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N E U R O S C I E N C E

Mapping microstructural gradients of the human 
striatum in normal aging and Parkinson’s disease
Elior Drori*, Shai Berman, Aviv A. Mezer

Mapping structural spatial change (i.e., gradients) in the striatum is essential for understanding the function of 
the basal ganglia in both health and disease. We developed a method to identify and quantify gradients of micro-
structure in the single human brain in vivo. We found spatial gradients in the putamen and caudate nucleus of the 
striatum that were robust across individuals, clinical conditions, and datasets. By exploiting multiparametric 
quantitative MRI, we found distinct, spatially dependent, aging-related alterations in water content and iron con-
centration. Furthermore, we found cortico-striatal microstructural covariation, showing relations between striatal 
structural gradients and cortical hierarchy. In Parkinson’s disease (PD) patients, we found abnormal gradients in 
the putamen, revealing changes in the posterior putamen that explain patients’ dopaminergic loss and motor 
dysfunction. Our work provides a noninvasive approach for studying the spatially varying, structure-function re-
lationship in the striatum in vivo, in normal aging and PD.

INTRODUCTION
The striatum, consisting of the caudate nucleus and the putamen, is 
a major input structure of the basal ganglia, playing a crucial role in 
motor and cognitive aspects of goal-directed behavior (1). Changes 
in striatal tissue and interhemispheric asymmetries are associated 
with motor and cognitive dysfunctions that take place in normal 
aging (2) and in neurodegenerative disorders such as Parkinson’s 
disease (PD), dystonia, and Huntington’s disease (1, 3). The function 
of the striatum is tightly related to its cellular and biochemical prop-
erties: Histochemical studies highlight the distinct neurochemical 
compartments of the striatal tissue (i.e., striosomes and matrix), 
which differ in dopaminergic and cholinergic expression and change 
in distribution and chemical properties along the anatomical axes 
of the striatum (4–6). These compartments are thought to constitute 
an organizational feature of striatal connectivity (6–8). The connec-
tivity of the striatum has been linked to the hierarchal organization 
of the cortex, with gradients of sensorimotor, associative, and lim-
bic domains along the anterior-posterior (i.e., rostral-caudal) and 
ventromedial-dorsolateral axes (9, 10). Accordingly, electrophysiol-
ogy and functional magnetic resonance imaging (fMRI) studies have 
provided evidence for functional and cognitive gradients in the stri-
atum (11–14).

Changes in the striatum’s biological spatial variation (i.e., gradi-
ents; we use these terms interchangeably) are notably apparent in PD, 
mainly along the anterior-posterior axis, which emphasizes acute 
degeneration in posterior parts of the putamen (15–19). This degen-
eration is characterized by the depletion of dopaminergic innerva-
tion to the striatum, due to the patients’ loss of dopaminergic neurons 
in the substantia nigra pars compacta (1). Positron emission tomog-
raphy (PET) and single-photon emission computed tomography 
(SPECT) studies in PD patients demonstrate the decrease of dopa-
mine intake in the striatum (20–23). Striatal deterioration, in turn, 
affects motor function, leading to a range of movement impairments 
(1, 24). Hence, gradients in the cellular and neurochemical content 
level (i.e., the microenvironment) of the striatum are a key feature 
in understanding the striatum’s dysfunction in PD.

Microstructural gradients of the striatum are studied mainly using 
invasive animal research and human postmortem analyses. In living 
humans, MRI is the primary noninvasive tool for structural research 
of the brain. Developments in quantitative MRI (qMRI) provide para-
metric mappings of biophysical tissue properties, such as the longi-
tudinal relaxation rate R1, which is sensitive to a variety of biological 
sources in the microenvironment of the tissue, including myelin, 
water content, and iron concentration. Therefore, qMRI has been 
proposed to provide “in vivo histology” of the human brain (25). We 
hypothesized that incorporating a spatial approach in qMRI methods 
to map the heterogeneous microstructural properties of subcortical 
regions, and specifically the striatum, would have important effects 
for our understanding of aging and PD in vivo.

Here, we present an in vivo method to quantify microstructural 
gradients in the caudate and putamen in normal aging and 
PD. Our innovative approach allows the measurement of spatial vari-
ation in microstructure along the main axes of the striatum. Using 
this approach, we characterize striatal gradients that are related to 
multiple biological sources, in healthy younger and older adults. Next, 
to detect PD-related microstructural changes, we generalize our re-
sults to widely available clinical datasets. We investigate how changes 
in striatal gradients are related to PD motor symptomatology, as well 
as to striatal dopamine loss in individual patients. Last, our analysis 
expands to the relationship between the striatum and the cerebral 
cortex, identifying a gradient of cortico-striatal microstructure net-
works, that shows dependency between striatal position and the cor-
tical circuit hierarchical organization (9, 13).

RESULTS
Microstructural gradients in the striatum
Previous studies have identified spatial gradients in the microenvi-
ronment along the axes of the striatum ex vivo (4–6). To assess spa-
tial variability in humans in vivo, we developed an automatic tool 
to express the main axes of the striatum on the single-subject level 
(Fig. 1A). Our tool uses a region-of-interest (ROI) mask and per-
forms singular value decomposition (SVD) on the voxel coordi-
nates to find the main orthogonal axes of a given region. Voxels are 
then divided into seven equally spaced segments along each of the 
axes (see section S1), and the median value of a qMRI parameter 
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(e.g., quantitative R1) is computed for each segment, yielding a quan-
titative function along each axis (see Methods). In Fig. 1 (B and C), we 
show that in the putamen and caudate, the three main axes roughly 
correspond to the ROI’s anterior-to-posterior (AP), ventral-to-dorsal 
(VD), and medial-to-lateral (ML) axes (see section S2 for a detailed 
quantification).

We found spatial gradients of R1 along the putamen and caudate 
of healthy, young adult subjects (dataset A: N = 23, aged 27 ± 2 years; 
Fig. 1, B and C). Using mixed-effects linear models (see Methods), 
we found that these gradients carry significant change along the main 
axes of the striatal structures, with the most substantial change, ex-
pressed as positive gradients (i.e., increases in R1 values), along the 

