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Spatiotemporal refinement of signal flow through
association cortex during learning
Ariel Gilad1,3 & Fritjof Helmchen 1,2✉

Association areas in neocortex encode novel stimulus-outcome relationships, but the prin-

ciples of their engagement during task learning remain elusive. Using chronic wide-field

calcium imaging, we reveal two phases of spatiotemporal refinement of layer 2/3 cortical

activity in mice learning whisker-based texture discrimination in the dark. Even before mice

reach learning threshold, association cortex—including rostro-lateral (RL), posteromedial

(PM), and retrosplenial dorsal (RD) areas—is generally suppressed early during trials

(between auditory start cue and whisker-texture touch). As learning proceeds, a spatio-

temporal activation sequence builds up, spreading from auditory areas to RL immediately

before texture touch (whereas PM and RD remain suppressed) and continuing into barrel

cortex, which eventually efficiently discriminates between textures. Additional correlation

analysis substantiates this diverging learning-related refinement within association cortex.

Our results indicate that a pre-learning phase of general suppression in association cortex

precedes a learning-related phase of task-specific signal flow enhancement.
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The neocortex dynamically changes when we learn new
tasks. Learning to discriminate between different stimuli,
e.g. visual stimuli or texture touches, leads to changes in

the respective primary sensory areas, i.e., primary visual cortex
(V1) and barrel cortex (BC)1–9. Specifically, experts display
enhanced neural responses and discrimination power in these
areas compared to naïve subjects2,7,10,11. What are the cortical
processes—perhaps even before an animal gains expertise—that
establish such enhanced stimulus discrimination? Higher-order
areas, e.g., retrosplenial cortex and secondary motor cortex,
mediate learning-induced cortical modulation via top-down
effects4,12,13 but how spatiotemporal cortical dynamics reorga-
nizes during learning of a specific task remains elusive. Three
relevant dimensions to be considered are (1) the large-scale
spatial dimension across multiple cortical areas, (2) the time
course of individual trials (lasting few seconds), and (3) the
learning time course spanning the entire training (hundreds of
trials across several days).

With respect to spatial dimension, we previously measured
large-scale cortical dynamics with wide-field calcium imaging in
mice trained to discriminate two texture types with their whiskers
in a go/no-go task11. Expert mice displayed enhanced activity for
the rewarded go-texture in BC, secondary somatosensory cortex
(S2), and rostro-lateral cortex (RL). RL is part of the posterior
parietal cortex (PPC)14,15 within the cluster of higher-order asso-
ciation areas surrounding V1 that play pivotal roles in cross-modal
sensory integration16–20, formation of stimulus-outcome sequences
and maintenance of history-dependent information21–24. However,
we know little about the involvement and interactions of these
areas during learning.

The second dimension relates to the event sequence during
individual trials. Whereas most studies focus on the time period
when the relevant, to-be-learned, stimulus is presented2–7,13, cor-
tical dynamics before the stimulus is less well characterized. Perhaps
in some association areas, after a trial-start cue, enhanced and
anticipatory activity develops just before a task-relevant stimulus
arrives2. Regarding the third dimension of learning progression,
most studies either only compare expert to naïve mice1–3,5,13,25 (i.e.
two time points) or sample learning daily (i.e. 3–8 time points4,6,7;
but see9,26). Such low sampling frequency precludes resolving the
trial-by-trial development of learning, which in some animals is
rather rapid. For example, some cortical areas may display changes
before learning takes place whereas other areas might change when
task performance actually improves9,10,26.

Here, we study spatiotemporal cortical dynamics during
learning by performing wide-field calcium imaging across neo-
cortex in mice learning a whisker-based texture discrimination
task. We chronically measured trial-by-trial layer 2/3 (L2/3)
activity in 25 cortical regions during the entire training period of
several days. We find learning-related cortical changes—espe-
cially in posterior association areas—that we divide into two
phases: First, a pre-learning phase, showing suppression in several
association areas, followed secondly by an enhancement of a
specific task-related cortical activation sequence that emerges in
parallel to increasing task proficiency.

Results
Texture discrimination learning. To study learning-related
changes in both brain activity and behavior, we trained trans-
genic mice expressing GCaMP6f in L2/3 excitatory neurons in a
head-fixed, whisker-based go/no-go texture discrimination task27

(Fig. 1a; Methods). We trained five mice to lick upon whisker-
touch with a coarse surface texture (P100 sandpaper) and two
mice to lick for a smooth P1200 texture. The respective other
sandpaper type served as no-go stimulus. In ‘hit’ trials mice were

rewarded for correctly licking for the go texture. They were
punished with white noise for incorrectly licking for the no-go
texture (‘false alarm’ trials, FA) and neither rewarded nor pun-
ished when they withheld licking for the go and no-go textures
(‘Miss’ and ‘correct-rejection’, CR, trials, respectively). As mice
learned to discriminate between the two textures, we measured
large-scale neocortical L2/3 activity in the hemisphere con-
tralateral to stimulation using wide-field calcium imaging through
the intact skull11,28, along with concurrent video monitoring of
whisking and body movements (Methods). In total, we imaged
seven mice for 5–11 days (2274 to 5626 trials per mouse).

We considered the three spatiotemporal dimensions men-
tioned above (Fig. 1b). For analysis of the spatial dimension
across the entire dorsal cortex, we functionally mapped sensory
areas for each mouse during anesthesia. Based on these maps
(and skull coordinates) we registered all images to the 2D top-
view Allen reference atlas29 and defined 25 areas of interest,
consolidated in four major groups (Fig. 1c, d and Supplementary
Fig. 1 with a list of region abbreviations; Methods). We then
analyzed signals on the relevant fast time scale of individual trials
(Fig. 1e), with a special focus on the period before texture touch
as learning-related changes may also be expected early in trial
time. We defined three salient time windows: the ‘cue-period’
(0.1–0.6 s after the stimulus cue) to capture responses to the
initial trial-start cue; the ‘pre-period’ when the texture approaches
the whiskers (−1 to −0.5 s relative to the texture stop; mainly
before the first whisker-texture touch); and the ‘stim-period’
during texture touch (−0.5 to 0.5 s relative to texture stop). We
did not further analyze the response period because mice licked
and moved rigorously during this period, causing widespread
cortical activity difficult to interpret (there was no delay period
and mice were free to lick outside the response window). The
second relevant temporal dimension is the slow time course of
learning across days. All mice increased performance with
training (5–11 days; ~500 trials/day) and eventually reached
high discrimination levels, quantified by d-prime (d′) values in
50-trial bins (Fig. 1f; refs. 11,27; Methods). Performance improved
mainly due to increased CR rate (Supplementary Fig. 2). For each
mouse, we defined the ‘learning threshold’ for reaching expert
level as the crossing point of the learning curve at d′= 1.5
(in units of ‘trial number’), and the ‘naïve’ and ‘expert’ phases as
the first and last 500 trials with imaging, respectively. The fastest-
learning mouse reached threshold in slightly less than thousand
trials whereas mouse #7 took substantially longer (Fig. 1g). Some
mice displayed a steep learning curve whereas others showed
gradual learning, probably reflecting natural variability across
mouse individuals. Jointly, these definitions of cortical areas, trial
periods of interest, and naïve-to-expert learning phases enabled
us to reveal key learning-related changes in both behavior and
L2/3 activity across the cortex.

