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ABSTRACT 15 
Mice are key model organisms in genetics, neuroscience and motor systems physiology. Fine motor control 16 
tasks performed by mice have become widely used in assaying neural and biophysical motor system 17 
mechanisms, including lever or joystick manipulation, and reach-to-grasp tasks (Becker et al., 2019; Bollu 18 
et al., 2019; Conner at al., 2021). Although fine motor tasks provide useful insights into behaviors which 19 
require complex multi-joint motor control, there is no previously developed physiological biomechanical 20 
model of the adult mouse forelimb available for estimating kinematics (including joint angles, joint 21 
velocities, fiber lengths and fiber velocities) nor muscle activity or kinetics (including forces and moments) 22 
during these behaviors. Here we have developed a musculoskeletal model based on high-resolution imaging 23 
and reconstruction of the mouse forelimb that includes muscles spanning the neck, trunk, shoulder, and 24 
limbs using anatomical data. Physics-based optimal control simulations of the forelimb model were used 25 
to estimate in vivo muscle activity present when constrained to the tracked kinematics during mouse 26 
reaching movements. The activity of a subset of muscles was recorded via electromyography and used as 27 
the ground truth to assess the accuracy of the muscle patterning in simulation. We found that the synthesized 28 
muscle patterning in the forelimb model had a strong resemblance to empirical muscle patterning, 29 
suggesting that our model has utility in providing a realistic set of estimated muscle excitations over time 30 
when provided with a kinematic template. The strength of the resemblance between empirical muscle 31 
activity and optimal control predictions increases as mice performance improves throughout learning of the 32 
reaching task. Our computational tools are available as open-source in the OpenSim physics and modeling 33 
platform (Seth et al., 2018). Our model can enhance research into limb control across broad research topics 34 
and can inform analyses of motor learning, muscle synergies, neural patterning, and behavioral research 35 
that would otherwise be inaccessible.   36 
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INTRODUCTION 37 
Mice are ubiquitous model organisms across many fields of biological research, including genetics, 38 
neuroscience and physiology. They provide access to a wide array of disease models, advanced molecular 39 
interrogation techniques, ease of husbandry through short gestation cycles, and the cost of raising and 40 
housing mice is relatively inexpensive. In addition to these factors, mice are often used in behavioral 41 
studies, including those that assay fine motor control. Mice can perform tasks like manipulandum control 42 
(Bollu et al., 2019), dexterous reach (Becker et al., 2020), and can learn complex behaviors with training 43 
(Burgess et al. 2017, Serradj et al., 2023, Sauerbrei et al., 2020, Galinanes et al., 2018, Conner at al., 2021). 44 
However, despite the utility of mice as a model organism in motor learning, there are no high-resolution 45 
reconstructions of the adult mouse forelimb, nor are there any physiological biomechanical models of their 46 
forelimbs that incorporate fully developed muscle morphology. Biomechanical models are useful for motor 47 
systems and neuromechanics researchers to provide detailed insights into muscle activity and limb 48 
kinematics (e.g., fiber length and velocities) that would otherwise be difficult or impossible to access 49 
through empirical observations. Experimentally measuring muscle activity is challenging due to the size of 50 
the mouse and the large number of muscles in the body. State-of-the-art methods can only measure the 51 
activity of 3-4 muscles in the 25+ muscles in the forelimb (Zia et al., 2020). Therefore, the construction and 52 
evaluation of a model of the mouse forelimb would be a valuable tool for researchers studying dexterous 53 
behaviors in mice. 54 

The only currently available mouse forelimb model, developed recently in a full-body mouse model 55 
(Ramalingasetty et al., 21), was based on mouse embryo data (Delaurier et al., 2008), which also lacked 56 
many of the large muscles originating from the scapula, and on educated guesses. Ramalingasetty et al. 57 
noted that modeling the mouse forelimb is more challenging than the hindlimb, due to the lack of published 58 
biomechanical data, and improving their forelimb model was identified as a remaining challenge for future 59 
work. Reference books on limb anatomy present two-dimensional (2D) illustrations of the limb musculature 60 
(Hebel 1986), but it is challenging to extract accurate locations of the attachment points and the three-61 
dimensional (3D) tissue paths from these references (Delaurier et al., 2008). By using large-scale light sheet 62 
microcopy data, we were able to more accurately identify the muscle attachment sites and muscle paths 63 
than by working with mouse and rat atlas data. Additionally, computing these quantities directly from 64 
dissections is challenging because of the size of the forelimb muscles, whose tendon insertion points are 65 
separated by as little as tens of microns. The attachment points have been shown to be the most important 66 
factor in estimating how effective a muscle is in producing a joint rotation or moment (Charles et al., 2016).  67 