Fig. 1. Microstructural gradients in the striatum revealed in vivo. (A) Automatic computation of the putamen’s AP axis in a single subject and calculation of a micro-
structural gradient along it. (B and C) R1 gradients along three axes of the left putamen (B) and caudate (C) in 23 young adults (dataset A). The typical spatial change be-
tween segments is represented by the fixed effect , estimated using a mixed-effects model for each axis. The sign of  denotes a positive or negative gradient, i.e., an 
increase or decrease in R1 (s−1) along the axis. (In subsequent analyses, cases of a nonlinear change along the axis are approximated using two linear models. See Methods 
and table S1.) P values are FDR-corrected. (D) The R1 functions along axes of a control white matter (WM) region show almost no change, ruling out image bias as an ex-
planation for the measured striatum gradients. (E and F) Replications in two independent datasets (datasets B and C) in 3T (E) and 7T (F). The agreement between datasets is 
shown in each panel using linear regression between the average R1 functions along the putamen AP axis and along the caudate ML axis. Insets: R1 spatial functions from 
dataset A (gray) and dataset B or C (color). Data in (F) are z-scored since different strength fields yield different R1 ranges. Shaded areas and error bars represent ±1 SD.
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putamen’s AP axis and the caudate’s ML axis (Fig. 1, B and C; shown 
for the left striatum). To rule out potential confounds of the mea-
sured variability (e.g., MRI field inhomogeneities), we tested for spa-
tial changes in a nearby frontal white matter region of a similar shape 
and found little to no change along the three axes of this control re-
gion (Fig. 1D; see also section S3 and fig. S3). The results were rep-
licated on two independent datasets acquired in different scanners 
and at different field strength (datasets B and C, corresponding to 
Fig. 1, C and D, respectively; see also section S4 and figs. S4 to S6). 
Hence, quantitative R1 mappings reveal reproducible spatial gradi-
ents of microstructure in the human striatum.

Aging-related, spatially dependent changes and asymmetry 
in the striatum
Normal aging is often associated with motor decline and therefore 
has been proposed to involve striatal changes (2, 26, 27). To inves-
tigate aging-related spatial changes in the striatum, we performed 
three independent cross-sectional studies on three datasets (A, B, 
and C), each consisting of younger adults and older adults, with a 
total of N = 138 healthy subjects (N = 41, N = 31, and N = 67, respec-
tively). Thus, datasets B and C allow the testing of the robustness of 
our findings across different MRI scanners and magnetic fields.

First, similarly to younger adults (Fig. 1), older adults also showed 
robust R1 gradients in the striatum (Fig. 2A). Moreover, we found 
spatially dependent, aging-related effects (see table S1). In the putamen, 
we found an interaction effect of age group and position along the 
VD axis [P < 0.05, false discovery rate (FDR)–corrected], demonstrat-
ing an aging-related change in the microstructural gradient of the 
putamen. This result was replicated in dataset B, where we found 
that this aging-related change also interacted with the hemisphere 
(P < 0.05).

Interhemispheric asymmetries in the volume of the striatum were 
previously reported as a correlate of aging (26). However, it remains 
unknown whether aging involves asymmetric changes in striatal 
microstructural properties. Therefore, we tested for asymmetries in 
the R1 gradients along the left and right putamen and caudate. While 
the mean R1 gradients were largely similar for the left and right 
putamen, for the left and right caudate we found clear, spatially de-
pendent asymmetries, in both younger and older adults (Fig. 2A). 
In particular, in the left caudate we observed linear gradients along 
the AP and ML axes, while in the right caudate we observed that the 
spatial changes followed an inverted U-shape. Accordingly, after ac-
counting for these nonlinearities using a linear approximation (see 
Methods and section S5), we found interaction effects of hemisphere 
and position along the AP and ML axes, indicating significant, spa-
tially dependent asymmetries between the left and right caudate 
(P < 10−22). This result was replicated in datasets B and C (table S1). 
Furthermore, we found an interaction effect of age, hemisphere, and 
position along the caudate’s AP axis (P < 10−5), indicating an aging- 
related increase in the interhemispheric R1 asymmetry. We repli-
cated this effect in dataset B (but not in dataset C; see section S4 for 
possible interpretations). In a follow-up investigation, we quantified 
the within-subject asymmetry as the left-minus-right difference (see 
Methods) and found significant increases in asymmetry in anterior 
and posterior segments of older adults (P < 10−4; Fig. 2, B and C).

These analyses use spatial functions along each region, but we 
also sought to verify that the information uncovered by our method 
would not be revealed by looking at the whole region. To do so, we 
tested for whole-ROI asymmetries in R1 median value and did not 

find a difference in caudate asymmetry between age groups (two- 
sample t test, t38 = 0.5, P = 0.6). This highlights the importance of 
spatial information for examining aging-related changes.

Biophysical sources of striatal gradients and  
aging-dependent changes
To investigate the biophysical sources of spatial and aging-related 
changes in the striatum, we examined the spatial variability of two 
additional qMRI parameters: R2*, which has been linked to iron con-
centration (28), and the macromolecular tissue volume (MTV) (29), 
which is used as an estimator of nonwater content. For each of these 
parameters, we found distinct spatial functions along the axes of the 
striatum (Fig. 3, dataset A, excluding five subjects with no R2* map-
ping, and figs. S8 to S10).

To estimate the spatial and aging-related changes in each param-
eter, we used mixed model designs. We found that R2* increases 
linearly along the AP axis of the putamen (Fig. 3B and table S2) and 
decreases linearly along the VD axis of the caudate (fig. S8). More-
over, we found nonlinear, inverted U-shaped R2* profiles along the 
VD axis of the putamen and the ML axis of the caudate. These ef-
fects interacted with the age group, suggesting an increase in iron 
spatial variability in older adults (see section S5 for more details on 
the estimation of nonlinear effects).

In addition, we detected age-group main effects in both R2* and 
MTV, however, in opposite directions: Compared to younger sub-
jects, in the caudate and putamen of older subjects, we found increased 
R2* but decreased MTV (table S3). Together, these two results sug-
gest higher iron levels and greater tissue loss as a function of aging 
(Fig. 3, B and C).

To further investigate the contributions of tissue density and iron 
to the R1 gradients in the striatum, we compared the spatial profiles 
of MTV and R2* to those of R1 (see section S8 and figs. S11 to S13). 
Notably, we found that the spatial change of MTV, as well as the co-
efficients of the statistical models using MTV, was positively cor-
related with those of R1. R2*, on the other hand, was less correlated 
with R1. However, positive correlations between R2* and R1 were 
evident along the putamen AP axis and right caudate ML axis. In 
addition, R2* and R1 (but not MTV) showed aging-related changes 
in the putamen VD axis, suggesting iron changes in this axis. This 
may suggest that the R1 gradients in the striatum not only reflect, to 
a high degree, variability in tissue density but also are likely to con-
tain iron contributions. Together, our results suggest that aging of 
the striatum involves local changes in tissue atrophy and iron con-
tent. These changes may have opposite effects on the measured R1, 
which is known to increase with iron and decrease with tissue loss 
(25, 30). It should be noted, however, that different qMRI measure-
ments show different levels of noise (31). We found that the coef-
ficient of variation (CV) between individual subjects’ gradients was 
higher in MTV and R2* than in R1 (P < 10−7; section S8 and fig. S14). 
In addition, we found that the CV was higher in older adults com-
pared to younger adults, with the greatest difference in R2* (P < 10−14). 
Therefore, spatially dependent contributions of tissue density and 
iron to R1 may not always be expressed as statistically significant ef-
fects in MTV or R2*.

