process are as follows.

1. Start R.

a. Navigate to transcriptomic_data/ and start R:

>python -m pip install pytest

>pytest

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Python 3.7.2 Python Software Foundation https://www.python.org

breast_cancer v0.1.0 (Imoto et al., 2022) https://doi.org/10.5281/ZENODO.6781265

pasmopy v0.1.0 (Imoto et al., 2022) https://github.com/pasmopy/pasmopy

biomass v0.5.2 (Imoto et al., 2020) https://github.com/biomass-dev/biomass

numpy v1.19.2 (Van Der Walt et al., 2011) https://numpy.org

scipy v1.6.2 (Virtanen et al., 2020) https://scipy.org

pandas v1.2.4 pandas – Python Data Analysis Library https://pandas.pydata.org

seaborn v0.11.2 (Waskom, 2021) https://seaborn.pydata.org

Julia 1.6.2 The Julia Programming Language https://julialang.org

BioMASS.jl v0.5.0 (Imoto et al., 2020) https://github.com/biomass-dev/BioMASS.jl

R 4.0.2 The R Foundation https://www.r-project.org

TCGAbiolinks v2.25.0 (Colaprico et al., 2016) https://bioconductor.org/packages/TCGAbiolinks/

sva v3.38.0 Zhang et al. (2020) https://bioconductor.org/packages/sva/

biomaRt v2.46.3 (Durinck et al., 2009) https://bioconductor.org/packages/biomaRt/

edgeR v3.36.0 (Robinson et al., 2009) https://bioconductor.org/packages/edgeR/

ComplexHeatmap v2.10.0 (Gu et al., 2016) https://bioconductor.org/packages/ComplexHeatmap/

ComplexHeatmap v2.10.0 (Gu et al., 2016) https://bioconductor.org/packages/ComplexHeatmap/

BiocManager v1.30.18 Bioconductor https://www.bioconductor.org/install/

cluster v2.1.3 Rousseeuw et al., 2015 https://cran.r-project.org/web/packages/cluster/index.html

Circlize v0.4.15 (Gu et al., 2014) https://github.com/jokergoo/circlize

data.table v1.14.2 Rdatatable https://github.com/Rdatatable/data.table

viridisLite v0.4.0 https://rdrr.io/cran/viridis/ https://sjmgarnier.github.io/viridis/

tibble v3.1.7 tidyverse https://tibble.tidyverse.org/

dplyr v1.0.9 tidyverse https://dplyr.tidyverse.org/

stringr v1.4.0 tidyverse https://stringr.tidyverse.org/
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b. Read integration.R:

Note: The functions executed in this step are defined in this file.

2. Obtain clinical information from the TCGA breast cancer dataset for manual analysis.

Note:With this function, all clinical information registered in the dataset (e.g., patient ID, age,

sex, and race) can be obtained. Under the default settings, the information obtained in this

step is not used in Pasmopy (the information required, such as prognosis, stage, and age

will be extracted in a later step); however, this information can be used for manual analysis

and to check the quality of the dataset. This function uses the ‘‘GDCquery clinic’’ function

from TCGA biolinks. The clinical information of patients is saved in ‘‘BRCA_clinical.csv’’.

3. Get patient list and clinical information for TCGA data analysis.

Note: In this step, the clinical information required for model-based patient stratification us-

ing Pasmopy, such as patient ID, subtype, age, and prognosis, is obtained. All patients’ infor-

mation is obtained in this step (patients are selected in the next step). This function uses the

‘‘TCGAquery_subtype’’ function and saves subtype information of the TCGA dataset in

‘‘BRCA_subtype.csv’’. Pasmopy stores the output in a variable named ‘‘subtype,’’ which is

used for the analysis described below.

4. Patient Selection.

Note: This is the preparation step for retrieving transcriptomic data from the TCGA database.

In this step, patients are selected for the analysis that is to follow. Patients are selected by their

pathological stage and the age at which they were initially diagnosed, which is listed in the

metadata acquired in the previous step (the metadata is stored in the ‘‘subtype’’ variable).

In this analysis, stage I and stage II patients who were under 60 years of age at their initial path-

ological diagnosis were used. In the end, 419 patients were included in subsequent analyses.