Motor behavior changes during learning. We first quantified
changes in motor actions during learning. Mice may start moving
more when they begin to associate the go-texture with the
upcoming reward. Because movements are associated with wide-
spread cortical activity11,30,31, changes in motor behavior
potentially confound the interpretation of learning-related activ-
ity changes. Indeed, expert mice indicated their future action
before the response cue, by moving their body and by whisking
and licking rigorously. To quantify body movements, we detected
forelimb and back movements in the body videos and calculated
the movement probability across trial time and across learning
(50-trial bins; ref. 11; Methods). When mice approach their
learning threshold, they start moving their body clearly before the
response cue and reward consumption, resulting in a significantly
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higher movement probability in the stim-period for expert vs.
naïve phase (Fig. 2a, b and Supplementary Fig. 3; p < 0.05, n= 7
mice, Wilcoxon signed-rank test). In the pre-period, movement
probability was relatively low with insignificant change from
naïve to expert (p= 0.47), whereas in the cue-period movement
probability showed a significant reduction in expert mice from a
relatively low naïve level (p < 0.05; Wilcoxon signed-rank test).

To understand how body movements relate to learning, we
calculated the average movement probability during the stim-
period for each mouse throughout learning (Fig. 2c). With a
movement threshold of 0.3 (i.e. moving in 30% of trials) we could
accurately predict the learning threshold (Fig. 2d; r= 0.99, p <
0.001 comparing learning and movement thresholds across mice).
Thus, although not yet receiving any reward during the stim-
period, mice started to move more extensively shortly after
texture sensation almost exactly at the time during training when
their discrimination performance improved.

Similarly, we analyzed whisking and licking behavior. On
average, whisking amplitude significantly increased with learning
in the stim-period (p < 0.05, n= 7 mice, Wilcoxon signed-rank
test) but changed little in cue- and pre-period (Fig. 2e, f). Increased
whisking during and following texture touch occurred in parallel to
the learning curve, similar to body movements, so that the learning
threshold could be well predicted with a whisking threshold
(Fig. 2g, h). Licking during go-trials was reduced in expert animals
in the cue- and pre-period—highlighting the key requirement of
lick suppression for learning—whereas it was enhanced in the
stim-period (Fig. 2k, l). The increase was not significant, though,
presumably because pronounced licking started only at the stim-
period end but clearly was enhanced thereafter in expert mice. We
conclude that mice exhibit consistent learning-related changes in
motor behaviors, engaging their body to solve the discrimination
task and collect reward. Once mice learned to discriminate between
textures, they initiate various movements during the stim-period
whereas they remain relatively quiet before texture touch (in cue-
and pre-period). Focusing on the early trial-time periods before
touch allowed us to study learning-related changes of cortical
processes that lead up to the task-relevant stimulus without the
confound of movement-related cortical activity.

Learning-related changes in cortical activity. We next analyzed
spatiotemporal dynamics of L2/3 cortical activity across learning,
as revealed by wide-field calcium imaging. Here, we mainly
present results for go-trials (hit and miss trials pooled together).
We calculated activity maps by averaging ΔF/F signals during the
cue-, pre-, and stim-period, respectively, and compared maps for
naïve and expert phase (first and last 500 trials). Maps from two
example mice show activation during the cue-period in A1 (also
anterior-medial and hindlimb areas) and lower activation in
postero-medial (PM), and retrosplenial-dorsal (RD) association
areas (Fig. 3a). During the pre-period, RL displayed high acti-
vation especially in expert mice. During the stim-period, BC
displayed the highest activation level. These example maps indi-
cate a specific sequence of activity emerging during learning,
starting from auditory cortex in response to the stimulus cue,
followed by RL activation as the texture approaches the whiskers,
and continuing to BC activation during touch sensation. This
notion of sequential activation is further corroborated by plotting
the time course of mean ΔF/F traces in A1, RL, and BC in experts
(Fig. 3b for the two example mice; Supplementary Fig. 4a for each
mouse separately; Supplementary Fig. 4b for average responses
across mice). We also found, especially in experts, that BC dis-
played enhanced activity prior to the stim-period, initiating just
after the stimulus cue (Fig. 3b). This finding implies anticipatory
activity in BC that develops during learning. To quantify antici-
patory responses in BC, we aligned the BC trace for each trial to
first-touch time and computed first-touch-triggered responses by
averaging. BC displayed an initial mild rise in pre-touch activity
followed by a salient response to texture touch (Supplementary
Fig. 5a). The onset of this initial rise occurred significantly
earlier in expert compared to naïve mice (p < 0.05; Wilcoxon
signed-rank test; Supplementary Fig. 5b). This early onset could
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represent anticipatory activity, but possibly also different motor
parameters. To dissociate between anticipatory effects and motor
parameters we aligned the body movement vector to first touch.
The onset of BC responses occurred significantly earlier than the
movement onset (p < 0.05; Wilcoxon signed-rank test; Supple-
mentary Fig. 5c, d; results were similar for whisking envelope),
implying that mice display a plastic expectation signal in BC that
develops during learning.