The study by Charles et al. has produced a detailed description of muscle anatomy integrated into 68 
a hindlimb biomechanical model. We sought to build on this work to create a forelimb model. We started 69 
by scanning and recreating the forelimbs of two adult mice. Muscles with insertions onto the humerus span 70 
most of the mouse’s trunk and spine, necessitating imaging of much of the mouse body. We limited our 71 
reconstruction to muscles that had insertions onto the humerus, radius, and ulna, as reconstruction of 72 
muscles with insertions onto the scapula and those that inserted onto the hand was infeasible given the 73 
resolution of imaging performed. Once the muscles had been traced and reconstructed, they were used to 74 
set the musculoskeletal geometry of the biomechanical model, that is, the attachments points of the muscles 75 
on the bones and their lines of action. We used published results on mouse forelimb muscle architecture to 76 
set the muscle parameters in our model (Mathewson et al., 2012). The resulting model has 21 muscles and 77 
5 bones (along with a composite hand body segment), with the scapula and clavicle serving as fixed position 78 
bodies. The model has four degrees-of-freedom: shoulder elevation, extension, and rotation, as well as 79 
elbow flexion. The model is also capable of wrist flexion and rotation, but these degrees-of-freedom were 80 
fixed during our simulations. We used the OpenSim modeling and physics simulation environment to 81 
develop the forelimb model (Delp et al. 2007, Kewley et al. 2024). We have also written custom code to 82 
convert the model for the MuJoCo physics simulation environment (Todorov et al. 2012). 83 

To evaluate the utility of the model, we sought to replicate physiological kinematics and predict 84 
simultaneously recorded muscle activity. We used a dataset of thousands of reaches from three mice who 85 
had their kinematics and a subset of their muscle activity recorded during reaching movements. The 86 
empirical kinematics were used as constraints on the synthesized kinematics with optimal control. The 87 
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empirical muscle activity was used as a ground truth for comparison against the optimal control predictions 88 
(i.e., the synthesized muscle activity). The muscles recorded experimentally in the dataset were the biceps, 89 
triceps long head and triceps lateral head. 90 

Reaching movements in mice, rats, and primates are widely studied in systems neuroscience to 91 
study healthy and injured motor networks (Fleischer et al., 2023; Khanna et al., 2021; Yang et al., 2023). 92 
However, reaching movements lack endpoint accuracy in patients with cerebellar disease (Bonnefoi-93 
Kyriacou et al., 2018), exhibit abnormal muscle coordination patterns after stroke (Cheung et al., 2012) and 94 
have impaired kinematics in Parkinson’s disease (Vissani et al., 2021). The mouse is an ideal model system 95 
for motor control research because of relatively easy access to neural, behavior and anatomical data, as well 96 
as to advanced molecular interrogation techniques for perturbation studies (Deisseroth et al., 2006). 97 
Building on a large body of prior work in primates, several research groups are conducting foundational 98 
studies on mouse reaching (Becker et al., 2020; Yang et al., 2022; Wagner et al., 2021; Conner et al., 2021; 99 
Galilanes et al., 2018), which are evolutionarily conserved (Iwaniuk 2000). Reaching movements are the 100 
focus of the model evaluation experiments in this study; however, the model could be used to simulate other 101 
forelimb movements.  102 