Microstructural gradients in PD patients are associated 
with dopaminergic loss and motor signs
Ex vivo studies have shown that striatal gradient abnormalities are 
related to PD etiology (15–18). To test whether local changes in the 
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striatum can be detected in PD patients in vivo, we analyzed struc-
tural MRI data of 99 early-stage de novo PD subjects and 46 healthy 
controls matched for age (t = 0.03, P = 0.98) and sex (Pearson’s 
2 = 0.3, P = 0.58) from the Parkinson’s Progression Marker Initiative 
(PPMI; demographics and PD characteristics are shown in Table 1).

Since quantitative R1 maps are often not available in clinical set-
tings, we generated semiquantitative maps by dividing T1-weighted 
images by T2-weighted images (T1w/T2w). T1w/T2w has a contrast 
similar to R1 and is clean of shared coil biases, and therefore, although 
it does not have physical units, it is widely used as a semiquantitative 

measurement for microstructure in the cortex (32–35). In the stria-
tum, we found that T1w/T2w gradients are similar to those which 
we identified using R1 [Fig. 4F and fig. S15, PPMI dataset; see fig. 
S16 for replication with an independent dataset from the Human 
Connectome Project (HCP) (36)]. This result suggests that our spa-
tial analysis in the striatum can be generalized to other clinical and 
nonclinical datasets.

Next, we compared the T1w/T2w gradients of PD patients and 
healthy controls. In all axes of the caudate, T1w/T2w gradients did 
not separate PD patients from healthy controls; however, in the AP 

Fig. 2. Striatal R1 gradients reveal aging-related changes. (A) R1 functions along the main axes of the left and right putamen (blue) and caudate (pink), averaged 
across 23 younger adults and 17 older adults (gray) from dataset A. Shaded areas represent ±1 SEM. The interhemispheric asymmetry along the AP axis is increased in the 
older group, as reflected by a three-way interaction effect of age group, hemisphere, and position (P < 0.001; see table S1). Asterisks represent segments along the AP axis 
where the interhemispheric difference was significantly higher in the older group, as shown in (C). (B) Visualization of the mean R1 gradients along the AP axis of the left 
and right caudate of the older group, overlaid on a T1-weighted image of a sample older adult. (C) Interhemispheric asymmetry is quantified for the posterior segments 
of the caudate AP axis (averaged across the two most posterior segments). Asymmetry is expressed as the within-subject, left-minus-right difference in R1 values. In each 
boxplot, the midline and edges represent the median and the 25th to 75th percentiles, respectively. *P < 10−4, **P < 10−5, and **P < 10−6. All P values are FDR-corrected.
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axis of the putamen, we observed a divergence between the groups. 
Specifically, mean T1w/T2w values in the posterior segments of the 
putamen were lower in PD (Fig. 4A and fig. S17). A mixed-effects 
model revealed a significant interaction between the position along 
the AP axis of the putamen and the patient group, suggesting a 
moderate but statistically significant decrease in T1w/T2w values 
in the posterior putamen in PD (Puncorrected = 0.003; PFDR < 0.05; 
see table S4). The CV did not differ between PD patients and healthy 
controls (P = 0.3). This result is in agreement with human PD 
studies and nonhuman models of the disease, which consistently 

find PD-related differences in the posterior parts of the putamen 
(15–17, 37).

Since PD-related changes typically manifest asymmetrically (19), 
we calculated the interhemispheric T1w/T2w asymmetry in the pos-
terior putamen (see Methods) and tested whether PD patients show 
asymmetry properties that differ from healthy controls. In the pos-
terior part of the putamen, we found spatially dependent, marginally 
significant differences between the groups in the asymmetry mean 
(segment 6, uncorrected P < 0.05) and variance (segment 5, Bartlett’s 
test, uncorrected P < 0.05).

We then sought to understand how the group differences we 
found in the posterior putamen of PD patients and healthy controls 
are associated with disease properties on the single subject level. We 
tested the linear correlations between the asymmetry of T1w/T2w 
in the posterior putamen (averaged across the three most posterior 
segments) and the asymmetry in either dopaminergic loss in the 
putamen or in parkinsonian motor signs. First, we hypothesized that 
in the posterior putamen, lower T1w/T2w in one hemisphere rela-
tive to the other would be associated with lower dopamine levels in 
that same hemisphere. We found a positive correlation between the 
T1w/T2w asymmetry in the posterior putamen and the SPECT- 
derived dopamine transporter binding ratio (DaT SBR) asymmetry 
in the putamen (R2 = 0.25, P < 10−7; Fig. 4B). Namely, microstruc-
tural deficit in the posterior putamen, detected with MRI, follows a 
laterality pattern that is associated with disease-related dopamine 
loss, quantified by SPECT.

Second, we hypothesized that T1w/T2w asymmetry would be 
associated with contralateral asymmetry in parkinsonian motor signs, 
assessed through the MDS Unified Parkinson’s Disease Rating Scale 
part III (MDS-UPDRS III). We identified a correlation between the 
microstructural asymmetry and the motor asymmetry such that a 

Table 1. Demographics and clinical characteristics of PD patients and 
healthy controls. HC, healthy controls; H&Y, Hoehn and Yahr scale of PD 
progression (1 and 2 are both referred to as early stage); MDS-UPDRS III, 
MDS Unified Parkinson’s Disease Rating Scale part III, assessment of motor 
dysfunction; OFF, patients were evaluated off all antiparkinsonian 
medication; MoCA, Montreal Cognitive Assessment. For further details, 
see Methods. 

Variable PD (N = 99) HC (N = 46)

Age, years 65 ± 6 (range, 55–76) 65 ± 6 (range, 55–76)

Sex, female, N (%) N = 32 (32.2%) N = 17 (37%)

H&Y scale, stage 1, 
N (%) N = 40 (40.4%) N = 1 (2%)

H&Y scale, stage 2, 
N (%) N = 59 (59.6%) N = 0 (0%)

MDS-UPDRS III 
(OFF), score 21.3 ± 9.4 (range, 6–43) 0.9 ± 1.9 (range, 0–11)

MoCA, score 27.4 ± 2.2 (range, 20–30) 27.2 ± 1.9 (range, 23–30)