Next, we scrutinized how the cortical activation sequence from
cue- to pre- to stim-period changes across learning. Surprisingly,
we found learning-related changes during these early trial periods
before texture touch. Based on the example activation maps we
focused on 5 areas of interest during specific time periods: A1,
PM, and RD during cue-period; RL during pre-period; and BC
during stim-period. For each area, we plotted the heat map of
trial-related ΔF/F signals across learning, naïve and expert
average ΔF/F traces, and the mean ΔF/F responses in the
respective trial period across learning (Fig. 3c). In the cue-period,
A1 activity displayed variable changes during learning, increasing
in one mouse while slowly decreasing in the other (see below).
Interestingly, RD and PM showed a suppression of responses
across learning for the cue-period. In contrast, RL responses in
the pre-period and BC activity in the stim-period consistently
increased during learning. These examples show that large-scale
cortical activity varies between mice. Some of this variability
can be explained by differences in movement parameters. For
example, mouse #6 in the expert phase whisked more during the

stim-period compared to mouse #3 (Supplementary Fig. 3b). This
may explain its enhanced activity in frontal whisker motor cortex
(Fig. 3a). Other differences, for example variable A1 responses
during the cue-period, cannot be explained by simple motor
parameters and may reflect intrinsic differences between mice.
Thus, cortical areas display diverse learning-related changes
during specific trial periods, ranging from enhancement (e.g., RL
and BC) to suppression (e.g., PM and RD).

We expanded our analysis to all 25 cortical areas by calculating
the mean ΔF/F activation for each area during the cue-, pre-, and
stim-period and averaging across all mice for expert and naïve
phase (Fig. 3d). During the cue-period, several association areas,
including PM and RD, showed reduced activation in expert mice.
During the pre-period, RL showed the strongest activation in
experts whereas PM and RD maintained lower activation levels.
Notably, RL still displayed strong activation during the pre-period
when we positioned the texture out of reach of the whiskers in two
expert mice, thus omitting the relevant stimulus (Supplementary
Fig. 6). Thus, RL responses appear not to directly relate to texture
touch per se and possibly rather represent the expectation of an
upcoming touch. Finally, BC displayed the highest stim-period
activation in expert mice, along with activation of other sensory
and motor areas, presumably reflecting initiation of movements
during this period.

Wide-spread suppression followed by specific enhancement.
Imaging cortical activity longitudinally throughout the entire
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learning process enabled us to relate the time course of regional
learning-related activity changes more precisely to the behavioral
learning curve. First, we applied sigmoidal fits to the mean ΔF/F
changes for our areas of interest and normalized the curve fits to
compare time courses (Fig. 4a; see Supplementary Fig. 7 for non-
normalized traces for all mice). Surprisingly, PM and RD showed
suppression long before the enhancement in BC and RL and even
clearly before the behavioral learning threshold was reached. The
inflection point (the point of maximal steepness; for normalized
curves at 0.5-crossing) occurred significantly earlier for PM
and RD than for RL and BC and also significantly preceded
the learning threshold (p < 0.05; Wilcoxon signed-rank test;
Fig. 4b individual mice; Fig. 4c average across mice). PM and RD
suppression occurred about 500 trials before the mouse reached
learning threshold and before RL and BC enhancement. In
addition, for each of these four areas the inflection point posi-
tively correlated with the learning threshold across mice (r= 0.97,
0.97, 0.79, and 0.79 for BC, RL, PM, and RD, respectively; p <
0.05). Consequently, the early suppression in PM and RD could
predict well when the mouse will learn the task, hundreds of trials
in advance. In contrast, the inflection points for BC and RL were
not significantly different from learning thresholds (p > 0.05;
Wilcoxon signed-rank test), implying that these changes occur
rather in parallel to increases in d′ and thus cannot predict when
learning threshold is reached.

A closer look at the variability of learning-related changes of A1
cue-period activity (Fig. 3c) revealed that suppression and enhance-
ment were discernible as two consecutive phases in the A1 signals
(Fig. 4d and Supplementary Fig. 8). Suppression consistently
occurred before mice reached learning threshold whereas enhance-
ment occurred thereafter. The relative amplitude of modulations
(suppression or enhancement) varied between mice but cue-period
calcium signals were significantly lower in amplitude in A1 around
the time of learning compared to naïve and expert phases (Fig. 4e;
p < 0.05; Wilcoxon signed-rank test; averaged across ±100 trials

around threshold). Thus, learning-related activity changes are not
necessarily uni-directional, i.e. exclusively decreasing or increasing,
they may display mixed effects. Apparently, cue-induced A1 activity
is suppressed early during training before learning, similar to PM
and RD, but dynamically shifts to enhancement after the learning
threshold has been reached, similar to RL and BC, albeit to a variable
degree. We wondered whether such two phases of pre-learning
suppression and learning-related enhancement also exist in other
cortical areas (and for different trial periods) and fitted the learning-
related ΔF/F signals in all areas with a two-phase sigmoidal model in
cue-, pre- and stim-period. The results corroborated the concept of
two phases with substantial pre-learning suppression in association
areas and later specific enhancement of activity in task-relevant areas
in congruence with learning (Supplementary Fig. 9).

As alternative approach to quantify the relationship of task
performance and neural activity during learning, we defined
‘learning maps’ for cue-, pre-, and stim-period by correlating the
d′ learning curve with the corresponding time course of ΔF/F
signals for each pixel (averaged over the respective trial period;
Fig. 5a). Example learning maps for two mice reveal that several
association areas display negative correlation values during the
cue-period (Fig. 5b), reflecting predominant suppression in these
areas during this early period. During the pre-period, RL displayed
the highest positive correlation whereas specifically PM and RD
maintained negative values. Finally, during the stim-period many
sensory and motor areas showed strong correlation, including BC,
presumably reflecting motor-related neural activity. The diver-
gence of activity patterns across areas during the pre-period
(positive correlation with learning in RL and BC; low or negative
correlations in PM and RD) is obvious when plotting correlations
with the learning curve for each acquisition frame during the trial
period (Fig. 5c). Pooled across mice, correlations between activity
and learning were mostly negative in our 5 prime areas during the
cue-period, then became significantly positive in RL and BC for
the pre-period (while staying significantly negative for PM and
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RD), and significantly positive in BC for the stim-period (along
with RL; Fig. 5d; p < 0.05; Wilcoxon signed-rank test). Across all
25 areas, many association areas were negatively correlated with d’
values during the cue-period, followed by a spatial refinement
during the pre-period, with RL displaying positive correlation with
learning whereas PM and RD exclusively pertained negative
correlations (Fig. 5e). As highlighted by the learning maps, BC as
well as most of the sensory and motor areas displayed positive
correlation for the stim-period. We conclude that association areas
undergo a spatial refinement during learning, especially during the
trial period bridging the initial stimulus cue and the arrival of the
texture as task-relevant stimulus.

