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Abstract

The use of magnetic bead-immobilized DNA as movable template for cell-free protein synthesis has been investigated.
Magnetic microbeads containing chemically conjugated plasmids were used to direct cell-free protein synthesis, so that
protein generation could be readily programmed, reset and reprogrammed. Protein synthesis by using this approach could
be ON/OFF-controlled through repeated addition and removal of the microbead-conjugated DNA and employed in
sequential expression of different genes in a same reaction mixture. Since the incubation periods of individual template
plasmids are freely controllable, relative expression levels of multiple proteins can be tuned to desired levels. We expect that
the presented results will find wide application to the flexible design and execution of synthetic pathways in cell-free
chassis.
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Introduction

Applications of cell-free protein synthesis systems have contin-

ued to expand beyond the laboratory scale protein preparation to

a variety of fields including preparative protein production, in vitro

protein engineering, in situ protein labeling and protein micro-

arrays [1,2,3,4]. Compared to cell-based expression methods, cell-

free systems have the unique advantage of unlimited acces sibility

to the molecular processes involved. This feature enables mix-and-

match applications of various biological or non-biological

components for the synthesis of functional proteins and it

minimizes complications associated with interactions with existing

endogenous cellular pathways. Cell-free synthesis systems also can

be readily quantified, standardized and modularized to provide

attractive platforms for studying synthetic biology.

ON/OFF control of gene expression is one of the most basic

features required for the operation of synthetic gene circuits.

Whereas the manipulation of gene expression within the

environments of living cells demands sophisticated regulatory

networks of effectors, the open nature of cell-free systems offers

more direct and facile options to govern ON/OFF gene

expression. For example, we have previously described reversible

regulation of gene expression using antisense oligodeoxynucleo-

tides (ODNs) in a cell-free protein synthesis system [5]. In this

effort, either complete shut down or controlled reduction of gene

expression levels was achieved through antisense ODN-mediated

degradation of mRNA in the reaction mixture. In addition, ODN-

mediated repression of protein synthesis could be reversed by

using an anti-antisense ODN sequence that removes antisense

ODN from the target mRNA sequence. As a consequence,

alternating additions of the antisense and anti-antisense ODNs led

to stop-and-go control of protein synthesis. However, this

approach requires the repetitive use of large amounts of

oligonucleotides. RNase H-dependent mRNA degradation is also

not an efficient method with respect to bioenergetics because it

leads to futile consumption of resources in the reaction mixture.

Moreover, as discussed by Park et al. [6], designing an optimal

antisense ODN sequence is not always a trivial issue because

activation of RNase H is known to depend on nucleotide

sequences in the hybridized region of mRNA-DNA complex.

In the study described below, we explored the use of magnetic

bead-immobilized plasmids in reversible and programmable cell-

free protein synthesis. Following careful optimization of the

plasmid-microbead conjugation process, studies were carried out

to determine whether the microbead-conjugated plasmid was able

to direct efficient protein synthesis and to be readily removed from

the reaction mixture to turn off the protein synthesis reaction.

Observations made in this effort showed that repeated addition

and removal of the microbead-conjugated DNA led to step-wise,

repetitive, ON/OFF control of gene expression. The on-demand,

reversible programming of cell-free synthesis provides greater

flexibility and controllability to processes employed for multiple

protein expression. By employing the magnetic microbead-DNA

conjugates, we have been able to express a series of proteins

through sequential incubation of the microbeads. Furthermore,

the relative expression levels of proteins during the sequential

expression process can also be manipulated by controlling time

periods used to incubate individual magnetic bead-plasmid

conjugates.

We anticipate that the results coming from this study will

demonstrate the capability of simple writing, erasing and editing of

programs for protein synthesis in cell-free systems and their
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applicability to the design, analysis and evaluation of synthetic

gene circuits.

Results and Discussion

Cell-free protein synthesis using microbead-conjugated
plasmids

In this study we have explored the use of immobilized DNA as a

template for reversible programming of cell-free protein synthesis.

For this purpose, plasmid DNA was tethered to the surface of

streptavidin-coated magnetic microbeads using a psoralen-biotin

linker as described in the Material and Methods section. While the

efficiency of plasmid-bead conjugation process should be directly

proportional to the concentration of the psoralen-biotin, high

concentrations of this substance would also increase the probabil-

ities of chemical modifications of bases in the ORF and regulatory

sequences of the target gene, resulting in less efficient protein

synthesis. Consequently, we first determined the ratio of the

template plasmid and psoralen-biotin that would lead to an

optimum efficiency for both immobilization and gene expression.

