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Abstract: Dengue is a mosquito-borne viral disease causing significant health and economic burdens
globally. The dengue virus (DENV) comprises four serotypes (DENV1-4). Usually, the primary
infection is asymptomatic or causes mild dengue fever (DF), while secondary infections with a
different serotype increase the risk of severe dengue disease (dengue hemorrhagic fever, DHF).
Complement system activation induces inflammation and tissue injury, contributing to disease
pathogenesis. However, in asymptomatic or primary infections, protective immunity largely results
from the complement system’s lectin pathway (LP), which is activated through foreign glycan
recognition. Differences in N-glycans displayed on the DENV envelope membrane influence the lectin
pattern recognition receptor (PRR) binding efficiency. The important PRR, mannan binding lectin
(MBL), mediates DENV neutralization through (1) a complement activation-independent mechanism
via direct MBL glycan recognition, thereby inhibiting DENV attachment to host target cells, or (2) a
complement activation-dependent mechanism following the attachment of complement opsonins
C3b and C4b to virion surfaces. The serum concentrations of lectin PRRs and their polymorphisms
influence these LP activities. Conversely, to escape the LP attack and enhance the infectivity, DENV
utilizes the secreted form of nonstructural protein 1 (sNS1) to counteract the MBL effects, thereby
increasing viral survival and dissemination.

Keywords: dengue virus; dengue fever; dengue hemorrhagic fever; dengue shock syndrome; fla-
vivirus; lectin complement pathway; nonstructural protein NS1

1. Introduction

Dengue is an insect-borne viral infection transmitted to humans from the bites of
infected Aedes mosquitoes. The causative agent is dengue virus (DENV), an enveloped
positive-sense RNA virus of the Flaviviridae family. In contrast to other flaviviruses, it
comprises four distinct serotypes (DENV1-4). According to the World Health Organization
(WHO), the global incidence of infection has increased dramatically in recent decades [1],
and there are an estimated 100–400 million cases per year [2]. Dengue is endemic in the
tropical and subtropical regions of the world [3,4]. The majority of infections (>90%) are
asymptomatic. However, others present with symptomatic illness ranging from mild
dengue fever (DF) to more severe diseases (<5%) known as dengue hemorrhagic fever
(DHF) and dengue shock syndrome (DSS) [5]. Typically, symptomatic dengue begins from
two to seven days after infection with flu-like symptoms that include fever, headache,
myalgias, arthralgias and a maculopapular rash. Hemorrhagic phenomena and leukopenia
are common, and thrombocytopenia may also occur (up to 50% in DF and 100% in DHF) [6].
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Patients may also exhibit coagulopathy, vascular permeability, hypovolemic shock, bleed-
ing and organ failure, leading to death [4]. While the first or primary infection of DENV is
usually asymptomatic or mild, a second infection from a different dengue serotype has an
increased risk of severe illness [7–9].

Viral virulence and genetic variations lead to different presentations of dengue ill-
ness [10]. The introduction of a more virulent Southeast Asian DENV2 to the Americas
was responsible for an increased incidence of severe dengue in Cuba in 1981 [8]. As noted
above, the temporal sequence of infections, especially with particular serotypes, also corre-
lates with the dengue severity. Epidemiologic studies have shown an association of DHF
after a primary infection with DENV1 followed by a secondary infection with DENV2 or
DENV3 [7,8,11–13].

In addition, multiple host factors determine the disease severity, such as age and
ethnicity. For example, in a study of Asian children, the illness in secondary infections
presented a greater risk of DHF [14]. Other studies demonstrated that patients with
advanced age (>60 years old) are at a high risk to develop severe dengue, partly due to
comorbidities or a high incidence of monotypic immune status (previously infected by one
of the DENV serotypes). This has been evident in low dengue prevalence areas, where
secondary infections with a heterologous DENV serotype increasingly occur in the aged
populations [15]. A higher incidence of DHF/DSS has also been observed in patients with
AB blood [16], while African ancestry is a protective factor against severe dengue [17],
suggesting that host genetics also contributes to a person’s propensity for the development
of severe symptoms.