>cd transcriptomic_data

>R

>source("integration.R")

>outputClinical("BRCA")

>outputSubtype("BRCA")

>patientSelection(type = subtype,

ID = "patient",

pathologic_stage %in% c("Stage_I", "Stage_II"),

age_at_initial_pathologic_diagnosis < 60)
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Users can freely change the selection criteria according to their needs. If the program fails to retrieve

transcriptomic data, verify that the attribute names have been typed exactly as they are in the meta-

data (e.g., ‘‘pathologic_stage’’, ‘‘age_at_initial_pathologic_diagnosis’’, ‘‘Stage_I’’, ‘‘Stage_II’’). For

example, ‘‘Stage1’’ or ‘‘StageI’’ will not work for the TCGA-BRCA analysis because they do not match

the attribute names in ‘‘BRCA_subtype.csv’’.

The ‘‘Type’’ argument should be the output of the outputSubtype(‘‘BRCA’’) function (the default is

‘‘Type=subtype,’’ do not change it). The ‘‘ID’’ argument is the name of the column that includes

the patient ID (if you are using the TCGA-BRCA dataset, use ‘‘ ID="patient’’ ’’).

5. Download transcriptomic data of breast cancer cells from TCGA.

Note: Next, transcriptomic data are downloaded from TCGA using the conditions set above.

‘‘Sampletype’’ defines which type of tissue is used. The sample type code used herein follow

the TCGA coding scheme (https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/

sample-type-codes). For example, if the argument is set to ‘‘01‘‘ and ‘‘06’’, the function will

fetch data from ‘‘Primary Solid Tumor’’ and ‘‘Metastatic’’ samples.

Note: If ‘‘Outputresult = TRUE’’ is set, the patients’ transcriptomic data will be saved as a .csv

file. There is no need to save the data as a .csv file if you continue the following analysis (the

default is ‘‘false’’). The directory in which the file will be saved is the directory in which the code

is run (transcriptomic_data).

6. Download transcriptomic data from CCLE.

Note:Next, the transcriptomic data of the cell lines are also downloaded from the CCLE data-

base for parameter estimation of the model. Transcriptomic data from four cell lines and time-

course training data on signaling activity from the corresponding cell lines were used to esti-

mate the model parameters for this study (described in step 12). The concept of parameter

estimation is explained in a subsequent section. In this example code, the https://data.

broadinstitute.org/ccle/CCLE_RNAseq_genes_counts_20180929.gct.gz dataset is down-

loaded. Data is selected by cancer type from this dataset.

Note: If ‘‘Outputresult = TRUE’’ is set, the CCLE transcriptomic data are saved as a .csv file.

There is no need to save the data as a .csv file if you continue the following analysis (the default

is ‘‘false’’). The directory in which the file will be saved is the directory in which the code is run

(transcriptomic_data).

7. Merge TCGA data and CCLE data.

>downloadTCGA(cancertype = "BRCA",

sampletype = c("01", "06"),

outputresult = FALSE)

>downloadCCLE(cancertype = "BREAST",

outputresult = FALSE)

>mergeTCGAandCCLE(outputresult = FALSE)
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Note: Next, TCGA data and CCLE data are merged, but these two transcriptomic datasets

have distinct biases in their expression values which are caused by the different experimental

settings. This bias is called the ‘‘batch effect,’’ which must be eliminated before merging the

datasets. The code above executes ComBat-seq, which is a tool for removing batch effects in

sequence data and merging different datasets consecutively. After calculation, the adjusted

read counts of each sample are obtained and saved as ‘‘totalreadcounts.csv,’’ which will be

used in the next step. If ‘‘Outputresult = TRUE’’ is set, the counts after performing ComBat-

seq will be saved as ‘‘merged_TCGA_CCLE.csv’’.

8. Normalize counts.

Note: Finally, the read counts are normalized. This normalization allows the comparison of

gene expression data between patients. Transcripts per million (TPM) are calculated and rela-

tive log expression (RLE) normalization is conducted. In general, TPM normalization adjusts

the bias of counts caused by gene length, and RLE normalization adjusts the bias of counts

caused by the difference in the number of read counts of each sample. The edgeR is used

for RLE normalization. Gene lengths are obtained from the Ensembl database using biomaRt.