The plasmid pK7EGFP (10 mg, 4 pmol) was treated with varying

amounts of psoralen-biotin (1.48, 14.8, 148, 2960, 7400,

14800 pmol) , and incubated in a standard reaction mixture

required for cell-free protein synthesis in the presence and absence

of the conjugation process with 250 mg of strepatavidin microbe-

ads. As expected, treatment of the plasmid with increasing

concentrations of psoralen-biotin led to correspondingly lower

efficiencies of protein synthesis based on the EGFP fluorescence in

the cell-free protein synthesis reaction mixture (Figure 1).

However, an optimal 1:37 ratio of plasmid to psoralen-biotin

was found to exist for maximal protein synthesis when the treated

plasmid was conjugated on the microbeads, most likely a result of

competition between damage on the nucleotide and biotin-

mediated retention of plasmid on the surface of the microbeads.

The microbead-plasmid conjugate prepared using a ratio of

plasmid to psoralen to microbead of 1 pmol: 37 pmol: 125 mg was

observed to yield ca. 80% the amount of target protein in

comparison to a control reaction using the same amount of

unmodified plasmid. The optimal ratio (1:37:125) did not vary

significantly even when the expression vector for the target protein

was changed, and the conjugate prepared in this ratio was used in

subsequent experiments.

Utilization of the magnetic bead-conjugated plasmid as a
reusable template for cell-free protein synthesis

We expected that the template plasmid immobilized on the

magnetic beads would serve as a recyclable component of protein

synthesis. The data in Figure 2A arise from studies probing protein

expression following repeated wash and re-incubation cycles using

the plasmid pK7EGFP-conjugated, magnetic microbeads. In these

cases, the progress of protein synthesis was monitored using EGFP

fluorescence analyses of reaction mixtures and band intensity

analyses of the expressed proteins on Coomassie blue-stained SDS-

PAGE gels. The results demonstrate that the microbead-

immobilized plasmid directs protein synthesis with almost constant

yields over repeated reaction cycles. In addition, observations

made in this study show that the microbead-conjugated plasmid

can be stored for several weeks without displaying decreased

capacity for protein synthesis (Figure 2B). Consequently, it appears

that bead-conjugated plasmids can be used as recyclable off-the-

shelf reagents for protein generation, thus, eliminating the need to

prepare fresh template DNA for each protein synthesis batch.

ON/OFF control of gene expression by addition and
removal of the plasmid-conjugated magnetic
microbeads

Based on the finding that the microbead-conjugated plasmid

serves as a recyclable template for cell-free protein synthesis, we

explored a method for ON/OFF control of protein expression by

using repeated addition and removal of the magnetic microbead-

conjugated plasmid from the reaction mixture. Cycles involving

incubation, recovery and regeneration of the plasmid-magnetic

microbead conjugate were repeated while carrying out EGFP

fluorescence analyses of the reaction mixture. As the data in in

Figure 3 show, the EGFP fluorescence from the reaction mixture

displays a stepwise increase in response to the removal and re-

addition of the microbeads. It should be noted that the expression

of EGFP was not completely turned off by removal of the

microbeads when the protein synthesis process was carried out

using a cell extract prepared from a RNase E-deficient E.coli strain

(BL21(DE3)StarTM). Instead, the EGFP fluorescence continued to

increase with a slightly reduced rate even following the removal of

the plasmid-conjugated magnetic beads. In a previous study, we

showed that the functional stability of mRNA during cell-free

protein synthesis is dramatically improved when a RNase E-

deficient cell extract is employed [7]. Although enhanced mRNA

stability leads to improved efficiencies for protein production when

linear DNAs, such as PCR products, are used to direct the cell-free

process, the work shows that delayed degradation of mRNA causes

a sluggish response to the ON-to-OFF deprogramming of the

reaction mixture. In contrast, an almost instant ON/OFF

response was observed when protein synthesis employed a RNase

E-containing BL21(DE3) extract (Figure 3).

Sequential programming of the cell-free synthesis system
with multiple target genes

The removability of the template plasmid also enables

‘‘resetting’’ the reaction mixture after expression of a single

protein for subsequent ‘‘reprogramming’’ with a second target

gene. This feature would enable sequential expression of multiple

genes in the same reaction mixture. To probe this capability, we

attempted to express in a serial fashion four different proteins

through repeated removal and addition of the microbead-bound

template plasmids. The experimental design employed the

following plasmids conjugated on magnetic beads pIVEX2.3dVf,

pK7EGFP, pK7DsRed, and pK7Luc. These plasmids, in the

order given above, were sequentially incubated in the reaction

mixture, removed using a neodymium magnet, and replaced by

the next template plasmid. In the sequential expression of many

protein species it would be desirable to have the reaction mixture

support cell-free protein synthesis over extended time periods.