Immune responses to DENV modulate the pathogenesis. High levels of circulating
cytokines and chemokines (cytokinemia) in association with massive immune activation
(hyperinflammation) are commonly observed in individuals with DHF [7,18–21]. An
increased risk of severe dengue during secondary infection has been partially explained
by the antibody-dependent enhancement (ADE) of infection and T-cell original antigenic
sin; that is, memory B and T cells activated by the first serotype may have less avidity
for epitopes of the new infecting serotype [20,22,23]. ADE occurs when pre-existing
antibodies (Ab) from a previous infection bind to viral particles of the current infection
with a different DENV serotype. These Abs, instead of effectively inhibiting the infecting
virus, enhance the viral entry into Fc-receptor-bearing immune cells such as monocytes
and dendritic cells, increasing the total viral replication/burden [23–25]. Of note, the ADE
of severe dengue in humans has been recently reported [23]. The profound expansion
of DENV-specific memory T cells (from the first infection) with a low affinity with the
infecting DENV serotype may contribute to delayed viral clearance and the enhanced
release of proinflammatory cytokines, leading to more severe manifestations [20,26–28].
Polymorphisms in genes related to innate and adaptive (humoral and cellular) immune
responses, as well as cytokine and chemokine genes, have been shown to influence the
susceptibility to DHF/DSS or severe dengue [29–31].

Further, while the complement system plays a protective role in the host by limit-
ing viral replication, overactivation can lead to a more severe disease by exacerbating
the inflammatory response (reviewed in [32]). A massive complement activation and a
marked reduction in plasma complement proteins were first identified in DHF/DSS pa-
tients [33]. High levels of the complement anaphylatoxins (C3a and C5a) and the terminal
complement complex (sC5b-9) were present in the plasma of patients with severe dengue
during a second infection with a different serotype, suggesting an association between
complement activation and dengue severity [34–37]. These findings suggest that comple-
ment overactivation plays a role in DHF/DSS pathogenesis. In addition, soluble immune
complexes (IC) formed by circulating DENV and DENV-specific antibodies were detected
in the circulation of patients during the acute phase of the disease [36,38]. This complex
could be opsonized with complement molecules and rapidly trapped by complement
receptors (CR1) in red blood cells (RBCs). The complement fixing IC adheres to the cells
until IC-bound RBCs traverse the spleen and liver, where IC is removed from RBC and
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deposited in these tissues [39]. Although this mechanism is important for viral clearance
from the circulation, DENV, in the form of IC, probably takes advantage of this opportunity
to infect Fc-receptor-bearing cells in the liver and, therefore, disseminates the infection.
This hypothesis, however, needs to be further investigated. Indeed, soluble IC activates
complement less efficiently than large immune complexes in which anti-DENV antibodies
bind to dengue antigens presenting on DENV-infected cell surfaces [40,41]. The DENV
envelope (E) and nonstructural protein 1 (NS1) expressed on infected cell surfaces can
be targets for antibody binding and efficiently activate the complement, leading to the
deposition of membrane-damaging C5b-9 on the infected cell surface and bystander soluble
C5b-9 (sC5b-9) complexes [35,42] and our unpublished data. Complement activation by
IC formed on the surface of infected cells, leading to cell lysis, has been suggested to be a
key protective mechanism to eliminate infected cells [43,44]. Interestingly, NS1, a major
secreted viral protein produced from infected cells, can bind to the surface of uninfected
cells via an interaction with glycosaminoglycans [45], which can then form immune com-
plexes with specific antibodies purified from patients’ plasma. This can trigger complement
activation, as evident by C3dg and C5b-9 deposition (our unpublished data). Unnecessary
complement activation on healthy, uninfected cells caused by NS1-anti-NS1 ICs could lead
to inflammatory damage in DHF/DSS patients. In vivo studies of flavivirus-infected mice
deficient in complement components, however, support the essential roles of the comple-
ment system in protecting these mice from infection [46–49]. Thus, the complement system
is a double-edged sword in its capability to protect from dengue yet, also if overactivated,
to enhance disease severity. Hitherto, the roles of the complement have been extensively
studied in secondary dengue infections when antibodies are stimulated. On the other
hand, the immune mechanisms protecting individuals with the asymptomatic or mild
disease, particularly in primary infections, remain uncertain. Many aspects of complement
activation and its roles in dengue (protection or pathogenesis) remain to be investigated. In
this brief review, we will focus on the role of the lectin pathway of complement activation
in DENV.