There is an infinite number of possible muscle coordination patterns that are consistent with 103 
kinematics (Harris & Wolpert 1998). Optimal control chooses the muscle excitation pattern that achieves 104 
task constraints, while minimizing a proxy for effort or energy (e.g., the sum of muscle activations squared) 105 
and possibly other terms (Al Borno et al., 2020). We apply optimal control to predict an energetically 106 
efficient muscle activity pattern that achieves the reaching kinematics task. We focused this study on the 107 
ballistic phase of the reach and have not studied the grasping phase. To simplify the problem, we have not 108 
included the muscles that control the wrist and fingers in the biomechanical model and kept these degrees-109 
of-freedom locked. However, we have provided the 3D reconstruction of some of these muscles in 110 
supplementary materials. We are not aware of any prior work that compared predicted muscle activity with 111 
empirical muscle activity for three-dimensional reaching movements (in humans or other species).  112 

Optimal control-based simulations using the model were able to recreate reach kinematics 113 
accurately using synthesized muscle excitations. The muscle patterning produced when constrained to 114 
replicate experimental reach kinematics had a strong resemblance to empirical electromyography (EMG) 115 
data. The model performed best when estimating the mean EMG rather than on a reach-per-reach basis 116 
because of the high physiological variance in the muscle patterning employed in mice. Mean EMG 117 
predictions were within 1 standard deviation of mean experimental EMG in most reaches and produced 118 
lower error than time-shuffled EMG. These results suggest that our model can replicate realistic reach 119 
kinematics and muscle activity. Our analysis reveals that the optimal control solutions are closer to the 120 
empirical solutions (i.e., the patterns employed by real mice) as reaching performance improves throughout 121 
learning. In other words, mice employ muscle patterning solutions that more closely resemble optimal 122 
control solutions as they become more skilled at the task. More broadly, this model should provide insight 123 
into forelimb behaviors that would otherwise be inaccessible by experimental means, and we hope that 124 
access to a robust description of the forelimb’s kinematics, forces, and muscle activity will advance 125 
understanding of mouse behavior. Our computational tools are available as open-source for researchers 126 
interested in analyzing muscle activity during mouse forelimb movements.  127 
  128 
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METHODS  129 
Anatomical high-resolution imaging 130 
Accurate prediction of muscle activity during movements is predicated on a sufficient description of the 131 
underlying anatomy and physiology. To produce a model that was suited for prediction tasks, we first sought 132 
to gather anatomical data to inform the model. We obtained 3D scans of mouse forelimbs and trunk 133 
musculature through large scale light sheet microscopy imaging of two wildtype female mice (9 weeks old). 134 
The dataset contains imaging that captured the left distal shoulder and proximal forelimb (Mouse A), the 135 
right distal forelimb and paw (Mouse A), and both forelimbs, shoulders, and trunk (Mouse B). Only the left 136 
shoulder, trunk, and proximal forelimb were reconstructed in Mouse B.  137 
 138 
Mouse and tissue preparation 139 
Mice were euthanized via subcutaneous injection of pentobarbital and prepared for imaging though fixation 140 
with a transcardial injection of 4% paraformaldehyde (PFA) and 0.01% heparin. The vascular system was 141 
washed with a saline solution before and after perfusion with PFA, then washed overnight in phosphate-142 
buffered saline (PBS) and 0.01 heparin. Mouse A was dissected, with skin removed and forearm separated 143 
axially to the vertebral column.  144 

Imaging subjects were prepared using the iDISCO+ tissue clearing methodology (Habart et al., 145 
2023). The tissue was introduced to a gradually increasing concentration of methanol, starting with 20% 146 
and increasing by 20% every hour. The clearing chamber was maintained at room temperature. After 5 147 
hours of exposure to methanol, the tissue was chilled at 4° C overnight and then bathed in 66% 148 
dichloromethane (DCM) and 33% methanol for 24 hours. The tissue was then bathed in 100% methanol 149 
for 2 hours before being chilled for 1 hour and then transferred into 5% hydrogen peroxide in methanol for 150 
48 hours. Finally, tissue was rehydrated through 1 hour immersion in 80%/60%/40%/20% methanol for one 151 
hour per 20% decrement, then transferred to 1x PBS for 24 hours, followed by immersion in a 100ml PBS 152 
10x and 2 ml TritonX-100 solution that was filled to 1L with distillate water. 153 