Fig. 3. Multiparametric aging-related gradient change along the main striatal axes. Spatial qMRI functions along the three main axes of the left putamen in younger 
adults (N = 17; color) and older adults (N = 16; gray) reveal distinct profiles of change in different biophysical sources. While the tissue longitudinal relaxation rate R1 
(A) shows the most significant spatial effects, the iron content correlate R2* (B) shows significant nonlinear spatial change and substantial aging-related increases, and 
the MTV, or nonwater fraction (C), shows significant decreases in aging. Shaded area is ±1 SEM.
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Fig. 4. Putamen gradients reveal microstructure decreases in PD, associated with dopaminergic and motor deficits. (A) T1w/T2w spatial functions are shown for 
older PD patients (N = 99) and matched healthy controls (N = 46) in the AP axes of the putamen and caudate (averaged across hemispheres). The gradient significantly 
differs between groups, showing a decrease in posterior subregions in PD (linear mixed-effects model, PFDR < 0.05). The image shows a representative T1w/T2w axial slice 
of a PD patient, generated using the PPMI data. (B and C) Microstructural asymmetry in the posterior putamen of PD patients is positively correlated with (B) ipsilateral 
asymmetry in dopamine transporter binding ratio in the putamen, quantified by DaTSCAN SPECT, and (C) contralateral body-side motor signs. Solid and dashed lines 
represent the linear fit and 95% confidence interval, respectively. Highlighted in blue are two subjects shown in (D). (D) Individual putamen AP gradients of two PD patients 
who exhibit motor sign dominance in the left body side (patient 1) and the right body side (patient 2). Both patients show an asymmetric decrease in the posterior 
putamen that is associated contralaterally to the body side more affected by motor signs. (E) In contrast with our spatial approach, whole-putamen T1w/T2w L-R asymmetry 
did not show a meaningful correlation with motor asymmetry. R2 = 0.01, P = 0.42. (F) Semiquantitative T1w/T2w and quantitative R1 gradients along the AP axis of the 
putamen show high similarity. Data points represent the seven segments along the putamen’s AP axis. We plotted the z-scored, quantitative data of older healthy adults 
(dataset A, x axis) against the z-scored, semiquantitative data of healthy controls (PPMI data, y axis). Inset: z-scored T1w/T2w gradient (color) and z-scored R1 gradient 
(gray). Shaded area = ±1 SEM. put, putamen; HC, healthy controls; L, left; R, right.



Drori et al., Sci. Adv. 8, eabm1971 (2022)     15 July 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

7 of 14

lower T1w/T2w in the posterior putamen of one hemisphere was 
associated with higher motor laterality to the contralateral side of 
the body (R2 = 0.25, P < 10−7; Fig. 4, C and D). Notably, the correla-
tions of microstructural asymmetry with dopaminergic and motor 
asymmetries were not found for healthy controls (R2 < 0.04, P > 0.12) 
and were not affected by patient’s age or sex (see section S10 and fig. 
S18). Furthermore, we did not find an association between T1w/T2w 
and the absolute score of motor sign severity (defined as the global 
MDS-UPDRS III score).

In contrast with our gradient analysis, coarse mean statistics such 
as the whole-ROI T1w/T2w median value (Fig. 4E) or whole-ROI vol-
ume did not reveal relation to motor asymmetry (R2 < 0.01, P > 0.4). 
Furthermore, volumetric asymmetry in the posterior part of the 
putamen did not show such a correlation, either (R2 = 0.02, P = 0.16). 
Hence, T1w/T2w gradients can uncover spatial information in the 
microstructure of the striatum that is associated with both PD’s ab-
normal brain changes (i.e., dopamine loss) and symptoms (i.e., mo-
tor deficiencies).

Last, we tested for the relationship between T1w/T2w gradient 
asymmetry and cognitive function, assessed through the Montreal 
Cognitive Assessment (MoCA) and additional tests (see section S11 
and fig. S19), and found no significant correlations. While previous 
studies reported mixed results regarding association between PD lat-
eralization and cognitive deficits (38, 39), we note that in our study 
the cognitive state of most our PPMI subjects was within the normal 
range (see Table 1 and Methods).

A gradient of cortico-striatal covariation
The relationship between structure and function in the striatum, in 
health and disease, is likely to be mediated by the striatum’s rela-
tionship to cortical hierarchy (12, 40, 41). Neural tracing and fMRI 
studies found connectivity and functional correspondence between 
striatal subregions and the cortex (9, 11). We hypothesized that such 
connectivity gradients would be reflected in the similarity of micro-
structural properties between striatal and cortical subregions. Spe-
cifically, we performed a structural covariance analysis (see Methods) 
and tested whether the covariation profiles between the striatum 
and the cortex change as a function of position along the striatum. 
We used the semiquantitative T1w/T2w values across a large cohort 
of healthy, young adult subjects from the HCP (N = 1067, aged 
29 ± 4 years, 606 female) (36). We identified a gradient of cortico- 
striatal covariation along the AP axis of the striatum (Fig. 5A). While 
covariation patterns of posterior regions of the striatum showed little 
differentiation between cortical areas, anterior regions of the cau-
date and putamen showed a clear separation between anterior and 
posterior cortical areas. Specifically, anterior segments of the striatum 
showed higher positive covariation with frontal and limbic cortices, 
and negative covariation with more parietal and occipital senso-
rimotor cortices. This distinction was attenuated gradually toward 
posterior segments (Fig. 5, B and C, and fig. S20). While the biolog-
ical meaning of positive and negative structural covariation remains 
an open question (42, 43), this result provides evidence for a struc-
tural gradient of differential cortico-striatal association along the AP 
axis of the striatum.

DISCUSSION
Our results provide a new approach for the quantification of micro-
structural variation in the human striatum in vivo, both within and 

between subjects. By developing a structural analysis tool, we found 
that qMRI parameters reveal microstructural gradients along the 
main axes of the putamen and caudate in healthy young adults. We 
further showed that these gradients change in normal aging. In 
generalizing our analysis to clinical MRI, we uncovered an in vivo 
microstructural correlate of PD, which is associated with both do-
pamine loss and disease-related motor function impairments. We 
further demonstrated cortico-striatal relations by showing a structural 
dependency between striatal position and cortical hierarchy.

Our fundamental finding is the in vivo detection of microstruc-
tural gradients in the healthy striatum. This finding is consistent 
with prior animal and postmortem works that found molecular and 
connectivity gradients in the healthy striatum, using histochemical 
staining and neural tracing techniques (4, 9). It was proposed that 
developmental gradients of cell migration and signaling in the stri-
atum are what give rise to the healthy neurochemical and connec-
tivity gradients (44). In vivo human research also found gradients of 
connectivity and function, along the AP, VD, and ML axes of the 
striatum, using diffusion MRI tractography, resting-state fMRI, and 
task-based fMRI (10–14, 45, 46). For example, Marquand et al. (45) 
found resting-state fMRI topographies that showed a distinction be-
tween the putamen and caudate, as well as a common gradient along 
the AP, VD, and ML axes. O’Rawe et al. (46) found distinct resting- 
state fMRI gradients in the putamen and caudate, with a dominant 
ML component within the caudate. In agreement with those studies, 
our results show distinct microstructural gradients in the putamen 
and caudate, as well as common principles. In the putamen, R1 gra-
dients were found most prominently along the AP and VD axes, 
while in the caudate the ML axis was most prominent.