2. Lectin Pathway in Dengue

The three pathways of complement activation are the classical (CP), alternative (AP)
and lectin (LP) [50]. The CP is primarily activated by antigen–antibody immune complexes,
while the AP amplifies C3b deposition, as well as continuously turning over secondary
to hydrolysis of complement component C3. The LP initiates activation through the
recognition of glycans “specific” to foreign pathogens or dead cells. Mannan-binding (also
called mannose-binding) lectin (MBL) and ficolins (1–3) are the major triggers of the LP. The
key effectors of complement activation are anaphylatoxins (C3a and C5a), opsonins (e.g.,
C4b and C3b) and the membrane attack complex (MAC; C5b-9). The anaphylatoxins bind
their receptors to promote potent proinflammatory processes and recruit immune cells to
the sites of infection. The opsonic fragments C4b and C3b become covalently tagged onto
invading microorganisms or infected cells to induce immune adherence and phagocytosis
by immune cells through interactions with complement receptors. The MAC, common to
all three pathways, is a terminal assembly complex of complement components (C5b-9)
formed on the surface of pathogens and infected cells that causes membrane perturbations,
including cell lysis.

The LP has been hypothesized to particularly fight against dengue, especially early
in primary infections when adaptive immune responses such as specific Abs are lacking
and T cells are not yet sensitized [51]. The initiation of this pathway results from the
binding of pattern recognition receptors (PRRs) on microbial carbohydrates (e.g., mannose
and fucose) or acetylated oligosaccharide residues. Upon binding, the PRRs assemble
with MBL-associated serine proteases (MASP-1 and MASP-2) to trigger complement ac-
tivation. As noted, PRR molecules in the LP include MBL, ficolin-1 (M-ficolin), ficolin-2
(L-ficolin), ficolin-3 (H-ficolin), collectin-10 (CL-10) and collectin-11 (CL-11) [52]. These
PRRs and MASPs are predominantly expressed in the liver, a major target organ affected by
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DENV [53,54]. Of note, among these PRRs, MBL and ficolin-2 have been the most widely
studied in infectious diseases such as dengue [55–57]. A schematic diagram of the LP is
presented in Figure 1.
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Figure 1. Lectin pathway. Initiation of the lectin pathway (LP) results from the binding of pathogen recognition receptors
(PRRs) on microbial carbohydrates, as represented in mature dengue virus. The PRRs (MBL, ficolin, or collectin) assemble
with MBL-associated serine proteases (MASP-1 and MASP-2) to activate complement C3 through (1) the actions of C4 and
C2 to produce C3 convertase (C4bC2a) or (2) the C4 and C2 bypass pathway. C3b fragments activate further down the
cascade to generate C5b-9 complexes on the microbial surface or promote opsonization. C3a and C5a are anaphylatoxins.
Additionally, PRR-MASP complexes or MASPs alone are involved in coagulation. Note that the AP can substantially
amplify the complement activation from C3b initially generated by the LP.

Animal studies of West Nile Virus (WNV), another flavivirus, have contributed to our
knowledge about the protective role of the complement in DENV infection. For example,
mice lacking a LP recognition molecule are more vulnerable to WNV infection compared
to wild-type mice [46]. Using a panel of naïve sera from mice deficient in a complement
component, the neutralization of both WNV and DENV (in the absence of specific antivirus
antibodies) was mainly dependent on MBL and MASP-2, partially dependent on factor
D and factor B (of the AP) but independent of C1q (the CP) and C5 (MAC formation).
These data suggest that, early on in an infection, activation of the CP and the AP might not
contribute substantially to direct viral neutralization [47,51]. The serum neutralization of
WNV and DENV can also occur via the C4 and C2 bypass pathway; the binding of MBL
to the virion’s envelope activates MASPs that directly cleave C3 without the activation of
C4 and C2, resulting in the deposition of complement fragments on the pathogen surface
(Figure 1) [47,58–60]. Although the serum neutralization of both WNV and DENV occurs
in a similar manner, certain features of their envelopes differentially affect MBL recognition
and, thus, the neutralization efficiency, as further discussed in this review.