After clearing was completed, the tissue was prepared for immunostaining without antibodies via 154 
incubation a permeabilization solution (500 mL) consisting of 400 mL PTx.2, 11.5 g glycine, and 100 mL 155 
dimethylsulfoxide (DMSO). The tissue was bathed in solution for 4 days, then transferred to a blocking 156 
solution of 42 mL PTx.2, 3 mL donkey serum, and 5 mL DMSO for 3 days. Finally, tissue was washed with 157 
100 mL PBS 10X, 2 mL Tween-20, 1 mL of 10mg/mL heparin, and filled to 1L with distillate water. The 158 
tissue was then re-cleared through preparation in 20%/40%/60%/80%/100% methanol in 1-hour steps, then 159 
bathed in 100% methanol overnight. Afterwards, the tissue was bathed in 66% DCM and 33% methanol 160 
for 4 hours, then in 100% DCM for 15 minutes twice in succession. 161 
 162 
Imaging parameters 163 
Dissected mouse limbs were arranged in a prone position prior to imaging. Scans were taken with 8.23 um 164 
per pixel scans at 8x zoom, with 5 um steps in the z-plane. Imaging was performed using mesoSPIM (Voigt, 165 
et al., 2019). Immunostaining was captured in the green channel (488 nm laser) and was imaged using mode 166 
tiling wizard with an offset by 75% and a filter set to 530/43. Mouse A’s forearms were dissected and imaged 167 
in their entirety. Mouse B was imaged from the base of the skull through the joint of the femur and tibia 168 
and the entirety of the depth of the sample. 169 
 170 
Anatomical segmentation and reconstruction 171 
The basis for this study was to obtain physiological morphology data from the mouse forelimb to inform 172 
the development of a musculoskeletal model for usage in optimal control-based simulations. We found that 173 
muscle density and striation was a sufficient marker of muscles to identify them with light sheet microscopy, 174 
which were enhanced through immunostaining without antibodies (see Methods: Mouse and tissue 175 
preparation). We used the raw imaging of the mouse anatomy and segmented individual muscles into 3D 176 
shape objects using 3D Slicer (Federov et al., 2012) (Fig. 1A). We also segmented the forelimb bones to 177 
obtain landmarks and geometries for use in the model, such as the deltoid tuberosity of the humerus, which 178 
is a site of attachment for many shoulder muscles in the mouse. Because not every data set had complete 179 
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data for the entire forelimb, right and left anatomical datasets were combined through manual alignment in 180 
Blender (Blender D.T., 2022). We used anatomical landmarks on the humerus, ulna, and radius to align 181 
muscle reconstructions, as these bones were present in all three imagining datasets. The reconstructions 182 
were scaled according to the radius of the bones and confirmed visually by examining the degree of overlap 183 
between reconstructions. 184 
 185 
Development of a biomechanical model of the mouse forelimb 186 
With a detailed set of reconstructions, we next sought to leverage anatomical descriptions to construct a 187 
biomechanical model in OpenSim, a widely-used physics-based modeling and simulation environment used 188 
to study movements of humans and other species. The anatomical model was assembled using OpenSim 189 
Creator (Kewley et al., 2024). We have also converted the model in MuJoCo (Todorov et al. 2012), which 190 
produces faster (but less physiologically accurate) simulations that are more amenable for deep 191 
reinforcement learning applications. Although the model is available in MuJoCo, the computational tools 192 
for optimal control are based in OpenSim; therefore, MuJoCo users will need to develop their own code to 193 
produce the simulations with the model. Each individual muscle was measured and a combination of 194 
parameters derived from optical measurement, and from previous parameters in Mathewson et al., 2012 195 
and Charles et al., 2016, were used to derive the biophysical properties of the modelled muscles. We used 196 
De Groote-Fregly (De Groote et al., 2016) Hill-type muscles within the model, and opted to ignore complex 197 
tendon dynamics (i.e., using rigid tendons with no force-length/velocity properties), both to facilitate the 198 
production of a functional model and because we did not have access to sufficient data regarding tendon 199 
physiology purely from imaging data. The model is likely to improve from a more detailed dissection and 200 