Dissociation within the association network. We next further
quantified the differences and potential interactions among
different areas during learning. Similar to the learning maps we

calculated ‘seed maps’, for which we correlated the learning-related
ΔF/F changes for all pixels with the reference learning-rela-
ted ΔF/F change in a ‘seed’ area (Fig. 6a). Guided by the learning
maps, we first calculated pre-period maps with association areas
RL, PM, or RD as seed. The RL seed map revealed a positive
correlation of activity in this area with sensory and motor cortices
as well as with adjacent association areas (Fig. 6b). In contrast, PM
and RD seed maps showed high correlations among each other and
with their adjacent areas but lower correlations with RL, BC, and
most other cortical areas (Fig. 6c; pooled across mice).

A closer look at the inter-areal correlations in the posterior part
of cortex revealed that all association areas were highly correlated
during the cue-period but varied largely during the pre-period
(Fig. 6d). Based on anatomical projections29,32 and our functional
observations from the seed maps (Fig. 6b), we divided the
association cortex into anterior (RL, A, AM, and AL) and
posterior (PM, RD, LM, LI, PL, PR, and RA) areas (dashed red
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line in Fig. 6c). For all three seed areas, the variance of correlation
with other association areas was higher during the pre-period
compared to cue-period (Fig. 6e; p < 0.001; Wilcoxon signed-rank
test). Moreover, during the pre-period RL displayed significantly
higher correlation with anterior compared to posterior associa-
tion areas whereas PM and RD displayed the opposite effect
(Fig. 6f; p < 0.05 for pre-period; p > 0.05 for cue-period; Wilcoxon
signed-rank test; see full correlation matrix for learning-related
ΔF/F changes in all areas and trial periods in Supplementary
Fig. 10). In summary, the network of association areas is
reorganized and spatially refined during learning, showing
enhanced and correlated activity in anterior areas but perpetual
suppression in posterior areas, specifically before texture touch.

Barrel cortex discriminates best between textures. So far, we
focused on go trials and learning-related changes of large-scale
cortical dynamics. Most effects, e.g., widespread suppression
followed by specific enhancement involving RL, relate to trial
periods before texture touch and thus were also present in no-go
trials. However, which are the areas that eventually develop
discriminative power to distinguish texture types? We first con-
centrated on the primary sensory area, i.e. BC2,7,10,11. The average
time course of trial-related ΔF/F signals in BC was the same in go
and no-go trials in naïve mice (Fig. 7a). In expert mice, in con-
trast, touch-evoked ΔF/F changes were generally enhanced in go
trials and substantially higher than in no-go trials (Fig. 7a). We
computed the go/no-go discrimination power at single-trial level
using receiver operating characteristics (ROC) analysis27,33, with
the area under the curve (AUC) relating to discrimination power
(Methods). AUC values in BC increased during learning and were
significantly higher for the stim-period in expert vs. naïve phase
(Fig. 7b, c). Discrimination power increased shortly after the first
whisker-to-texture touch (several hundred milliseconds before
texture stop; see Supplementary Fig. 5e for AUC aligned to first
touch). Similarly, we calculated AUC values during the stim-
period for all 25 areas in naïve and expert mice. Pooled across
mice, BC displayed the highest AUC value, followed by motor,

sensory and frontal association areas (Fig. 7d). The highest dis-
crimination power in BC is further highlighted when computing
AUC values pixelwise and creating an AUC map (Fig. 7e).

Finally, we further investigated stim-period AUC changes in
BC across learning (Fig. 7f). In all mice, AUC values increased
with learning and the learning threshold of each mouse correlated
with the inflection point of the sigmoidal AUC curve fit (Fig. 7f, g;
r= 0.98; p < 0.05). Thus, discrimination power in BC emerges at
exactly the time when mice pass the learning threshold, indicating
the tight linkage between cortical reorganization and improved
task performance. Nevertheless, other areas in somatosensory and
motor cortex develop high discrimination power during the stim-
period, too, possible relating to motor parameter changes (Fig. 2)
and highlighting the large extent of learning-related modulations.
We performed additional single-trial analysis by calculating the
trial-to-trial variance for naïve and expert mice (first and last 500
go-trials), revealing significantly higher variance in expert
compared to naïve mice, mainly in somatosensory cortices and
M1 and only during the stim-period (p < 0.05; Wilcoxon signed-
rank test). A possible explanation is that expert mice increase
their body movements both in amplitude and variability during
the stim-period (Fig. 2b), which may lead to higher trial-to-trial
variability in the respective areas.

Discussion
We have identified learning-related changes in cortical activity
covering a wide range of spatiotemporal dimensions. First,
changes were distributed across many cortical areas and com-
prised suppression, enhancement, and sequential combinations
thereof. Second, salient changes occurred in early trial periods
before texture-touch, indicating that understanding the trial
structure and grasping the context, within which the relevant
stimulus is embedded, is an essential part of learning. Third,
decreases in cortical activity occurred consistently several hundred
trials before actual learning, suggesting that preparatory changes
are required before subsequent cortical adaptations actually lead to
improved task proficiency. The main pattern we observed is an
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early widespread suppression in association areas followed by an
enhancement of a spatially more confined set of task-relevant
areas (Fig. 8). Eventually, the emergence of a robust trial-related
activation sequence from auditory cortex to RL to BC leads to the
highest neural discrimination power in BC upon touch.

The activation of RL (as part of PPC) before texture touch may
reflect anticipatory, predictive, or attentional processes, as
reported previously in primate PPC (area LIP)34,35. Accordingly,
RL in mice displays predictive responses when the texture sti-
mulus is omitted36 (Supplementary Fig. 6). In addition, anato-
mical projections from RL to BC29,32 imply top-down processing
that may aid the preparation of adequate processing of texture
information in BC and the association of go-stimulus with future
reward. Consistent with this notion, the establishment of a robust
temporal sequence, with RL bridging the stimulus-cue to the task-
relevant texture stimulus, follows a similar time course as the
divergence of BC signals for hit and CR trials. Emerging dis-
crimination power in BC also goes hand in hand with increases in
body movements, apparently in expectation of and preparation
for upcoming reward. These extensive movements result in
widespread and large cortical activity, including forelimb cortex
and motor areas. The increasing mix of task-related stimulus
processing and behavior-related activation patterns in later trial
phases makes it difficult to separate these aspects after texture
touch. Further experiments are required to dissect the cortical
signal flow for conversion of touch information into preparatory
and executive motor signals.