2.1. Influence of Carbohydrate Structure

Studies on a wide variety of viruses have demonstrated that glycosylation influences
the viral virulence. The direct interaction of MBL with flaviviruses, including DENV and
WNV, has been demonstrated in vitro [47,51]. MBL recognizes oligosaccharides (glycopro-
teins) on the virion surface. Flavivirus particles are composed of three structural proteins:
envelope (E), membrane (M) and capsid (C) [61]. The E protein serves as the major en-
velope glycoprotein on the virion surface tasked with virus attachment and fusion onto
target cells for productive replication (reviewed in [62]). Virions produced in a mosquito
vector versus those in a human host likely have important structural differences in their
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N-glycans of the E glycoprotein, which could differentially influence the target cell bind-
ing and efficiency of infection [63]. The glycans on viruses derived from mosquito cells
are primarily high-mannose and/or paucimannose but with terminal mannose residues,
while those on virions produced in mammalian cells are mostly complex types, with the
exception in DENV, where an additional high-mannose in the second N-glycosylation
site is present [62]. Differences in the processing of glycoproteins among host cells can
impact the antigenicity and pathogenicity of viruses [29,64,65]. It is worth mentioning that
most flavivirus studies have used viruses prepared from infected cells of nonhuman origin,
such as C6/36 (mosquito cell line), BHK (baby hamster kidney cell line) and Vero cell
(monkey kidney cells line) [45–47,51,62], while less studies have used viruses generated
from infected human target cells, such as monocytes, monocyte-derived dendritic cells or
hepatic cell lines [63,66,67]. This is partly due to a lower yield of infectious virus production.
Recently, an in vitro model resembling normal human liver cells that has a high DENV
replication efficiency was established [68]. The cells can thus serve as a new alternative cell
model to study virus pathogenesis [68].

MBL effectively interacts with the terminal mannoses and thereby preferably recog-
nizes mosquito-derived viruses presenting with simple oligosaccharides on their envelope
shells. The direct inhibition of the viruses by MBL, in the absence of a complement activa-
tion, is clearly seen in insect cell-derived viruses but less efficiently so on DENV produced
by mammalian cells in vitro [51]. This suggests that MBL tends to have greater impact
on the neutralization of insect-derived viruses at the initial phase of infection during
mosquito inoculation and, to a lesser extent, on human cell-derived viruses produced from
sequential rounds of infections. Of note, DENV contains two glycosylation sites at Asn-67
and Asn-153, whereas WNV bears a single N-linked glycosylation site on its E protein at
Asn-154 [62]. The effective neutralization of insect cell-derived WNV has been observed
in vitro, while little or no binding between MBL and mammalian cell-derived virus results
in a less effective viral neutralization [47]. Interestingly, the pretreatment of WNV with
deoxymannojirimycin, which prevents the formation of complexes of sugar groups in
N-linked glycans, restores the binding and neutralizing ability of MBL to the virus [47].
Furthermore, using genetic engineering to produce a second N-linked glycosylation site at
Asn-67 in mammalian cell-derived WNV improved MBL binding and the neutralization of
the virus by MBL [47,51]. These findings suggest that MBL binding to flaviviruses is likely
modulated by the number and processing of carbohydrates on the N-linked glycans of the
E protein.

Unlike WNV, the MBL-mediated neutralization of mammalian cell-derived DENV
occurs in the presence of complement activation [51]. The additional high-mannose at
Asn-67, unique for DENV, probably influences/facilitates the binding of MBL to DENV
and, thus, makes DENV more susceptible to MBL-mediated neutralization when compared
with WNV. Strikingly, the enhanced MBL-mediated neutralization of insect cell-derived
DENV occurs in the presence of the activation of the LP [51]. A greater number of mannose
ligands or the conformational arrangement of the glycans in the mosquito cell-derived virus
likely explains this protective phenomenon of the LP. Furthermore, the MBL-dependent
neutralization of both mammalian cell-derived and insect cell-derived DENV correlates
with the levels of MBL in human serum [51].