biophysical tests, but these assays were beyond the scope of this project.  201 
 The musculotendon units in the forelimb were modeled by the common Hill-type muscle (Uchida 202 
& Delp 2021), which is parametrized by four parameters (maximum isometric force, optimal fiber length, 203 
tendon slack length and pennation angle). All these parameters, except for tendon slack length, were 204 
determined experimentally in the muscle dissection study of Mathewson et al., 2012 and through 205 
interpolation from known values when a muscle was not described in prior literature. The tendon slack 206 
length parameter represents the length where a tendon develops passive elastic force (Uchida & Delp 2021). 207 
This parameter cannot be measured experimentally and was set using the optimization procedure of 208 
Buchanan et al., 2004, as is commonly performed in the field (Charles et al., 2016), assuming that muscle 209 
fibers remain within 0.5 to 1.5 times optimal fiber length throughout the joint’s range of motion, which 210 
were estimated from both anatomical constraints and video of mouse behavior. Based on the muscle paths 211 
from the digital segmentation, we used wrapping surfaces, which are geometric objects in OpenSim, to 212 
constrain the muscles to have realistic paths of action. This is necessary for the model to produce realistic 213 
moment arms (Charles et al., 2016). We set other parameters in the muscles such as the maximum 214 
contraction velocity, the activation time constants and the force-length curves scaled based on prior work 215 
on mouse physiology (Charles et al., 2016; see open-source model for details). We calculated the 216 
physiological cross-sectional area (PCSA) by the standard formula developed by Alexander & Vernon 217 
(1975), that is, muscle volume divided by fiber length. Muscle fiber pennation angle is entered separately 218 
in OpenSim models; thus not directly used in PCSA calculations. Bone volume was determined in 219 
reconstruction and was uniformly multiplied by a murine bone density scalar (.00425 kg/cm2) determined 220 
from a literature search for empirical measures (Robbins et al. 2018) and prior models of the mouse (Charles 221 
et al., 2016), as well as estimations of the center-of-mass and inertia. A description of the model geometry 222 
is available in Table 1 and the muscle parameterization in Table 2. 223 
 224 
Model scaling 225 
Individual mice have variable limb dimensions that models must be altered to accommodate. We 226 
accomplished this by using the scale tool in OpenSim to automatically scale the mass, length, and muscle 227 
parameters of the model to fit the observed kinematic data originating from a particular mouse subject. We 228 
used DeepLabCut (Mathis et al., 2018) to estimate paw, elbow and shoulder markers from video. Our scripts 229 
adjusted the marker positions based on a 2D skeletal model with estimated limb lengths (derived from mean 230 
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inter-marker distances). These adjusted marker positions were then used to scale the OpenSim model to the 231 
mouse’s proportions. 232 
 233 
Mouse behavior 234 
Evaluation of the model against a behavioral dataset with a known ground truth, both in terms of kinematics 235 
and muscle activity, is necessary to assay its utility. Mouse behavior was recorded from two cameras during 236 
reaching behaviors and then processed using the DeepLabCut 3D motion tracking software (Mathis et al., 237 
2018). We collected data in a forelimb reaching task and recorded electromyography (EMG) from the biceps 238 
brachii, triceps long head, and triceps lateral head. The activity of three muscles were measured 239 
simultaneously with Myomatrix arrays (Zia et al., 2020). We estimated the elbow joint angle from the 3D 240 
markers. We used the average limb lengths to adjust the DeepLabCut paw, elbow and shoulder markers and 241 
ensure that the limb lengths remain constant throughout the video, which is necessary for accurate tracking 242 
by the model. Because our forelimb model only has rotational degrees-of-freedom on the shoulder, we 243 
could not capture the small translational movement occurring at the shoulder during head-fixed reaching. 244 
We subtracted the shoulder markers displacements from the elbow and paw markers to keep shoulder 245 
positional coordinates fixed in our simulations.   246 