Our results demonstrate the value of multiparametric qMRI map-
ping in studying the biophysical sources of striatal variability and 
structural changes in aging. In the striatum, spatial R1 variation often 
correlates with the changes in macromolecular tissue density, quan-
tified by MTV. In addition, we identified aging-related reductions 
in MTV and increases in R2*. Aging had been shown to involve R2* 
increases, which are most substantial in the pallidum and the stria-
tum (47) and are correlated with postmortem iron levels in these re-
gions (28, 47). We also found a positive gradient of R2* along the AP 
axis of the putamen, which agrees with postmortem measurements 
(48). It is therefore likely that the unique profile of R2* changes in our 
analysis reflects both aging-related increases and spatial variation 
of iron in the striatum. While we found interaction effects revealing 
spatially dependent aging changes in R1, the main effects of age on 
R1 were not statistically significant in our main dataset A. R1 is widely 
considered as a myelin- and iron-sensitive measurement (49, 50). It 
is therefore possible that the two competing aging effects (namely, 
tissue reduction, quantified by MTV, and iron increase, reflected by 
R2*) sum up to the insignificant main effect of aging-related decrease 
in R1. Differences between datasets in R1 aging effects may also be 
the result of different sample sizes (see Methods; for other possible 
interpretations, see section S4).

Our findings highlight different kinds of microstructural changes 
in normal aging and PD. In normal aging, we found changes along 
different axes of the striatum, including asymmetry increases in an-
terior and posterior segments of the caudate. In contrast, the micro-
structural change in early-stage PD was specific to posterior segments 
of the putamen.

To study the PD effects on the striatum’s microstructure, we used 
the semiquantitative contrast of T1w/T2w. T1w and T2w images 
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are abundant in clinical and research settings, making our approach 
widely applicable to existing data. Although the values of T1w/T2w 
do not have a physical meaning, we have shown that standardized 
T1w/T2w spatial variation in the striatum is similar to that of quan-
titative R1 to a large extent. This may suggest that PD-related changes 
in T1w/T2w reflect general atrophies of the striatal tissue, which may 
be a consequence of depletions in dopaminergic innervation. Quan-
titative mapping of PD individuals may shed more light on PD de-
generation mechanisms.

Specifically, in PD, we found irregular gradients of T1w/T2w, 
which show decreases in posterior segments of the putamen. We 
found that T1w/T2w asymmetry in the posterior putamen was asso-
ciated ipsilaterally with asymmetric dopamine depletion on the sub-
ject level. This result is consistent with human and nonhuman primate 
studies in PD that identified spatially differential tissue alterations, 
and specifically inhomogeneous dopaminergic degeneration that is 
most pronounced in posterior parts of the putamen (15–17). Fur-
thermore, we found that T1w/T2w asymmetry in the putamen was 

contralaterally correlated with motor signs’ laterality. This finding 
corroborates previous PET studies that show correlations between 
the uptake of 18F-l-3,4-dihydroxyphenylalanine (18F-DOPA) in the 
posterior putamen and the severity of contralateral motor signs (37). 
The PD patients analyzed in our study were de novo, early-stage pa-
tients, with median disease duration of 4 months from diagnosis (see 
Methods). A previous study showed that motor and dopamine de-
pletion asymmetries were higher in de novo patients and were reduced 
in a 2-year follow-up evaluation (51). Thus, our study provides a 
noninvasive imaging correlate for early-stage PD laterality in terms 
of both dopamine loss and motor function decline.

Using a covariance network analysis, we found a gradient of cortico- 
striatal structural covariation that corresponds to known connectiv-
ity patterns (9, 52). While posterior segments of the striatum do not 
show differentiation between cortical regions, anterior segments 
show positive covariations with frontal associative and limbic re-
gions, and negative covariations with sensorimotor parietal and 
occipital regions. This network analysis is based on the patterns of 

Fig. 5. Microstructural gradient of cortico-striatal covariation shows fronto-limbic to sensorimotor separation. (A) Segments along the putamen’s AP axis show 
distinct profiles of microstructural covariation with cortical regions. Anterior segments of the putamen display differentiative profiles, showing positive covariance with 
frontal cortical regions and negative covariance with parieto-occipital regions. This differentiation attenuates toward posterior segments of the putamen that show only 
negative covariance (results are shown for the right putamen). (Similar results are obtained for the left putamen and for the caudate; see fig. S20.) (B) Each of 68 cortical 
regions (defined by the Desikan-Killiany atlas) is colored with respect to its location on the brain’s AP axis (y coordinate of the region’s centroid). Profiles of covariation with 
putamen segments are different for frontal (yellow) and posterior (purple) cortical regions. Red dashed lines indicate bounds of significant covariance (corrected for 
multiple comparisons). (C) Isolation of example cortical profiles from (B), showing positive covariation of frontal and limbic regions and negative covariation of motor and 
sensory regions with the anterior putamen, and a gradual change of this trend toward the posterior putamen.
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structural correlations between brain regions across multiple sub-
jects. Covariance analysis is widely used to study structural and func-
tional networks of the brain, including cortico-cortical (53, 54) and 
cortico-subcortical (13, 55) networks. Using this approach, recent 
studies have identified large-scale cortico-cortical gradients that re-
late to cortical hierarchical organization (53, 54, 56, 57), and Tian et al. 
(13) found resting-state functional gradients of cortico-subcortical 
networks. To our knowledge, our analysis is the first to identify 
cortico-striatal structural covariation gradients along the striatum, 
rather than analyzing the entire putamen or caudate collectively. The 
underlying neural mechanisms behind structural covariation (and 
especially the meaning of negative versus positive covariation) are 
still the subject of active discussion: It has been suggested that struc-
tural covariance between regions reflects their involvement in the 
same functional system, which may manifest through synchronous 
activation, physical connectivity, or coordinated development (42, 43).

Our findings of cortico-striatal networks strengthen the view of 
differential involvement of striatal areas in different neural domains. 
Moreover, our results converge with previous findings of selective 
connectivity and activity of the anterior striatum. For example, 
Haber et al. (9, 58) showed that projections from prefrontal and 
limbic cortical regions not only terminate primarily in the anterior 
striatum but also extend posteriorly. However, motor and premotor 
projections terminate in the posterior striatum but do not extend to 
the anterior striatum. In addition, an fMRI study found that while a 
posterior region of the caudate was engaged during different levels of 
cognitive processing, anterior regions were involved only in higher- 
level cognition (11). Our cortico-striatal covariance findings provide 
further evidence for fronto-limbic versus sensorimotor differentia-
tion in the anterior striatum at the microstructural level.