Mechanistically, the MBL neutralization of flaviviruses occurs via two processes:
(1) complement activation-independent: the direct interaction of MBL with oligosac-
charides on the virion’s envelope shell inhibits viruses from attaching to the host cell
membrane—demonstrated for insect and mammalian cell-derived DENV—and (2) comple-
ment activation-dependent: the lectin pathway is activated upon MBL binding to DENV
and WNV, resulting in the deposition of C3b and C4b on virion surfaces, thereby efficiently
enhancing virus neutralization (Table 1 and Figure 2A) [47,51]. Overall, these data suggest
that the role of MBL and the lectin activation pathway in human hosts is not only to restrict
virus infections after the bite of infected mosquitoes but, also, to control DENV replication.
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Table 1. Comparison of MBL-mediated neutralization between DENV and WNV.

Mechanisms DENV WNV

N-linked glycosylation site on E protein Two glycosylation sites at Asn-67 and
Asn-153 [62] One glycosylation site at Asn-154 [62]

MBL-mediated neutralization dependent
of complement activation

Neutralization of insect and mammalian
cell-derived virus [47,51]

Neutralization of insect cell-derived virus
by blocking viral fusion [47]

MBL-mediated neutralization
independent of complement activation

Neutralization of insect and mammalian
cell-derived virus by inhibition of viral

attachment to target cells [51]
-

Mechanism of immune evasion to
MBL-mediated neutralization

Both insect cell and mammalian–derived
sNS1 bind to MBL, inhibit MBL-mediated

neutralization [69]
-Viruses 2021, 13, x FOR PEER REVIEW 6 of 16 

 

 

 
Figure 2. Roles of MBL in dengue. (A) MBL molecules inhibit DENV produced from mammalian cells 
(left) and insect cells (right) via complement activation-dependent or complement activation-independ-
ent pathways. Oligosaccharides on the E protein of DENV generated in mammalian cells are complex 
sugar and high-mannose, while those on the membranes of insect cell-derived viruses are only man-
nose. (B) DENV utilizes sNS1 to counteract MBL in order to escape MBL-mediated neutralization. Free 
DENV is able to bind to its receptor and infect target cells. 

Table 1. Comparison of MBL-mediated neutralization between DENV and WNV. 

Mechanisms  DENV WNV 
N-linked glycosylation site on E pro-

tein 
Two glycosylation sites at Asn-67 and Asn-

153 [62] 
One glycosylation site at Asn-154 

[62] 
MBL-mediated neutralization de-
pendent of complement activation 

Neutralization of insect and mammalian 
cell-derived virus [47,51] 

Neutralization of insect cell-derived 
virus by blocking viral fusion [47] 

MBL-mediated neutralization inde-
pendent of complement activation 

Neutralization of insect and mammalian 
cell-derived virus by inhibition of viral at-

tachment to target cells [51] 
- 

Mechanism of immune evasion to 
MBL-mediated neutralization 

Both insect cell and mammalian–derived 
sNS1 bind to MBL, inhibit MBL-mediated 

neutralization [69] 
- 

Figure 2. Roles of MBL in dengue. (A) MBL molecules inhibit DENV produced from mammalian
cells (left) and insect cells (right) via complement activation-dependent or complement activation-
independent pathways. Oligosaccharides on the E protein of DENV generated in mammalian cells
are complex sugar and high-mannose, while those on the membranes of insect cell-derived viruses
are only mannose. (B) DENV utilizes sNS1 to counteract MBL in order to escape MBL-mediated
neutralization. Free DENV is able to bind to its receptor and infect target cells.

Of interest, high-mannose residues attached to the E protein on the viral surface bind
to dendritic cell-specific ICAM-3 by grabbing nonreceptor integrin (DC-SIGN; CD209) to
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facilitate the DENV infection of dendritic cells [66,67,70]. The interaction of MBL on DENV
may also prevent binding of the virus to DC-SIGN, a major viral entry receptor and the
primary target cell for the E protein of DENV, thereby facilitating control of the infection
and a diminishing spread in the early phases.