Processed EMG envelopes were normalized to the maximum contraction recording during the 247 
session. EMG is usually normalized to the maximum voluntary contractions in studies with human subjects 248 
(Kendall et al., 2005). We rectified the EMG signals and then filtered them with a bandpass and lowpass 249 
filter suite. We bandpassed the signal from 5 to 500 Hz, rectified the signal, then low-passed further with a 250 
cutoff of 10 Hz. Additionally, we normalized the filtered EMG signals with a z-score measure. Each muscle 251 
was recorded through 4 leads, but only the qualitatively determined cleanest lead per muscle was used for 252 
this study. 253 

Mice were kept at 80% body weight during their training and testing periods, and mice were head-254 
fixed to a behavioral platform while reaching for small pellets (Figs. 1D, 2A). Mouse EMG was recorded 255 
from session one, when the mouse was completely naïve, and training progressed indefinitely until expertise 256 
was reached. The mice in this dataset ranged from having 11 to 26 total sessions, up to 1 hour per session. 257 
The mice used for this study achieved an initial successful reach on a range of sessions spanning 2-5 days. 258 
 259 
Selection of reaches for simulation 260 
Our dataset spanned the entirety of reach training for 3 mice, and because of the progression of learning, 261 
there was natural variance in kinematics performed. We opted to select only from ‘expert’ mice and to use 262 
baseline EMG datasets that were derived from similar reaching kinematics. We grouped reaches using the 263 
2-norm metric on 3D paw kinematics to assess similarity, and then selected two sets of 10 reaches per mice, 264 
with each set having a different kinematic profile (i.e., qualitatively different paw trajectories). We enforced 265 
expertise by selecting reaches that occurred only after the initial 4 sessions of learning, which was a typical 266 
epoch for mice to reach moderate success in reaching. We also compared the optimal control predictions 267 
between the early and late sessions of learning. Early sessions were selected from the 3 mice discussed 268 
above, with an additional mouse who did not achieve expert status included. 10 reaches were selected from 269 
each mouse for the early dataset. Early sessions were restricted to the first 3 sessions of learned reaching. 270 
 271 
Optimal control 272 
To demonstrate the ability of the model to synthesize physiological movements, kinematics were recorded 273 
using DeepLabCut (Mathis et al., 2018). These provided 3D coordinates of the paw and elbow during head-274 
fixed reaching movements. Optimization was conducted with direct collocation in Moco (Dembia et al., 275 
2020) as it is well-suited for simulations that track experimental data (“inverse simulations”; e.g., Bishop 276 
et al., 2021). Direct collocation enforces the equations-of-motion and physiological relationships as 277 
constraints in a nonlinear optimization problem which solves for the states of the musculoskeletal system 278 
and the muscle activity over the duration of the simulation. The optimization’s objective is to minimize a 279 
cost function of two terms: one term that is a proxy for effort (i.e., the sum of muscle activations squared) 280 
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and one term that represents the tracking cost (i.e., the deviation between the synthesized and the 281 
experimental kinematics). The cost function equation is:   282 
 283 
E = 𝑤Tpaw + 𝑤Telbow + ∑ 𝑎𝑖

2
𝑖  284 

 285 
Here, Tpaw is the 2-norm squared difference between model and experimental 3D paw coordinates. 286 

The experimental coordinates comprised of 100 timepoints during the ballistic phase of reaching. The same 287 
holds for Telbow, which is derived from tracking of the mouse elbow position. Term 𝑎𝑖 denotes the activation 288 
of muscle 𝑖 in the model and 𝑤 is a scalar weight set to 109 .We optimized over 2500 iterations and 100 289 
mesh points. The simulation was also constrained to start and end with the joint angles derived during the 290 
scaling of model. The optimization would end early if a convergence tolerance of 1𝑒−7 was reached. The 291 
optimization typically ran for 10 minutes on a computer with specifications listed in supplemental Table 1.  292 