Samples are selected based on the number of reads within the range of ‘‘min’’ to ‘‘max’’. After

the selection, data from 369 patients remained for further analysis. The output file is

‘‘TPM_RLE_postComBat.csv’’. This file is later used in step 11.

Construction of a comprehensive model of the ErbB signaling network

Timing: 30 min

This section describes the creation of a mechanistic model from text and the preparation for incorpo-

rating gene expression data into the model. pasmopy.Text2Model is a useful Python class for build-

ing an ordinary differential equation (ODE) model from a text file describing biochemical reactions.

We used this method to build a mechanistic model of the ErbB signaling network (Figure 1). For

>normalization(min=40000000, max=140000000)

Figure 1. Text-to-model conversion using pasmpy.Text2Model

The text contains different types of biochemical events involved in the ErbB signaling, including binding, dissociation,

phosphorylation, transcription, translation, and degradation, which can be automatically converted into kinetic

equations. Reproduced with permission from iScience (Imoto et al., 2022).
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further details of the model, please refer to the following papers: (Birtwistle et al., 2007; Imoto et al.,

2022; Nakakuki et al., 2010).

9. Convert the text file into an executable model.

Note: pasmopy.Text2Model currently contains 14 reaction rules for gene regulation and

biochemical reactions. Detailed options for this can be found in the online documentation:

https://pasmopy.readthedocs.io.

10. Rename erbb_network/ to CCLE_name or TCGA_ID, e.g., MCF7_BREAST or TCGA_3-

C_AALK_01A for individualization of the model.

11. Edit SearchParam class.

>import os

>from pasmopy import Text2Model

>Text2Model(os.path.join("models", "erbb_network.txt")).convert()

>import shutil

>shutil.move(

os.path.join("models", "erbb_network"),

os.path.join("models", "breast", "TCGA_3C_AALK_01A")

)

import os

import numpy as np

from pasmopy import Individualization

from . import __path__

from .name2idx import C, V

from .set_model import initial_values, param_values

incorporating_gene_expression_levels = Individualization(parameters=C.NAMES, spe-

cies=V.NAMES, transcriptomic_data=os.path.join("transcriptomic_data",

"TPM_RLE_postComBat_BRCA_BREAST.csv"), gene_expression={

"ErbB1": ["EGFR"], "ErbB2": ["ERBB2"], "ErbB3": ["ERBB3"], "ErbB4": ["ERBB4"], "Grb2":

["GRB2"], "Shc": ["SHC1", "SHC2", "SHC3", "SHC4"], "RasGAP": ["RASA1", "RASA2", "RASA3"],

"PI3K": ["PIK3CA", "PIK3CB", "PIK3CD", "PIK3CG"], "PTEN": ["PTEN"], "SOS": ["SOS1",

"SOS2"], "Gab1": ["GAB1"], "RasGDP": ["HRAS", "KRAS", "NRAS"], "Raf": ["ARAF", "BRAF",

"RAF1"], "MEK": ["MAP2K1", "MAP2K2"], "ERK": ["MAPK1", "MAPK3"], "Akt": ["AKT1", "AKT2"],

"PTP1B": ["PTPN1"], "GSK3b": ["GSK3B"], "DUSP": ["DUSP5", "DUSP6", "DUSP7"], "cMyc":

["MYC"]}, read_csv_kws={"index_col": "Description"})

class SearchParam(object):

...

def update(self, indiv):

x = param_values()
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Note: After editing SearchParam class as above, the model can incorporate gene expression

data to estimate the maximal transcription rate and/or the initial amount of nonzero species

when it is being parameterized and personalized (Figure 2).

Individualization of the mechanistic model

Timing: 3–7 days

y0 = initial_values()

for i, j in enumerate(self.idx_params):

x[j] = indiv[i]

for i, j in enumerate(self.idx_initials):

y0[j] = indiv[i + len(self.idx_params)]

# As maximal transcription rate

x[C.V291] = incorporating_gene_expression_levels.as_reaction_rate(

__path__[0].split(os.sep)[-1], x, "V291", "DUSP")

x[C.V310] = incorporating_gene_expression_levels.as_reaction_rate(

__path__[0].split(os.sep)[-1], x, "V310", "cMyc")

# As initial conditions

y0 = incorporating_gene_expression_levels.as_initial_conditions(

__path__[0].split(os.sep)[-1], x, y0)

...