The differential maturation of DENV might also impact MBL-mediated neutralization.
The intracellular virus remains in an immature form with the pre-membrane (prM) protein
present on the viral envelope. However, shortly before being released into the extracellular
milieu, prM is converted into its mature form (M) after cleavage by the host protease “furin”.
Consequently, the “pr” peptide is released while the M protein remains attached to the
virion surface. Further, the process of furin-mediated prM cleavage induces conformational
rearrangements of the surface E and M proteins on its envelope, producing “smooth”
outer surfaces of the mature virus [71,72]. The cleavage of prM is, however, ineffective,
especially in DENV-infected insect cells. As a result, most extracellular viruses secreted
from these cells are “spiky” prM-containing virions, which can be either a partially mature
virus or immature virus [71–73]. Of note, the prM-retaining virus generated from insect
cells could be infectious [24,74]. Thus, MBL binding to prM glycans may also enhance
the MBL-mediated neutralization of the insect cell-derived virus. On the other hand,
the efficiency of the prM cleavage in DENV-infected mammalian cells appears to differ
among cell types. DENV produced from primary human dendritic cells yields much
lower levels of the prM protein on its envelope shells than those derived from mammalian
cell lines such as Vero (monkey kidney cell line) [24,73,75]. Importantly, DENV prM also
contains N-linked glycosylation sites [76], and this could make prM containing immature
or partially mature DENV particles more vulnerable to MBL binding and neutralization.
The inefficient cleavage of prM on DENV generates a heterogeneous population of mature
(virus containing only E and M proteins) and immature particles with different proportions
of prM and E [72,77]. Differential numbers of N-glycosylation sites on E and prM and
the efficiency of prM cleavage by furin (maturation stage) on different viruses that are
generated from distinct cell types could influence the degree of complement activation
initiated by MBL recognition. However, the impact of these varying outcomes on disease
pathogenesis requires further study.

2.2. Serum Levels and Polymorphisms of the Lectin PRR Molecules

Low MBL concentrations in DHF patients, particularly with a primary infection,
have been demonstrated [78]. This deficiency of MBL in dengue patients who clinically
developed DHF after their first encounter with DENV suggests a protective role of MBL in
primary DENV infections. Further supporting evidence for this possibility comes from a
report that the serum from dengue nonimmune individuals with high MBL concentrations
more effectively neutralized the virus than those with low MBL [51]. Additionally, the
neutralization of serum MBL by the addition of mannose abrogated the DENV inhibitory
capability [51]. Although higher levels of MBL in DHF than those in mild DF cases have
been described in another study [34], the collected samples in those experiments were
combined from both primary and secondary infections, which may confound the protective
effect of MBL, especially relative to severe dengue [34]. In support of this argument,
serum from donors who have been previously exposed to the virus effectively neutralized
DENV, despite MBL depletion by mannose, indicating a key role of virion-specific Abs,
which efficiently trigger the classical pathway of complement activation, resulting in viral
neutralization [51].

Low-functional MBL in DHF is probably associated with genetic polymorphisms in
the MBL2 gene. Six common single-nucleotide polymorphisms (SNPs) have been studied
that are associated with DENV infection (Tables 2 and 3 and Figure 3) [79]. These variants
cause reduced serum levels, as well as changes in MBL function and stability. Located in the
MBL2 promoter are concentration-regulating SNPs (−550:H/L, −221:X/Y and +4:P/Q) of
which the −221 locus harboring the X variant has the strongest downregulating effect. The
other polymorphisms are in exon 1, which encodes for the structural domains. Mutations
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in this domain result in amino acid replacements in codon 54 (variant B), codon 57 (variant
C) and codon 52 (variant D). The variants B, C and D are often inherited together and are
called variant “O”, while a wild-type allele is named allele A. Among these three variants,
variant B is the most common in Caucasian (allele frequency = 0.12–0.14) and Asian (allele
frequency = 0.12–0.14) populations. The MBL protein produced from these mutants is more
easily degraded into lower oligomeric forms and probably has a shorter half-life, leading
to reduced function and concentration [80].

Table 2. Single-nucleotide polymorphisms in the MBL2 and FCN2 genes associated with dengue disease.