Both the cortico-striatal covariance and PD results suggest a func-
tional relevance of the putamen AP axis. In the HCP dataset, we 
found a preferential covariance in the anterior putamen’s segments 
with regard to cortical hierarchy, but for the posterior segments, we 
found negative or insignificant covariance with all cortical regions. 
In PD, we found a microstructural reduction posteriorly, which was 
associated with motor function, but not cognitive function. Taken 
together, these results suggest that positive covariance in the anterior 
putamen may reflect higher association with cortical regions involved 
in cognitive function, which was not affected by the posterior reduc-
tion in early-stage PD. Future studies may investigate the implications 
of PD on cortico-striatal structural covariance directly, using a large 
PD sample size needed for the analysis.

Our newly developed, automated tool for in vivo microstructural 
quantification is the first of its kind. Previous studies parcellated the 
striatum into distinct functional or structural subregions, result-
ing in atlases that may differ from one another in the number and 
boundaries of the subregions (13, 59). Our approach is different and 
complementary to these studies: We do not aim to define distinct 
subparts but rather provide a compact description for biological gra-
dients, i.e., the spatial change of biophysical properties within the 
striatum. To date, there are several automated tools for measuring 
changes in qMRI parameters along white matter tracts and across 
cortical layers (60–63). Our approach is the first to provide a robust, 
automatic quantification of qMRI spatial variation along axes of 
subcortical gray matter structures at the single-subject level. Other 
studies have developed gradient analyses and found function and 
connectivity gradients in the striatum. For example, Marquand et al. 
(45) developed a gradient analysis using resting-state fMRI in the 

Montreal Neurological Institute (MNI) space and showed cortico- 
striatal coactivity topographies. This analysis was adapted for use with 
diffusion MRI tractography data (64). This analysis defines gradients 
by the eigen decomposition of a graph Laplacian, computed on a 
parameter matrix of voxel-to-voxel correlations. In contrast, our ap-
proach defines the axes first, independently of the parameter, and then 
samples biophysical parameters along them. Consequently, our method 
might not follow the axis of largest variance in the parameter.

While this poses a limit on our method, it also has several clear 
benefits. First, our method allows a comparison across subjects with-
out requiring a voxel-to-voxel correspondence. This eliminates the 
need to transform the images to a common coordinate frame for a 
voxel-based analysis (e.g., MNI), a process that involves inevitable 
information loss (65) and lacks precision for the individual subject 
level (60, 66). Second, since we define the striatum’s axes based on the 
ROI’s coordinate distribution, the identified gradients carry a clear 
and simple anatomical meaning. Namely, with our method, we are 
comparing corresponding positions in the ROI across subjects. Fur-
thermore, by computing axes that are independent of the measured 
parameter, we can compare the spatial change of different biophysical 
properties (e.g., R1, R2*, and MTV) along the same spatial axes, on both 
the individual level and the group level. Similar to other gradient anal-
yses, future applications of our tool are not limited to the striatum, as 
it can be adapted for other subcortical structures such as the pallidum 
and the brainstem. (For additional analysis and comparison to voxel- 
based gradients, see sections S12 and S13 and figs. S21 and S22.)

To conclude, we propose a noninvasive quantitative approach to 
measure microstructural gradients in the human striatum in vivo. 
Our method provides a unique insight on aging- and disease-related 
local changes in the striatal tissue. Using different qMRI parameters, 
we found age-related, spatially dependent changes in the caudate and 
putamen. Moreover, we found that local alterations in the putamen 
constitute a signature of PD, which is related to the single-subject 
dopaminergic loss and motor function decline. Our study elucidates 
the relations of microstructure variation to biophysical sources on 
the one hand and to function on the other hand. Future applications 
should benefit the research and personalized medicine of additional 
basal ganglia–related degenerative diseases, such as Huntington’s dis-
ease and dystonia, as well as other disorders that are thought to 
involve spatial changes in the striatum, such as drug addiction and 
schizophrenia (3, 52).

METHODS
Datasets
Main 3T dataset (dataset A)
The dataset was collected in a previously published work; for full 
details, see Filo et al. (30). All study procedures were approved by 
the Helsinki Ethics Committee of Hadassah Hospital, Jerusalem, 
Israel. A written informed consent was obtained from all partici-
pants before the procedure.

Subjects. Measurements were performed on healthy individuals in 
two age groups: 23 young adults (aged 27 ± 2 years; range, 23 to 31) 
and 18 older adults (aged 67 ± 6 years; range, 55 to 75). We excluded 
one older female subject from our analysis due to a detected abnor-
mality in her caudate nucleus.

Data acquisition. Data were collected on a 3T Siemens MAGNETOM 
Skyra scanner at the Edmond and Lily Safra Center (ELSC) neuroimaging 
unit at the Hebrew University of Jerusalem. For quantitative R1, R2*, 
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and MTV mappings, three-dimensional (3D) spoiled gradient echo 
(SPGR) images were acquired with four different flip angles ( = 4°, 
10°, 20°, and 30°). Each image included five equally spaced echoes, 
with echo time (TE) of 3.34 to 14.02 ms, except for five young subjects 
for whom the scan included only one TE (3.34 ms). The repetition 
time (TR) was 19 ms, and the scan resolution was 1 mm3 isotropic. 
For bias estimation, spin-echo inversion recovery images were 
acquired with echo-planar imaging readout (SEIR-EPI). For these 
images, sequence parameters were TE = 49 ms, TR = 2920 ms, and 
inversion time (TI) = 200, 400, 1200, and 2400 ms. Slice thickness was 
3 mm, and in-plane resolution was 2 mm2. In addition, anatomical 
T1w images were acquired with either 3D magnetization-prepared 
rapid gradient echo (MPRAGE) or magnetization-prepared two rapid 
acquisition gradient echoes (MP2RAGE).

Estimation of qMRI parameters. Whole-brain R1 and MTV maps, 
as well as field bias maps of excitation (B1+) and receive (B1−) for 
correction, were computed using mrQ software (https://github.com/
mezera/mrQ) (29).

For subjects (N = 36) scanned with multiple echo SPGR, R2* fit-
ting was done using the MPM toolbox (67). R2* estimates acquired 
from each of the four SPGR images were averaged for increased signal- 
to-noise ratio (SNR).

MTV was corrected for R2* residuals using the following equation:

  MT V  corrected   = 1 − (1 − MTV ) ∙ exp(TE ∙ R 2   * )  

where MTVcorrected was used throughout our analysis.
Brain segmentation. Subcortical gray matter structures were seg-

mented using FSL’s FIRST probabilistic segmentation tool (68). The 
subject’s MPRAGE or MP2RAGE scan was used as a reference im-
age. Images were registered to the MTV space before the segmenta-
tion, using rigid-body registration. To avoid partial volume effects, 
the outer 1-mm shell of each structure was removed. All segmenta-
tions were inspected by eye to avoid ROI misclassifications and en-
sure their quality.
Replication 3T dataset (dataset B)
Subjects and data. Data used for replication in 3T are from a previ-
ously published work (69). All data collection procedures were ap-
proved by the Stanford University Institutional Review Board, and 
each participant provided informed consent.