However, ATP regeneration from creatine phosphate typically can

be carried out for no longer than 2 h [8]. Therefore, when the

incubation periods of individual templates were set to 90 min, the

reaction mixture energized by creatine phosphate was only

capable of producing the first and second proteins Vf-transami-

nase and EGFP (Figure 4). Recently, we described a long-living

cell-free synthesis system that employs soluble starch as the energy

reservoir. In this system, the duration of the protein synthesis

reaction could be extended up to 10 h as a consequence of the

slow and steady release of glucose into the reaction mixture, which

leads to a continuous supply of ATP [9]. As expected, extended

ATP supply with the use of soluble starch as an energy source

allowed the successful expression of all four of the target proteins

during the sequential expression experiment (Figure 4).

Protein Synthesis from Bead-Immobilized Plasmids
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Adjusting the relative expression levels of multiple genes
during sequential expression

The efficiency of gene expression is affected by numerous

factors including codon usage [10,11], mRNA secondary structure

[12] and nucleotide sequences in downstream regions [13,14].

Therefore, it was not surprising to observe that different levels of

expression occurred between the magnetic bead conjugate

promoted, sequentially expressed proteins (Figure 4). No simple

ways exist to control in a precise manner the relative expression

levels of multiple genes in typical cell-free protein synthesis systems

as well as in living cells. However, the process involving

immobilization of template DNA on the removable microbeads

does possess the flexibility to adjust the time period used for

individual protein synthesis reactions. As a result, accumulation

levels of various proteins can be controlled by using different

incubation periods for each plasmid.

Two fluorescent proteins (EGFP and mRFP1) were selected to

demonstrate the relative expression level controllability that is

possible using the magnetic bead conjugate promoted cell-free

synthesis reactions. Employing a total reaction time period of 3 h,

the magnetic bead-conjugated plasmid pK7EGFP was expressed

for various time periods before being replaced by the second

pK7mRFP1 conjugated magnetic beads. As the Western blot and

fluorescence analyses results summarized in Figure 5 show, the

relative expression levels of EGFP and mRFP1 could be varied by

simply adjusting the relative time periods used in the incubation

processes.

This technique was then applied to the control the relative

expression levels of multiple proteins during the sequential

expression of four plasmids (pIVEX2.3dVf, pK7EGFP,

pK7DsRed, pK7Luc) in a reaction mixture with starch as the

energy source. As demonstrated by the Western blot image shown

in the first lane in Figure 6, co-expression of the four genes in the

same reaction mixture led to different expression levels of the four

target proteins, biased in favor of formation of the Vf-transaminase

and EGFP. Only the expressions of the Vf-transaminase and

EGFP were confirmed with clear bands, and the luciferase and

DsRed were almost not detectable. Although the expressions of

luciferase and DsRed were slightly recovered, overall, similar

results were obtained when the four plasmids conjugated on

magnetic beads were expressed sequentially (90 min each). We

attempted to adjust the expression of the target proteins to similar

levels by controlling the relative lengths of incubation of the

magnetic microbead-conjugated plasmids. As shown in lane 3 of

Figure 6, extended incubation periods of the plasmids pK7Luc

and pK7DsRed led to increased expression levels of corresponding

proteins, while the relative amounts of the Vf-transaminase and

EGFP were reduced by shortened incubation of the plasmids. As a

result, all of the target proteins could be produced in comparable

levels. Further extension of the relative incubation periods of

luciferase and DsRed led to a reversed bias towards their

dominant expression (lane 4, Figure 6). To summarize, we

demonstrate in this work the application of a cell-free protein

synthesis system as a flexible platform for reversible programming

of protein expression. ON/OFF control of gene expression was

readily achieved through repeated addition and removal of bead-

immobilized plasmid. The use of removable DNA template also

enabled us to design the sequential order and relative expression

levels of individual genes during the synthesis of multiple proteins.

We expect that the presented method could be readily adapted to

various areas including the production of important biomolecules,

diagnostic and in vitro metabolic engineering.