Protein Gene dbSNP Nucleotide
Location

Major
Allele

Minor
Allele Region Amino Acid

Substitution References

MBL MBL2 rs11003125 (H/L) −550 G C Promoter - [51,81–84]
rs7096206 (X/Y) −221 C G Promoter - [51,81–84]
rs7095891 (P/Q) +4 C T 5’ UTR - [51,81–84]

rs5030737 (Variant D) +223 C T Exon1 R52C [51,81–84]
rs1800450 (Variant B) +230 G A Exon1 G54D [51,81–84]
rs1800451 (Variant O) +239 G A Exon1 G57E [51,81–84]

Ficolin−2 FCN2 rs11103563 +6031 A G Intron 7 - [55]
rs7872508 +6220 T G Intron 7 - [55]
rs7851696 +6424 G T Exon8 A258S [55]

Table 3. Allele, genotype and haplotype of the polymorphisms in MBL2 and FCN2 associated with dengue disease.

Gene Polymorphisms Serum Level Association to Dengue Disease References

MBL2 Exon 1 Allele
O Low A greater risk to develop DHF [81]

Exon 1 Genotype

AA High
Mild dengue disease; a greater
chance to develop dengue with

thrombocytopenia
[85]

OO Low A greater risk to develop DHF
Diplotype

XA/XO, YA/XO Not available Association with dengue disease [84]
Haplotype

LXPB, HXPA, XO Not available Association with dengue disease [84]
LXA/HYO, LXA/LYO, HYO/LYO Low A greater risk to develop DHF [81]

FCN2 Intron 7 and Exon 8 (+6031A/G,
+6220 T/G, +6424 G/T)

Recessive genotype (6031GG,
6220GG, 6424TT) High Susceptibility to dengue disease [55]

Individuals carrying genotype “OO” are considered to be deficient in MBL. In addi-
tion, the haplotypes (the combination of SNP alleles on the MBL2 gene) HYA, LYA and LXA
correlate with high, intermediate and low serum MBL levels, respectively [86]. In DENV
infections, individuals carrying the “OO” genotype or haplotype for the low MBL level
may have a greater risk for the development of DHF, while those with the “AA” genotype
tend to have mild dengue disease along with high MBL levels in the blood [51,81–84].
These findings are different, though, from the observations of Bartolomeu et al. They
proposed that individuals carrying the “AA” genotype have a greater chance of developing
dengue with thrombocytopenia, and this incidence might increase in adults [85]. Since the
genotype “AA” is associated with high concentrations of functional MBL in sera, more
MBL–virus complexes could be generated on platelets to promote further complement
activation and subsequently induce platelet aggregation and lysis and, thus, thrombocy-
topenia [52,87]. Of note, dengue virions associated with platelets have been observed both
in vitro and in patient blood obtained during the acute febrile phase [88,89]. Intriguingly,
complement activation products such as the C3b and C5b-9 complexes have been detected
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on platelets isolated from dengue patients (Prida Malasit et al., unpublished observation,
personal communication).
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The interpretation of MBL2 polymorphisms in DENV infections requires further study.
Low frequencies of variant “O” or genotype “OO” in the population limit the power of
analysis [86]. In addition, dengue is a complex disease in that analyses must take into
account different parameters, such as the classification of dengue infection (1997 WHO
versus the 2009 WHO guideline). The type of infection, primary versus secondary, is
also very important, as MBL and the lectin complement pathway are likely to be less
effective in controlling a virus infection in a secondary immune response in which virus-
specific antibodies and memory T cells are rapidly and dramatically mounted in response
to a current infection of a person who was exposed to the virus previously. Lastly, the
patients’ age (child versus adult) must be taken into consideration. The levels of MBL
are normally high in children and decline in adults, and MBL, together with LP activities,
also depend on the MBL and MASP2 levels [90–92]. In addition, the pathophysiology of
DENV infections in children and adults likely differs, as the clinical manifestations and
laboratory parameters are distinctly evident between the two age groups [93–96]. As a
result, some of these aforementioned observations may not be definitive, and the data
should be interpreted cautiously.

In addition to MBL, other PRRs may have roles in dengue. Recently, the association of
ficolin-2 levels, along with FCN2 polymorphisms in dengue illness, has been examined [55].
The upregulation of ficolin-2 levels during disease progression correlates with DENV
infections but not with other febrile diseases of unknown origins (despite lower levels
in the blood of severe cases) [55]. Increased ficolin-2 is probably regulated by FCN2
polymorphisms located in intron 7 (+6031A/G and +6220T/G) and exon 8 (+6424G/T;
alanine to serine at codon 258), which might influence the pathogen-binding capacity and
concentration (Tables 2 and 3 and Figure 3) [86,97]. Frequencies of the recessive genotypes
in these positions (+6031GG, +6220GG and +6424TT) are high in dengue patients as
compared to the controls and are much higher in severe cases [55]. This evidence points to
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the potential role of ficolin-2 in response to dengue infection, but the mechanisms of how
this PRR of the LP behaves towards dengue virus need to be examined in more detail.