Regarding the temporal dimension of learning across several
days, we found a suppression of several association areas, espe-
cially PM and RD, as a particularly salient event (Fig. 8). This
early suppression was obvious around 500 trials before a mouse

learns to discriminate textures, at a time when mean performance
was still low (d′= 0.32 ± 0.31 mean ± s.e.m.; most mice still
licking for both textures). Because suppression occurred con-
sistently before learning onset, we could even predict from it
when the mouse is likely to reach learning threshold. Since we
found suppression in other association areas, a common inhibi-
tory control mechanism may be at work. In our interpretation,
suppression during the cue-period may indicate a general atten-
tive state as prerequisite for learning. In auditory cortex, we found
a combination of early suppression followed by later enhance-
ment, indicating that mice may use the stimulus cue information
in order to prepare for the upcoming trial. A1 responses to the
stimulus cue did not significantly differ between expert and naïve
mice but were clearly reduced during the steepest part of the
learning curve (Fig. 4e). This result points to a pronounced
reorganization during this training phase that may involve several
factors such as inhibitory effects, excitation-inhibition balance,
synaptic plasticity or top-down interactions. Whereas here we
focused on cortex-wide L2/3 excitatory neurons, learning-related
dynamics may involve other circuit elements such as deep cortical
layers37,38, inhibitory subtypes39 or subcortical areas38,40. For
example, activity of L6 neurons decreases the gain modulation of
superficial layers37, which could contribute to the initial global
suppression in association areas. Another possibility is that
higher-order thalamocortical connections may drive synaptic
plasticity during learning38, perhaps specifically in distinct asso-
ciation areas such as RL40. These factors may also contribute to
the enhanced go/no-go discrimination in BC in expert mice,
because a possible integration of anticipatory signals from RL and
higher-order thalamocortical inputs may enhance the population
activity in BC for the go texture. Future studies should expand to
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other cortical layers, cell-types, and brain areas to gain a more
comprehensive understanding of learning-related mechanisms.

Our study focuses on wide-field observations across the
learning time course, but the causal role of each area during
specific time periods remains unknown. Silencing BC during
sensation in expert mice impairs discrimination and detection
performance (refs. 41–44; but see Hong et al.45). However, are the
observed pre-stimulus cortical activity patterns necessary for
discrimination learning? RL was found to be causally linked to
performance during different discrimination tasks during the
stimulus period16,18,46,47, but little is known about the role of RL
during pre-stimulus periods. RL (as part of PPC) is causally
linked to maintaining history-dependent information from pre-
vious trials23, suggesting a possible involvement in pre-stimulus
periods. As for the initial suppression in PM and RD, we spec-
ulate that activating these areas before learning onset (thus
equalizing activation across association areas) may prolong the
learning curve of the mouse. In contrast, boosting the salient
activation pattern across association areas (e.g. enhancing RL
while suppressing PM and RD) may facilitate learning. Future
studies will focus on the effects of manipulating different asso-
ciation areas during pre-learning periods.

Interestingly, we found dissociation of signaling between ante-
rior and posterior sets of association areas, possibly reflecting
distinct roles in neural processing. Anatomical evidence suggests
that RL projections to PM32 possibly exert inhibitory control via
interneurons. PM and RD are strongly bi-directionally connected,
but less so with anterior association areas29,32, thus substantiating
our functional findings. What could be reasons for the pronounced
suppression of PM and RD? PM has been studied mostly in the
context of visual tasks highlighting its role in spatial processing and
navigation48–50. RD also connects to hippocampal regions, conveys
top-down effects in a visual discrimination task4, and is linked
to spatial navigation and memory51–53. Therefore, under our
experimental conditions where spatial navigation is not relevant,
this network could be actively suppressed. Future studies may
investigate whether in tasks distinct from ours, where spatial
aspects are important, posterior association areas show enhanced
activity whereas anterior areas including RL may be suppressed.
Such suppression could be mediated through long-range inputs
targeting inhibitory cell types54–56 or long-range GABAergic
projections originating from subcortical areas such as the hippo-
campus57–59. Alternatively, RL could be the association area for
processing tactile information whereas PM is responsible for visual
information and not needed in our task. We do not think that
posterior and anterior network dissociation relates to retinotopic
properties (posterior areas are more closely linked to the upper
visual field60). First, we emphasize that we conducted experiments
in the dark where the incoming texture was very hard to see.
Second, specifically RL and PM, on average, refer to similar reti-
notopic positions, especially in terms of elevation60. Third, RL is
more related to nearby visuo-tactile space, rather than a specific
retinotopic position61. Fourth, we find learning-related modula-
tions across individual days whereas the trial variables (i.e. position
of incoming texture and illumination) were constant, making it less
likely that retinotopic parameters primarily affected our results. In
summary, our results highlight the distributed functional reorga-
nization that cortical areas undergo during learning, progressing in
two distinct major phases that reflect the initial transition into
ready-for-learning modus and the subsequent establishment of the
specific cortical flow pattern needed to solve the task.

Methods
Animals and surgical procedures. Methods were carried out according to the
guidelines of the Veterinary Office of Switzerland and following approval by the

Cantonal Veterinary Office in Zurich. A total of 7 adult male mice (1-4 months
old) were used in this study. These mice were triple transgenic Rasgrf2-2A-dCre;
CamK2a-tTA;TITL-GCaMP6f animals, expressing GCaMP6f in excitatory neo-
cortical layer 2/3 neurons11. To generate triple transgenic animals, double trans-
genic mice carrying CamK2a-Tta62 and TITL-GCaMP6f63 were crossed with a
Rasgrf2-2A-dCre line (64; individual lines are available from The Jackson
Laboratory as JAX# 016198, JAX#024103, and JAX# 022864, respectively). The
Rasgrf2-2A-dCre;CamK2a-tTA;TITL-GCaMP6f line contains a tet-off system, by
which transgene expression can be suppressed upon doxycycline treatment65,66.
However, doxycycline treatment is not necessary in these animals, since the
Rasgrf2-2A-dCre line holds an inducible system of its own, given that the desta-
bilized Cre (dCre) expressed under the control of the Rasgrf2-2A promoter needs
to be stabilized by trimethoprim (TMP) to be fully functional. TMP (Sigma T7883)
was reconstituted in Dimethyl sulfoxide (DMSO, Sigma 34869) at a saturation level
of 100 mg/ml, freshly prepared for each experiment. For TMP induction, mice were
given a single intraperitoneal injection (150 µg TMP/g body weight; 29 g needle;
3–5 days post-surgery), diluted in 0.9% saline solution.