Figure 2. Preparation for the incorporation of gene expression data to parameterize and personalize the mechanistic model

(1) Building a generic model from text. (2) Determining model parameters using transcriptomic data provided in the CCLE database and phospho-

protein time-course data. (3) Personalizing the mechanistic model using transcriptomic data provided in the TCGA database. Reproduced with

permission from iScience (Imoto et al., 2022).
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In this step, the parameters for the personalized kinetic models are determined, including the kinetic

constants and weighting factors. It was assumed that the reaction parameters are unique to the mo-

lecular species involved in a reaction event and are identical across cell lines and patients. By training

the quantitative relationship between expression values of the model species and the temporal pat-

terns of intracellular signaling activities, the models can predict signaling dynamics in each patient

upon adding the corresponding transcriptomic data as an input to the model. Phospho-protein

time-course datasets obtained from four breast cancer cell lines (MCF-7, BT-474, SK-BR-3, and

MDA-MB-231) stimulated with epidermal growth factor (EGF) and heregulin (HRG) were used to

train the model parameters (Figure 3).

12. Build a mechanistic model to identify model parameters.

>import os

>from pasmopy import Text2Model

>Text2Model(os.path.join("models", "erbb_network.txt"), lang="julia").convert()

Figure 3. Parameter estimation using cell-line datasets

The model parameter was trained on time-series Akt, ERK, and c-Myc phosphorylation levels obtained from four breast cancer cell lines, namely MCF-7,

BT-474, SK-BR-3, and MDA-MB-231, stimulated with EGF and HRG. The points (blue squares, EGF; orange triangles, HRG) denote experimental data,

solid lines denote simulations, and shaded areas denote the SD. For all panels, error bars denote the SE for three independent experiments. Repro-

duced with permission from iScience (Imoto et al., 2022).
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13. Run optimize_parallel.sh.

Note: In this step, BioMASS.jl (Imoto et al., 2020) was used, but in most cases, the pasmo-

py.optimize() function can be used for parameter estimation.

14. Move optimization results to patient-specific models.

15. Run patient-specific simulations.

>julia

>using BioMASS

>param2biomass(‘‘training’’);

>exit()

>python

>import shutil

>breast_cancer_models = []

>path_to_models = os.path.join("models", "breast")

>for model in os.listdir(path_to_models):

if os.path.isdir(os.path.join(path_to_models, model)) and (

model.startswith("TCGA_") or model.endswith("_BREAST")

):

breast_cancer_models.append(model)

# Set optimized parameters

>for model in breast_cancer_models:

shutil.copytree(

os.path.join("training", "erbb_network_jl", "dat2npy", "out"),

os.path.join(path_to_models, f"{model}", "out"),

)

>mv erbb_network_jl training

>cd training

>mkdir errout

>sh optimize_parallel.sh # It will take more than a few days to optimize parameters.

>cd ..

>import os

>import shutil

>from pathlib import Path

>from pasmopy import PatientModelSimulations

>import models.breast

>TCGA_ID = [
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Stratification of TNBC patients based on ErbB signaling dynamics

Timing: 10 min

In this study, in silico signaling dynamics which were generated from personalized kinetic models in

the previous step were used to stratify breast cancer patients (Figure 4). In the example below, the

maximum activation level is used as the dynamic characteristic for the classification of TNBC

patients.

16. Run subtyping() function.

Note: New dynamic characteristics, for example the species’ droprate, can be added as

follows:

l.strip() for l in Path("models", "breast", "sample_names.txt").read_text("utf-8").

splitlines()

]

# Create patient-specific models

>for patient in TCGA_ID:

if patient != "TCGA_3C_AALK_01A":

shutil.copytree(

os.path.join("models", "breast", "TCGA_3C_AALK_01A"),

os.path.join("models", "breast", f"{patient}"),

)

# Execute patient-specific models

>simulations = PatientModelSimulations(models.breast.__package__, TCGA_ID)

>simulations.run()