The data were collected on a 3T Discovery 750 MRI system (Gen-
eral Electric) at the Center for Cognitive and Neurobiological Imaging 
at Stanford University. For R1 mapping, SPGR images were acquired 
with four different flip angles ( = 4°, 10°, 20°, and 30°), TR = 14 ms, 
and TE = 2.4 ms. Scan slice thickness was 1 mm, and the in-plane 
resolution was 0.94 mm2. From these data, we used subjects in two 
age groups: 15 young adults (aged 25 ± 5.5 years; range, 18 to 32; 
10 females) and 16 older adults (aged 70 ± 8 years; range, 58 to 85; 
8 females). Estimation of quantitative R1 and brain segmentation were 
done using the same procedure as in our main dataset.
Replication 7T dataset (dataset C)
Subjects and data. We used the open source AHEAD 7T preprocessed 
qMRI dataset (https://doi.org/10.21942/uva.10007840.v1). The study 
was approved by the ethical committee of Xuanwu Hospital of Cap-
ital Medical University. All participants have provided written in-
formed consent; for full details, see Alkemade et al. (70). Data were 
acquired at the Spinoza Centre for Neuroimaging in Amsterdam, 
using an MP2RAGE sequence in a Philips Achieva 7T MRI scanner. 
Image resolution was 0.7 mm3 isotropic. The data include T1w images 

as well as quantitative R1, R2*, and susceptibility mappings (estima-
tion of MTV was not possible for dataset C since it was not acquired 
using SPGR sequence). The data consist of 105 subjects aged 18 to 
80 years. From these data, we chose 67 subjects who fall in one of 
two age groups: young adults (N = 42; range, 18 to 30 years; 27 females) 
and older adults (N = 25; range, 51 to 70 years; 14 females). Subjects’ 
exact ages were not available. Segmentation was done in the same 
procedure as in our main dataset, using the T1w images as reference.
T1w/T2w dataset (HCP)
Subjects and data. Data were obtained from the publicly released HCP 
Young Adult dataset, consisting of 1206 healthy young adults (age 
range, 22 to 37 years) (36). We chose 1113 subjects who had T1w and 
T2w data of high resolution (0.7 mm3 isotropic). From these, we ex-
cluded 35 subjects who were flagged by the HCP preprocessing pipe-
line as part of segmentation and surface reconstruction quality 
control (“Issue code B”; see https://wiki.humanconnectome.org/
pages/viewpage.action?pageId=88901591). We further excluded 
11 additional subjects for whom FSL FIRST failed to produce a proper 
subcortical segmentation, yielding a total of N = 1067 subjects in 
our analysis. Cortical parcellation was done and provided by the 
HCP, using FreeSurfer (71) based on the Desikan-Killiany atlas (72). 
For further information, see www.humanconnectome.org/study/
hcp-young-adult/document/1200-subjects-data-release. Subcorti-
cal segmentation was done using FSL’s FIRST, following the same 
procedure applied for our main dataset [see the “Main 3T dataset 
(dataset A)” section] and using the T1w image as a reference.
PD T1w/T2w dataset (PPMI)
Subjects and data. Data used in the preparation of this article were 
obtained from the PPMI database (www.ppmi-info.org/access-data- 
specimens/download-data). For up-to-date information on the study, 
visit www.ppmi-info.org. PPMI—a public-private partnership—is 
funded by the Michael J. Fox Foundation for Parkinson’s Research 
and funding partners, found at www.ppmi-info.org/about-ppmi/
who-we-are/study-sponsors.

For our analysis, we chose 99 older, early-stage, de novo PD pa-
tients (aged 65 ± 6 years; range, 55 to 76; 32 female), all of whom 
were classified to be at the Hoehn and Yahr scale’s stage 1 (N = 40) 
or stage 2 (N = 59). The median duration of disease between PD 
diagnosis and imaging was 4 months, with median absolute devia-
tion of 6.6 months. We also chose 46 healthy controls matched for 
age and sex (aged 65 ± 6 years; range, 55 to 76; 17 female). Both 
patients and controls underwent the same protocols, including T1w 
and T2w scans, DaTSCAN, and behavioral assessments.

MRI scanning. MRI data were collected using a 3T SIEMENS Trio 
scanner. T1w images were acquired using an MPRAGE generalized 
autocalibrating partially parallel acquisitions (MPRAGE-GRAPPA) 
sequence, with 1-mm sagittal slice thickness and 1-mm2 in-plane 
resolution. T2w images were acquired using a turbo spin echo (TSE) 
sequence with 3-mm axial slice thickness and 0.94-mm2 in-plane 
resolution.

T1w/T2w images. The T1w/T2w ratio provides a semiquantita-
tive contrast since it minimizes the shared bias of the weighted im-
ages. To generate T1w/T2w images, we resampled the T2w images 
to match the T1w images’ 1-mm3 isotropic resolution. Registration, 
alignment, and resampling of the T2w images to T1w images were 
performed using software packages from SPM (www.fil.ion.ucl.ac.
uk/spm/software/spm12/) and MRtrix3 (www.mrtrix.org/). T1w im-
age intensities were then divided by T2w image intensities voxel-wise. 
All steps were inspected by eye to ensure image quality. Segmentation 
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was done in the same procedure as in our main dataset, using the 
T1w images as a reference.

DaTSCAN. 123I-FP-CIT SPECT imaging was performed on all 
subjects for assessment of dopamine transporter (DAT) deficit. Ra-
diotracer striatal binding ratio (SBR) was calculated for the putamen 
and caudate in each hemisphere at the Institute for Neurodegenerative 
Disorders (IND) at Yale University, New Haven. For further details, 
see www.ppmi-info.org. We calculated DaT SBR asymmetry per sub-
ject as the left putamen SBR minus the right putamen SBR (L-R).

Motor function and asymmetry. Motor signs were assessed through 
MDS-UPDRS III, off any antiparkinsonian medications. The patients’ 
scores were within the range of 6 to 43, with a mean ± SD of 21.3 ± 9.4. 
For the healthy control subjects, scores were in the range of 0 to 4, 
except for one subject with score 11 (0.9 ± 1.9). We defined an indi-
vidual’s motor signs asymmetry score as the sum of raw scoring for 
the left body-side items minus the sum of right body-side items (L-R) 
such that a greater positive score implies a left-side laterality and a 
greater negative score implies a right-side laterality.

Cognitive assessments. Subjects were assessed for cognitive defi-
cits through a battery of tests and assessments. In our analysis, we 
used the scores from the MoCA, Benton Judgement of Line Orien-
tation, Hopkins Verbal Learning Test, Letter-Number Sequencing 
Test, Symbol Digit Modalities Test, and Semantic Fluency.