We used an intact skull preparation67 for chronic wide-field calcium imaging of
neocortical activity11. Mice were anesthetized with 2% isoflurane (in pure O2) and
body temperature was maintained at 37 °C. We applied local analgesia (lidocaine
1%), exposed and cleaned the skull, and removed some muscles to access the entire
dorsal surface of the left hemisphere (Fig. 2a; ~6 × 8 mm2 from ~3mm anterior to
bregma to ~1 mm posterior to lambda; from the midline to at least 5 mm laterally).
We built a wall around the hemisphere with adhesive material (iBond; UV-cured)
and dental cement “worms” (Charisma). Then, we applied transparent dental
cement homogenously over the imaging field (Tetric EvoFlow T1). Finally, a metal
post for head fixation was glued on the back of the right hemisphere. This
minimally invasive preparation enabled high-quality chronic imaging with high
success rate.

Texture discrimination task. Mice were trained on a go/no-go discrimination task
(Fig. 1a) using a data acquisition interface (USB-6008; National Instruments) and
custom-written LabVIEW software (National Instruments27). Each trial started
with an auditory cue (stimulus cue; 2 beeps at 2 kHz, 100-ms duration with 50-ms
interval), signaling the approach of either two types of sandpapers (grit size P100:
rough texture; P1200: smooth texture; 3M) to the mouse’s whiskers as ‘go’ or
‘no-go’ textures (Fig. 1a; pseudo-randomly presented with no more than three
repetitions). Sandpapers were mounted onto panels attached to a stepper motor
(T-NM17A04; Zaber) mounted onto a motorized linear stage (T-LSM100A; Zaber)
to move textures in and out of reach of whiskers. The texture stayed in touch with
the whiskers for 2 s, and then it was moved out after which an additional auditory
cue (response cue; 4 beeps at 4 kHz, 50-ms duration with 25-ms interval) signaled
the start of a 2-s response period. The stimulus and response cues were identical in
both textures. A water reward (~3 µL) was given to the mouse for licking for the go
texture only after the response cue (‘hit’), i.e. for the first correct lick during the
response period (Fig. 1e; lick were detected using a piezo sensor). Punishment with
white noise was given for licking for the no-go texture (‘false alarms’; FA). Licking
before the response cue was neither rewarded nor punished. Reward and pun-
ishment were omitted when mice withheld licking for the no-go (‘correct-rejec-
tions’, CR) or go (‘Misses’) textures. The licking detector remained in a fixed and
reachable position throughout the entire trial. Note that the auditory tones merely
served as cues defining the temporal trial structure, but had no predictive power
with respect to go or no-go condition. The first auditory tone signaled the trial-start
and thus predicted the upcoming arrival of the texture as the task-relevant sti-
mulus, whereas the second auditory tone indicated the availability of a water
reward in the go trials. Licking before the response cue was allowed and did not
lead to punishment or early reward.

Training and performance. Five mice were trained to lick for the P100 texture
(mice #1-4 and 7) and 2 mice were trained to lick for the P1200 texture (mice #5
and 6). Mice were first handled and accustomed to head fixation before starting
water scheduling. Before imaging began mice were conditioned to lick for reward
after the go texture (presented within a similar trial structure as the task itself).
Imaging began only after mice reliably licked for the response cue (typically after
the first day; 200–400 trials). On the first day of imaging, mice were presented with
the ‘go’ texture and after 50 trials the ‘no-go’ texture was gradually introduced
(starting from 10% and increasing by 10% approximately every 50 trials68) until
reaching 50% probability for the no-go texture by the end of the day. During the
second day, most mice continuously licked for both textures (Supplementary
Fig. 2). Thus after around 100 trials, we increased no-go probability to 80% and
waited for mice to perform three continuous CR trials before returning to 50%
probability. This was done for several times until mice increased their performance,
specifically withheld licking for the no-go texture. In mice that still continued to
lick for both textures we additionally repeated the wrong response until a correct
response. In all mice, a 50% protocol was presented with no repetitions as soon as
they reached expert level (d′ > 1.5). 6 out of the 7 mice learned the task within
3–4 days after around a thousand trials (Fig. 1d; Supplementary Fig. 2). Mouse #7
learned the task within 10 days. An effort was made to maintain a constant position
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of the texture and cameras across imaging days in order to maintain similar sti-
mulation and imaging parameters.

Wide-field calcium imaging. We used a wide-field approach to image large parts
of the dorsal cortex while mice learned to perform the task11. A sensitive CMOS
camera (Hamamatsu Orca Flash 4.0) was mounted on top of a dual objective setup.
Two objectives (Navitar; top objective: D-5095, 50 mm f0.95; bottom objective
inverted: D-2595, 25 mm f0.95) were interfaced with a dichroic (510 nm; AHF;
Beamsplitter T510LPXRXT) filter cube (Thorlabs). This combination allowed a
~9-mm field-of-view, covering most of the dorsal cortex of the hemisphere con-
tralateral to texture presentation. Blue LED light (Thorlabs; M470L3) was guided
through an excitation filter (480/40 nm BrightLine HC), a diffuser, collimated,
reflected from the dichroic mirror, and focused through the bottom objective
~100 µm below the blood vessels. Green light emitted from the preparation passed
through both objectives and an emission filter (514/30 nm BrightLine HC) before
reaching the camera. The total power of blue light on the preparation was <5 mW,
i.e., <0.1 mW/mm2. At this illumination power we did not observe any photo-
bleaching. Data was collected with a temporal resolution of 20 Hz and a spatial
sampling of 512 × 512 pixels, resulting in a spatial resolution of ~20 µm/pixel.
On each imaging day a green reflectance image was taken as reference to enable
registration across different imaging days using the blood vessel pattern (fiber-
coupled LED illuminated from the side; Thorlabs).