Figure 1. Effect of the psoralen-biotin to plasmid ratio on the expression efficiency of the treated plasmids. Negative control (NC) with
no biotinylation of pK7EGFP. 4 pmol of the pK7EGFP was treated with varying concentrations of psoralen-biotin, followed by cell-free expression with
(filled bars) or without (blank bars) conjugation on the streaptavidin-coated magnetic microbeads. The amount of the cell-free synthesized EGFP was
determined by measuring fluorescence after 3 h incubation of the reaction mixture at 30uC.
doi:10.1371/journal.pone.0034429.g001
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Materials and Methods

Materials
Nucleotide triphosphates, creatine phosphate (CP) and creatine

kinase (CK) were purchased from Roche Applied Science

(Indianapolis, IN). Psoralen-biotin was from Pierce Chemicals

(Rockford, IL). E.coli stains BL21(DE3) and BL21(DE3)-StarTM

and streptavidin-coated magnetic beads were purchased from

Invitrogen (Carlsbad, CA). All other reagents were purchased from

Sigma (St Louis, MO) and used without purifications. The S12

extracts from the E.coli strains were prepared using the prviously

described method [15]. Instead of using exogenous addition, the

T7 RNA polymerase was expressed during the cultivation of the E.

coli strains by induction with 1 mM isopropyl-D-thiogalactoside

Figure 2. Stable maintenance of the functional integrity of the microbead-conjugated plasmid during repeated synthesis reactions
and long-term storage. pK7EGFP, not immobilized to microbeads, was used as a positive control (PC) and the negative control (NC) involved the
cell-free protein synthesis mixture not containing DNA. (A) Magnetic microbead-conjugated plasmid (pK7EGFP) was repeatedly used for cell-free
synthesis of EGFP as described in the Materials and Methods section. The size and relative amounts of the synthesized EGFP from each round of
reaction were analyzed by using SDS-PAGE gel analysis with Coomassie blue staining. The arrow indicates the expected size of EGFP. (B) Magnetic
microbead-conjugated plasmid (pK7EGFP) was used for cell-free synthesis of EGFP after being stored at 4uC for the indicated days. Three
independent preparations of the microbead-conjugated plasmid were used in this experiment to obtain the average values and standard deviations.
doi:10.1371/journal.pone.0034429.g002

Protein Synthesis from Bead-Immobilized Plasmids
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(IPTG) at 0.5 OD600. The cells were harvested 2 h after induction

at 3.5 OD600 and processed to the S12 extracts. The plasmids

pK7EGFP, pK7mRFP1, pK7DsRed, pK7Luc, pIVEX2.3dVf that

encode enhanced green fluorescent protein (EGFP), monomeric

red fluorescent protein (mRFP1), red fluorescent protein derived

from Discosoma striata (DsRed), firefly luciferase and v-transami-

Figure 3. Repeated ON/OFF control of cell-free protein synthesis. EGFP was expressed from microbead-conjugated plasmid in the reaction
mixture employing the extract with (BL21(DE3), filled circles) or without (BL21(DE3)StarTM, open circles) RNase E activity. The plasmid-conjugated
microbeads were incubated for 10 min and then removed from the cell-free protein synthesis reaction mixture. The reaction mixture not containing
the microbead was incubated for 30 min. This process was repeated 3 times. Bold arrows and dotted arrows indicate the time points for addition and
removal of the plasmid-conjugated microbeads, respectively.
doi:10.1371/journal.pone.0034429.g003

Figure 4. Sequential expression of multiple genes in cell-free synthesis systems employing different ATP regeneration methods.
Western blot analysis of different reaction mixtures. Vf-transaminase-EGFP-DsRed-Luciferase were sequentially expressed in the reaction mixture
using creatine phosphate or soluble starch as the energy source with a 90 min incubation time for each plasmid. Reaction samples were withdrawn
at each point of the plasmid exchange.
doi:10.1371/journal.pone.0034429.g004

Protein Synthesis from Bead-Immobilized Plasmids

PLoS ONE | www.plosone.org 5 March 2012 | Volume 7 | Issue 3 | e34429



nase derived from Vibrio fluvialis (Vf-transaminase) under the

control of the T7 promoter were used as the templates for protein

synthesis.

Biotinylation and immobilization of template plasmids
Template plasmids were immobilized onto streptavidin-coated

magnetic beads through biotin-mediated conjugation [16]. Each

plasmid (10 mg) dissolved in 100 mL of TE buffer (10 mM Tris,

1 mM EDTA, pH 7.4) was denatured at 90uC for 10 min and

then quickly moved to 280uC. After 20 min, the plasmid solution

was thawed and mixed with psoralen-biotin at different molar

ratios to DNA (0.37, 3.7, 37, 370, 740, 1850, 3700). The mixtures

were then irradiated with 365 nm UV light for 30 min so that the

psoralen group of psoralen-biotin can be cross-linked with adenine

and thymine residues in DNA [17]. Biotinylated plasmids were

recovered by using ethanol precipitation and dissolved in distilled

water.