>simulations.subtyping(

fname=None,

dynamical_features={

"Phosphorylated_Akt": {"EGF": ["max"], "HRG": ["max"]},

"Phosphorylated_ERK": {"EGF": ["max"], "HRG": ["max"]},

"Phosphorylated_c-Myc": {"EGF": ["max"], "HRG": ["max"]},

}

)

>import numpy as np

> def get_droprate(time_course: np.ndarray) -> float:

return - (time_course[-1] - np.max(time_course)) / (len(time_course) - np.argmax(time_

course))

>simulations.response_characteristics["droprate"] = get_droprate
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Figure 4. Stratification of breast cancer patients based on the predicted signaling dynamics

(A) The 369 breast cancer patients are classified based on personalized simulations. The prognostic score for patients who deceased within n-1 to n

years are denoted by n, and patients who were alive after 20 years are denoted in yellow. The representative signal response characteristics were
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17. Visualize the classification result as a heatmap.

EXPECTED OUTCOMES

Our results indicate that the ErbB signaling pathwaymodel trained with phospho-protein time series

data obtained from four breast cancer cell lines (Figure 3) can classify TNBC patients into two sub-

groups, namely patients with better prognosis and poor prognosis, when using maximum activation

levels as dynamic characteristics for the stratification (Figure 4).

LIMITATIONS

In this protocol, mechanistic models were personalized using gene expression levels of each pa-

tient’s transcriptomic data. However, gene mutations are closely linked to treatment strategies in

some types of cancer, such as lung cancer (Collisson et al., 2014). Future studies are needed to adapt

the model to a wider range of cancer types by incorporating mutational information.

Although we demonstrated how users can classify breast cancer patients making use of this frame-

work, it can be applied to other types of cancer as well. Users may do so bymodifying several parts of

the code explained in the ‘‘transcriptomic data integration’’ section. For example, ‘‘BRCA’’ and

‘‘BREAST’’ for the arguments of outputSubtype() and downloadCCLE() functions, respectively, can

be replaced with ‘‘LUAD’’ and ‘‘SCLC’’ for lung adenocarcinoma and small cell lung cancer. Training

datasets and the model to use should be suited for the type of cancer of interest as well.

TROUBLESHOOTING

Problem 1

Cannot run downloadTCGA function (step 5).

Potential solution

The error is caused by the recent changes made in the GDC Data Portal, which affect TCGAbiolinks

(Colaprico et al., 2016) as well. Use the code hosted in breast_cancer that has resolved this issue (Im-

oto and Yamashiro, 2022).

Problem 2

Run out of memory while executing ‘‘mergeTCGAandCCLE’’.

Potential solution

Up to this step, approximately 11 GB of memory space is required; if you are using R studio, R studio

may have a memory limit. Please check the amount of memory available in your R environment.

Problem 3

Get errors related to TCGAbiolinks.

>cd classification

# Rscript brca_heatmap.R [n_cluster: int] [figsize: tuple]

>Rscript brca_heatmap.R 6 8,5

Figure 4. Continued

extracted from the topmost portion of each cluster. The blue and orange solid lines denote simulations with EGF and HRG stimulation, respectively.

Shaded areas denote the SD. The box enclosed with the red dashed line indicates the two clusters in which basal-like patients are enriched.

(B and C) Kaplan-Meier survival curves of all patients for all clusters (B) and of patients with the TNBC subtype for clusters 3 and 4 (C).
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Potential solution

Due to the recent changes made in the GDC Data Portal, TCGAbiolinks v2.24 or higher is required.

The version of TCGAbiolinks registered in Bioconductor may be out of date. Please check the

version of TCGAbiolinks installed in your environment.

Problem 4

It takes too long to simulate patient-specific models (step 15).

Potential solution

You can specify the number of CPU cores in run() function for parallel execution of simulations.

Problem 5

Any other problems or errors are encountered.

Potential solution

Please head over to GitHub Issues (https://github.com/pasmopy/breast_cancer/issues) if you have

discovered an error or need help.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources or reagents should be directed to and will be fulfilled

by the lead contact, Mariko Okada (mokada@protein.osaka-u.ac.jp).

Material availability

No new unique reagents were generated as part of this study.

Data and code availability

The analysis code utilized in this study can be found at https://doi.org/10.5281/ZENODO.6781265.

A previously published article (Imoto et al., 2022) includes all the datasets analyzed in this study.
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