Mapping and area selection. Each mouse underwent a mapping session under
anesthesia (1% isoflurane), in which we presented five different sensory stimuli
(contra-lateral side): a moving bar stimulating multiple whiskers, the forelimb paw, or
the hindlimb paw (20Hz for 2 s); visual stimulation with a blue LED in front of the
eye (100ms duration; approximately zero elevation and azimuth); and white noise
auditory stimulation (2 s. duration). The averaged evoked maps clearly showed
activation patches in the expected areas (Fig. 1c; Supplementary Fig. 1a). Next, we
registered each imaging day to the mapping day using skull coordinates from the
green images. Finally, we registered each mouse onto a 2D top view mouse atlas using
both functional patches from the mapping and skull coordinates (Supplementary
Fig. 1; ©2004 Allen Institute for Brain Science. Allen Mouse Brain Atlas. Available
from: http://mouse.brain-map.org/29). Within the atlas borders, we defined 25 areas of
interest, with some manual modifications within these borders to fit the functional
activity for each mouse. Motor cortex areas were defined based on stereotaxic coor-
dinates and functional patches for each mouse (see below). Thus all mice had similar
regions of interest that were comparable within and across mice.

We grouped these 25 areas into auditory (green), association (pink),
somatosensory+V1 (blue), and motor (red) areas (Fig. 1d and Supplementary
Fig. 1b). Auditory areas: Primary auditory (A1), Auditory dorsal (AD) and
Temporal association area (TEA). Sensory areas: Somatosensory mouth (Mo),
Somatosensory nose (No), Somtosensory hindlimb (HL), Somtosensory forelimb
(FL), Barrel cortex (BC; Primary somatosensory whisker); Secondary
somatosensory whisker (S2), Somtosensory trunk (Tr) and Primary visual cortex
(V1). Motor areas: whisker-related primary motor cortex (M1; 1.5 anterior and
1 mm lateral from bregma, corresponding to the whisker evoked activation patch in
M1 from the mapping session), anterior lateral motor cortex (ALM; 2.5 anterior
and 1.5 mm lateral from bregma69) and secondary motor cortex (M2; 1.5 anterior
and 0.5 mm lateral from bregma corresponding11). Association cortex:
Rostrolateral (RL), Anterior (A), Anterior lateral (AL), Anterior medial (AM),
Posterior medial (PM), Lateral medial (LM), Lateral intermediate (LI), Posterior
lateral (PL), Post-rhinal (PR), Retrosplenial dorsal (RD) and Retrosplenial angular
(RA). We note that our definition of association cortex is broad and may include or
exclude areas that are not necessarily classical association areas. In addition, we
further divided association areas into anterior (RL, A, AM, and AL) and posterior
(PM, L, LI, PL, PR, RD, and RA) association cortex (dashed red line in Fig. 6d).

Control experiments. In control experiments, we excluded confounding effects of
autofluorescence or non-calcium-related intrinsic signals, by exciting the wide-field
preparation with green light, showing no positive responses during cue-, pre-, and
stim-period (Supplementary Fig. 11; For additional controls for non-calcium
related optical signals see Gilad et al.11). Therefore, in the experiments presented in
this study non-calcium-related intrinsic signals have no major influence on the
GCaMP6f signals, especially in the cue- and pre-periods. To control for possible
changes in responses across several days that are not necessarily related to learning,
we evaluated the stability of areal activity in expert mice imaged across 5 con-
secutive days. Responses in BC (during stim-period), RL (during pre-period), and
A1 (during cue-period) across 5 days were relatively flat (n= 4 mice). In addition,
trial-shuffled data across learning eliminated these changes in responses and
resulted in a relatively flat change in response (103 iterations). Taken together,
changes in activity across a learning period of several days is more likely to be
learning related rather than day-to-day fluctuations in activity.

Whisker and body tracking. In addition to wide-field imaging, we tracked
movements of the whiskers and the body of the mouse during the task (Fig. 1a).
The mouse was illuminated with a 940-nm infrared LED. Whiskers were imaged at
50 Hz (500 × 500 pixels) using a high-speed CMOS camera (A504k; Basler), from

which we calculated time course of whisking envelope and the time of first touch
(see below). An additional camera monitored the movements of the mouse at 30
Hz (The imaging source; DMK 22BUC03; 720 × 480 pixels). We used movements
of both forelimbs and the head/neck region to assess body movements, to reliably
detect large movements (Fig. 1a; see Data Analysis below). Importantly, mice
performed this task in the dark where motor parameters were collected using
infrared light. The only light in the setup was the blue illumination pattern that was
focused through the second objective onto the wide-field preparation. Illumination
conditions were still very low despite this light and mice could perform the task in
complete darkness. Thus, it is unlikely that visual cues from the incoming textures
could affect responses in different association areas.

Data analysis. Data analysis was performed using Matlab software (Mathworks).
All mice were continuously imaged during learning (5–11 days). Wide-field
fluorescence images were sampled down to 256 × 256 pixels and pixels outside the
imaging area were discarded. This resulted in a spatial resolution of ~40 µm/pixel
and was sufficient to determine cortical borders, despite further scattering of
emitted light through the tissue and skull. Each pixel and each trial were nor-
malized to baseline several frames before the stimulus cue (frame 0 division). In
this study, we grouped trials based on the texture type, i.e. go or no-go texture (see
Calculating learning curves below). We defined three time periods within the trial
structure: cue (−1.9 to −1.6 relative to texture stop), pre (−1 to 0.5 s relative to
texture stop), and stim (−0.5 to 0.5 relative to texture stop; Fig. 1d). Naïve and
expert phases were defined as the first and last 500 trials, respectively. Responses
during the first 50 trials were similar to the first 500 trials (p > 0.05; Signed rank test
across mice), indicating that the very early stages of stimulus presentation were not
substantially different.

Calculating body movements. We used a body camera to detect general move-
ments of the mouse (30 Hz frame rate; Supplementary Fig. 1a). For each imaging
day, we first outlined the forelimbs and the neck areas (one area of interest for
each), which were reliable areas to detect general movements. Next, we calculated
the body movement (1 minus frame-to-frame correlation) within these areas as a
function of time for each trial. Thresholding at 3 s.d. (across time frames before
stimulus cue) above baseline (defined as the 5th percentile) resulted in a binary
movement vector (either ‘moving’ or ‘quiet’) for each trial11.