Streptavidin-coated magnetic microbeads (250 mg) were washed

three times and equilibrated in 125 mL of Binding/Wash buffer

(5 mM Tris-HCl-pH 7.5, 0.5 mM EDTA, 1 M NaCl). The

microbead suspension was then mixed with an equal volume of

biotinylated plasmid solution dissolved in distilled water. After

standing at room temperature for 2 h with gentle agitation, DNA-

conjugated microbeads were recovered with a neodymium

magnet, washed and resuspended in 125 mL of distilled water.

Cell-free expression of bead-conjugated plasmids
Two types of cell-free synthesis systems, employing different

ATP regeneration methods, were used in this study. For reactions

using creatine phosphate as the energy source, the reaction

mixture for protein synthesis was prepared with the following

components in final volume of 30 mL: 57 mM HEPES-KOH

(pH 7.5), 1.2 mM ATP, 0.85 mM each GTP, UTP, and CTP,

80 mM ammonium acetate, 12 mM magnesium acetate, 90 mM

Figure 5. Tuning relative expression levels of EGFP and mRFP during sequential expression. Western blot and fluorescence analysis
results from monitoring changes in the relative expression levels of the target proteins. NC represents background signal from the reaction that does
not contain any template DNA. Magnetic microbead-conjugated plasmids pK7 EGFP and pK7 mRFP were sequentially incubated in the cell-free
synthesis reaction mixture using soluble starch as the energy source. With a total incubation time fixed at 180 min, the first template plasmid
conjugated on the magnetic microbead was incubated for increasing incubation time periods of 30 min from 30 min to 150 min, followed by
incubation of the second plasmid for time period increments of 30 min from 150 min to 30 min. Samples 1 to 5: sequential expression of EGFP and
mRFP1, samples 6 to 10: sequential expression of mRFP1 and EGFP.
doi:10.1371/journal.pone.0034429.g005
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potassium glutamate, 34 mg/mL 1–5-formyl-5,6,7,8-tetrahydrofo-

lic acid (folinic acid), 2.0 mM each of 20 amino acids, 2%

polyethylene glycol 8000 (PEG8000), 0.3 U/mL creatine kinase,

67 mM creatine phosphate, and 8 mL of the S12 extract. In other

reactions employing extended time periods, creatine phosphate

and creatin kinase were replaced by 3.2% (w/v) soluble starch and

20 mM potassium phosphate as described in a previous report [9].

After being loaded with 250 mg of the bead-conjugated plasmid

prepared as described above, the reaction mixture was incubated

for 3 h with gentle agitation at 30uC. Accumulation of EGFP in

the reaction mixture was monitored by measuring the fluorescence

in a multiwell fluorescence reader (VICTORTM X2, PerkinElmer,

Waltham, MA) and Varian Cary Eclipse fluorescence spectropho-

tometer (Agilent technologies, Santa Clara, CA) with 485 nm and

509 nm excitation and emission wavelengths, respectively. Syn-

thesis of mRFP1 in the reaction mixture was monitored by using

584 nm and 607 nm excitation and emission wavelengths,

respectively. When necessary, emissions from EGFP and mRFP1

were scanned from 500 to 800 nm. In the experiments targeted at

repeated or sequential expression of bead-conjugated plasmids, the

magnetic beads were recovered using a neodymium magnet,

washed twice with distilled water and reloaded into the next

batches of protein synthesis reactions.

SDS-PAGE and Western blot analyses of cell-free
synthesized proteins

Cell-free synthesized proteins were analyzed by Coomassie Blue

staining after running the reaction samples on a 12% Tricine–

SDS–polyacrylamide gel as described by Schagger [18]. For

Western blot analysis, proteins were transferred to PVDF

membrane using a electrotransfer apparatus (Bio-Rad, Hercules,

CA). The membrane was incubated in 1% casein blocking solution

(1% casein, 200 mM Tris-Cl, 150 mM NaCl, pH 7.5) for 1 h at

room temperature. The blocked membrane was then sequentially

incubated with mouse monoclonal anti-polyhistidine antibody

(Sigma, St Louis, MO) and alkaline phosphatase-conjugated goat

anti mouse IgG antibody (Promega, Madison, WI) for 1 h at room

temperature. Subsequently, signals from the secondary antibody

were developed using a chemiluminescent HRP substrate (Milli-

pore, Bedford, MA). After each step, the membrane was washed

1615 min and 365 min with TBS-T buffer (50 mM Tris-Cl,

600 mM NaCl, 0.1% Tween 20, pH 7.6). The blotting images

were obtained using ChemiDocTM (Bio-Rad, Hercules, CA).
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