MoCA scoring ranges between 0 and 30, where a score of 26 and 
over is considered cognitively normal. The patients’ scores were 
at the range of 20 to 30, with most patients within normal range 
(mean ± SD of 27.4 ± 2.2).

qMRI gradients
We developed an automatic procedure to generate qMRI functions 
along the main axes of a subcortical structure at the single-subject 
level. Without needing to rotate the image, this procedure moves 
from image axes to ROI-based axes and then samples qMRI values 
as a function of position along them.
Automatic axis computation
Given an ROI mask (or a segmentation file and label), the algorithm 
computes the SVD of the ROI’s voxel 3D image coordinates to find 
the main three orthogonal axes (i.e., the eigenvectors) of the struc-
ture. The SVD algorithm solves for

  M = U Σ  V   *   

where M is an m × 3 matrix of the ROI’s m centered image coordi-
nates, Σ is a diagonal matrix with the singular values of M, and U 
and V are matrices whose columns are the left and right singular 
vectors of M, respectively (or the orthonormal eigenvectors of MM* 
and M*M, respectively). Therefore, the columns of the 3 × 3 matrix 
V define the main orthogonal axes of the ROI, based on its anatom-
ical shape.
Axis segmentation
For each of the three main axes, we segment the ROI with equal 
spacing. For this purpose, we define the data edges as the two hy-
perplanes defined by the two extreme data points of the data with 
respect to the axis and by the axis as a normal to the plane. The data 
are then segmented by n − 1 parallel hyperplanes equally spaced 
between the two data edges. Voxels are then classified to n seg-
ments based on criteria of distance from planes. For our analysis, 
we chose n = 7.

qMRI functions
Given a qMRI map (e.g., R1), a median value is computed for each seg-
ment along each axis. This yields three map-based functions of spa-
tial position (“gradients”) along the three main axes of the given ROI.

The longest axis of the putamen and caudate is identified as the 
anterior-posterior axis, based on the most closely matching brain 
axis, followed by the ventral-dorsal and medial-lateral axes. To de-
termine the directionality of each axis in a consistent way between 
individuals (i.e., AP and not posterior-to-anterior), we assume an 
MRI axis convention such that the image’s x, y, and z axes increase 
from left to right, from posterior to anterior and from inferior to 
superior, respectively (“LPI”). We determine the directionality of the 
SVD-derived axes as the following: the longest axis decreases with 
the y coordinate (AP), the middle axis increases with the z coordi-
nate (VD), and the shortest axis increases with the x coordinate in 
the right hemisphere and decreases with the x coordinate in the left 
hemisphere (ML). For each axis, spatial functions are then averaged 
across subjects of the same condition (e.g., age and clinical group) to 
provide group-averaged functions of spatial change for the ROI. The 
MATLAB (www.mathworks.com/) implementation of our tool is 
available for access at https://github.com/MezerLab/mrGrad.

Interhemispheric asymmetry
For each striatal segment, we defined interhemispheric asymmetry 
on the subject level as the left-hemisphere value minus the right- 
hemisphere value. We used this formulation for quantitative measure-
ments, while for the semiquantitative measurement (i.e., T1w/T2w) 
we further normalized this difference across subjects by the mean 
value across hemispheres

  R1 asymmetry = R 1  Left   − R 1  Right    

  T1w / T2w asymmetry =   
T1w / T2 w  Left   − T1w / T2 w  Right     ────────────────────   (T1w / T2 w  Left   + T1w / T2 w  Right   ) / 2    

With this definition, a negative value reflects higher MRI value in 
the right hemisphere, and a positive value reflects a higher MRI value 
in the left hemisphere.

Statistical analysis
Linear mixed-effects statistical models
Statistical inference for spatial, interhemispheric, and either aging- 
or disease-related effects was performed using linear regression mixed- 
effects design models. By default, we used one model for each axis 
of the caudate or putamen. Since we observed that in some axes the 
spatial qMRI function showed a quadratic shape, we tested different 
polynomial degrees for each axis of change before the statistical mod-
eling. For axes where we found that a quadratic fit outperformed 
the linear fit, we performed a linear approximation of the function 
by breaking it into two approximately linear parts and modeled each 
part using a linear model (see section S5). In our model, we ex-
pressed the position along the axis, the hemisphere (two levels) and 
the age or clinical group (two levels) as fixed effects, the subject IDs 
as a random effect, and the MRI value as the response variable. We 
tested for the main effects of the fixed variables (position, hemisphere, 
and subject group), as well as all their interactions. In addition, we 
used sex as a covariate for the age or clinical group in the model, 
controlling for their interaction. In addition, in the PD analysis, we 
tested interactions of the age covariate with the clinical group. The 
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P values were corrected for multiple comparisons using the Benjamini- 
Hochberg method (73) for FDR.
Additional group-level comparisons
Differences between subject groups in continuous variables (i.e., age, 
interhemispheric asymmetry, and CV) were tested using two-sample 
t tests for mean difference. Differences in sex were tested using 
Pearson’s chi-square test (2). All tests were conducted with two-
tailed  of 0.05, and corrections for multiple comparisons using FDR 
(unless reported otherwise).
PD-related variable correlations
To test the relationships between the putamen’s T1w/T2w structural 
gradient asymmetry and either dopaminergic loss or motor function 
asymmetry, we fitted linear regression models. We report adjusted 
R2 values, which represent the proportion of variance explained by 
the structural asymmetry variable. To rule out effects of age and sex, 
we added these variables as covariates in the regression models to 
test for main effects and interactions with the predictor variable (see 
section S10).
Gradient similarity across datasets
To assess the similarity of gradients obtained in different datasets, 
we used a linear regression model for each gradient. Observations 
were group-average values in each segment along the gradient, ob-
tained from two datasets. If the comparison was done between dif-
ferent MRI parameters (i.e., quantitative R1 versus T1w/T2w ratio), 
the variables were z-scored first. Therefore, the level of linearity in 
the models (as represented by R2) indicates how similar the datasets 
are with respect to their relative spatial changes along the axes.
Cortico-striatal T1w/T2w covariation
To identify microstructural associations between cortical regions 
and striatal subregions, we performed a structural covariation anal-
ysis across a large cohort of 1067 subjects from the HCP dataset. 
Within each cortical region, T1w/T2w values were sampled along the 
mid-thickness surface of the cortical gray matter, and their mean 
values were calculated using FreeSurfer (74). To account for any 
subject-specific bias that may exist in the semiquantitative T1w/T2w 
images, we calculated the z score across the brain regions per sub-
ject. Last, we calculated correlations across subjects between the 
standardized values of each segment along the AP axis of either the 
putamen or caudate, and the standardized values in each of the cor-
tical regions. The significance level () was set using the Bonferroni 
method for multiple comparisons correction, as follows: initial  of 
0.05, divided by 1904 comparisons (4 striatal ROIS × 7 segments × 
64 cortical regions = 2.6 × 10−5).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abm1971
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