2.3. Dengue Nonstructural Protein NS1, the Antagonistic Molecule to the Lectin Pathway

Although the LP is an effective mechanism to limit infection, DENV has developed
strategies to protect itself from a lectin-mediated attack (Table 1 and Figure 2B). DENV
produces a nonstructural protein (NS1) to assist in intracellular viral replication [98,99],
enhance dengue infection [100–102] and modulate the endothelial hyperpermeability, po-
tentially to disseminate infections [103–106], which could further contribute to dengue
pathogenesis [99,107]. NS1 is a glycoprotein that can be detected as intracellular, surface
membrane-associated and secreted forms [45,99]. Interestingly, the secreted NS1 (sNS1)
performs immune evasion functions, one of which is to antagonize complement molecules,
including MBL [69,108]. Viruses utilize this major secreted molecule to counteract MBL,
thereby inhibiting MBL-mediated neutralization (independent of the complement activa-
tion) [69]. More viral particles are therefore free to bind to human cells and, thus, increase
the viral infectivity. Of note, sNS1 derived from both insect and mammalian cells is capable
of binding to MBL [69]. The interaction of MBL with DENV sNS1 might be attributed
to the N-linked glycosylation sites at Asn-130 and Asn-207 [109,110]. Secreted NS1 from
DENV-infected insect cells contain high-mannose glycans, while those propagated in mam-
malian cells display high-mannose residues at Asn-207 and complex type N-linked glycans
at Asn-130 [110]. These results imply that sNS1 restricts the complement activities during a
natural infection after sNS1 is secreted from mosquito saliva, as well as during subsequent
rounds of infection in humans. Of note, this lectin-specific antagonism of sNS1 of DENV,
from both insect and mammalian cells, to evade the innate immune system has not yet been
reported in other members of the Flaviviridae family. More studies using sNS1 prepared
from human cells, together with sNS1 derived from the sera of dengue patients, are still
needed to confirm the complement evasion function of sNS1 in humans.

The antagonistic functions of sNS1 are not limited to MBL inhibitory activities. NS1
of DENV, WNV and yellow fever virus also bind to the C1s, C4 and C4b-binding pro-
teins, promoting C4 degradation and further attenuating both the LP and CP comple-
ment pathways [51,111]. Furthermore, the inhibition of terminal complement complexes
by DENV NS1 through interactions with complement regulatory proteins has been de-
scribed [112,113]. NS1 is thus a protein that is capable of helping DENV escape from an
immune attack, thereby increasing the chances of viral survival and dissemination.

3. Concluding Remarks and Future Perspectives

In this review, dengue pathogenesis mediated by the LP was emphasized in order to
highlight the importance of this pathway. The LP may play a role primarily in protecting
hosts from natural DENV infections after mosquito bites, leading to asymptomatic infec-
tions. The neutralization of DENV by the LP is both complement activation-dependent
and -independent. An underlying mechanism of lectin-mediated neutralization is the
prevention of virus attachment to its target cells. However, DENV has developed strategies
to escape from lectin recognition. The pattern and type of N-linked glycans, as well as
differential structures of DENV, can be deceptive for the lectin PRRs. Remarkably, DENV
utilizes sNS1 to counteract MBL, thereby enhancing the virus infectivity. Polymorphisms
leading to reduced serum levels of lectin MBL and ficolin-2 have been correlated with
dengue severity.

The current knowledge about DENV infection and the LP provides only a glimpse
of the possible pathologic and defensive mechanisms. Insights into the regulation of the
LP in dengue pathogenesis need to be further elaborated. Additional prospective clinical
studies, as well as the development of suitable animal models for DENV are necessary
for investigating the precise roles of MBL deficiency or allelic variations of MBL in DENV
infections. Improved understanding should eventually lead to improved antiviral therapy
and vaccine approaches.
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