Whisker tracking and first-touch analysis. The average whisker angle across all
imaged whiskers was measured using automated whisker tracking software70. The
mean whisker envelope was calculated as the difference between maximum and
minimum whisker angles along a sliding window equal to the imaging frame
duration (50 ms; refs. 11,27). Whisker envelope was normalized just before the
auditory cue similar to wide-field data (Frame zero). In addition, we manually
detected the first frame, in which any whisker touched the upcoming texture, using
the movies from the whisker camera (LabVIEW custom program). The first touch
occurred on average 0.33 and 0.34 s before the texture stopped for naïve and expert
mice respectively. Time of first touch did not differ between expert and naïve mice
(P > 0.05; Mann–Whitney U-test; n= 7 mice). We note that the first touch
occurred mostly (but not exclusively) in the pre-period from −1 to −0.5 relative to
texture stop.

Calculation of curves across learning. Trials were binned (n= 50 trials with no
overlap) across learning and the performance (defined as d′ = Z(Hit/(Hit
+Miss)) – Z(FA/(FA+ CR)) where Z denotes the inverse of the cumulative dis-
tribution function) was calculated for each bin. Next, each behavioral learning
curve was fitted with a sigmoid function

SðtÞ ¼ a
1

1þ e
�ðt�bÞ

c

ð1Þ

Where a denotes the amplitude, b the time point (in trial numbers) of the inflection
point, and c the steepness of the sigmoid. A d′= 1.5 was defined as the threshold
and mice were ordered based on the trial number at which they crossed threshold
(i.e. learning threshold; Fig. 1g). Varying the d′ threshold maintained the order of
the mice based on their learning threshold (see Fig. 1f).

To compare the behavioral learning curve with other behavioral parameters and
neuronal activity, we similarly grouped trials and separated them based on the
texture type, i.e. hit and miss trials were grouped into the go texture trials; CR and
FA trials were grouped into the no-go texture trials. Our main focus in this study
was on the go texture (presented in Figs. 2–6). Therefore, stimulus identity was
kept similar across learning. However, results were maintained when considering
only the no-go texture trials. Only in Fig. 7 we compare between go and no-go
textures to calculate discrimination power. Next, we can present the dynamics of a
behavioral parameter (i.e. body movement, whisking envelope or licking
probability) or cortical area activity (averaged over pixels) in two-dimensional
temporal spaces where the x-axis is the trial temporal structure (i.e. trial
dimension) and the y-axis is the learning profile across trials and days (i.e. learning
dimension; for examples see Figs. 2a, e, i and 3c (top)). From this 2D temporal
space we could average across trials of the learning dimension, e.g. during naïve
and expert states (for example see Figs. 2b, f, j and 3c (middle)). Alternatively, we
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can average across time frames within the trial dimension, to obtain a response
curve across learning for a specific time period (i.e. cue-, pre-, or stim-period;
additionally smoothed with a Gaussian kernel (2σ= 9) and fitted with a sigmoid
function; for example see Figs. 2c, g, k and 3c (bottom)). Thus we are able to obtain
a curve across learning for a specific area or behavioral parameter which are
comparable to the behavioral learning curve of the mouse. The sigmoid fits of the
response curves from different cortical areas were normalized between 0 and 1 in
order to compare between response curves of different areas. This was done mainly
because of the different activation ranges across learning for each area. Non-
normalized learning curves are presented in Supplementary Fig. 7. In an additional
analysis we also fitted each response curve for all areas and time periods with a
double sigmoid fit in order to fit both the initial suppression and the later
enhancement that was present in some curves (e.g. Fig. 4d; Supplementary Fig. 9):

dðtÞ ¼ a1 1� 1

1þ e
�ðt�b1Þ

c1ð Þ

 !
þ a2 1þ 1

1þ e
� t�b2ð Þ

c2ð Þ

 !
þ d ð2Þ

with a1 and a2 as amplitudes, b1 and b2 as inflection points (in trial numbers), and
c1 and c2 as steepness parameters of the descending and ascending sigmoid,
respectively. d is a baseline parameter, which was set to the minimum value of a
curve. Thus, for each area we could quantify the amount (amplitude) and timing
(latency) of both suppression and enhancement during each time period relative to
the learning threshold. Finally, to quantify the enhancement-suppression ratio we
calculated the modulation index (MI) as

MI ¼ a2� a1
a2þ a1

ð3Þ

ranging from −1 and 1, with positive values indicating more enhancement,
negative values indicating more suppression, and near zero values indicating
similar amounts of suppression and enhancement.

Calculating learning maps and seep maps. To study the relationship between the
behavioral learning curve and the learning curves of all pixels we calculated a
‘learning map’ (Fig. 5). This was done by calculating the correlation coefficient (r)
between the behavioral learning curve of the mouse and the learning-related ΔF/F
changes of each pixel (Fig. 5a). This can be done for a specific time period (i.e. cue-,
pre- or stim-period; Fig. 5a, b) or for each time frame (Fig. 5c). To calculate the
relationship between the learning-related ΔF/F changes of a specific area (i.e. seed)
and the learning-related ΔF/F changes of all pixels we calculated a seed correlation
map (Fig. 6). This was done similarly to the learning map by only substituting the
behavioral learning curve with the learning-related ΔF/F changes of the desired
area (defined as the seed area; Fig. 6a). We chose seed areas to be RL, PM, and RD
which were of the highest interest based on previous analysis and best represent the
main trends of neuronal changes during learning. A full correlation matrix between
all learning curves is presented in Supplementary Fig. 10.

Discrimination power between go and no-go texture. To measure how well
could neuronal populations discriminate between go and no-go textures, we cal-
culated a receiver operating characteristics (ROC) curve and calculated its area
under the curve (AUC; with a value of 0.5 indicating no discrimination power).
This can be done for each pixel (Fig. 7e), each area (Fig. 7d), each time frame
(Fig. 7b), and across learning (Fig. 7f). We put our main focus on the stim-period
when the texture touched the whiskers. To calculate significance, we calculated the
sample distribution by trial shuffling between go and no-go textures (n= 100
iterations). Exceeding mean ± 2 s.d. of the sample distribution is defined as sig-
nificant (Fig. 7b).

Statistical analysis. In general, non-parametric two-tailed statistical tests were
used, Mann–Whitney U-test to compare between two medians from two popula-
tions or the Wilcoxon signed-rank test to compare a population’s median to zero
(or between two paired populations). Multiple group correction was used when
comparing between more than two groups.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data and code that support the findings of this study are available from the
corresponding author upon reasonable request.

Code availability
The codes used to analyze the data of current study are available from the corresponding
authors on reasonable request.
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