The empirical muscle activity was not fitted or used by the optimization. Muscle activity is 293 
predicted based on optimality, task, physics and physiological constraints. We compared the predicted 294 
muscle activity with electromyography measurements on the triceps lateral head, triceps long head and 295 
biceps in 3 mice. We compared the activity of the recorded muscles to the muscle excitations produced by 296 
the model with the mean absolute error (MAE) metric at an optimal lag (in a range of –50 to +10 ms; we 297 
used a lag of 0 ms for Figure 3 and the late reach set in Figure 4; early reaches had an optimal lag of –50 298 
ms in Figure 4). As a validation of the optimal control solutions, we compare the synthesized kinematics 299 
between the musculoskeletal model and a torque-based model without muscles, but with motors on the 300 
joints. We verified that the kinematics in muscle-based solutions closely recapitulated those in torque-based 301 
solutions, indicating that the optimization converged to adequate kinematic solutions (i.e. kinematic means 302 
were within a single standard deviation of the true kinematic mean across all dimensions, Figure 2: blue 303 
violin plots). 304 

305 
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306 
Figure 1. Anatomical reconstruction. A. Optical slices of the mouse forelimb in the axial, sagittal, and coronal planes. 307 
The mouse arm is oriented in the prone position. Labels added to highlight prominent muscles as an example of a 308 
reconstruction target. B. 3D projections of optical tracing results as a composite across mice. Upper panels show 309 
composite scan, while lower panels show the left hand of mouse A to highlight density of wrist-inserting muscles. 3D 310 
projections show morphology and attachment sites of muscles on bones that were used to create biophysical model. 311 
C. Biomechanical model (OpenSim) reconstruction developed from the 3D projections. D. Biomechanical model 312 
projection on video of mouse reaching. 313 
  314 
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RESULTS 315 
Mouse forelimb musculoskeletal anatomy and biomechanical model construction 316 
Table 1 and 2 provide data on the muscles segmented in this study, including their origins, insertions, and 317 
physiological properties which were derived from optical scans (Fig. 1A-C). Overall, we segmented over 318 
21 muscles and 5 bones. The constructed biomechanical model has 21 muscles, 4 degrees-of-freedom (Fig. 319 
1C) and was sufficient to describe ballistic reaching movements (Fig. 1D).  320 
 321 
Kinematic Tracking 322 
We tasked the physiological forelimb model to track recorded DeepLabCut-tracked kinematics using 323 

optimal control algorithms (see Methods: Optimal control). Because there was natural variance in 324 

reaching movements and motor control, we opted to group 6 sets of 10 reaches by their kinematic 325 

similarity across time (see Methods: Selection of reaches for simulation). We deliberately selected 6 sets 326 

of varying reaching kinematics to explore the ability of the model to predict varied motor behaviors. The 327 

model was scaled and then optimized with direct collocation (using OpenSim Moco, Dembia et al., 2021) 328 

to track the paw and elbow across the ballistic epoch of the reach (Figure 2). We were able to recreate 329 

limb kinematics with low error, with the majority of synthesized kinematics per timestep falling within 1 330 

standard deviation of the empirical kinematic mean (Fig. 2C, blue violin plots; N = 60 reaches) across the 331 

x, y, and z dimensions of the paw and elbow trajectories.  332 

 333 

 334 

 335 

Figure 2. A. Example video with schematic elbow and paw marker trajectories. B. A biomechanical model with virtual 336 
markers on the elbow and paw. An optimal control problem is solved to minimize the difference between the virtual 337 
and empirical markers. C. Mean and standard deviation of 60 reaches for the empirical and synthesized marker 338 
trajectories. The z-score of the synthesized markers are largely within 1 standard deviation (see violin plots in blue), 339 
and the means per set of 10 reaches are all within 1 standard deviation (red dots). Black box plots denote median 340 
(white bar), 25 to 75th percentile distributions (black box), and 10th to 90th percentile distributions (short horizontal 341 
black lines). 342 
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 343 

Figure 3.  A. Comparisons of synthesized muscle excitations and experimental EMG activity. Curves show means and 344 
standard deviations (line and shaded region) of 10 reaches with similar experimental elbow and paw trajectories that 345 
were chosen from mouse behavior dataset. The mean synthesized excitations are shown in thick red for biceps long 346 
head, thick cyan for triceps long head, and thick blue for triceps medial head compared to the base lateral head 347 
activity. B. Violin plots including the entire dataset of 60 reaches. The mean synthesized muscle activity lies largely 348 
within 1 standard deviation of mean experimental muscle activity (red dots). On a reach-by-reach basis, the 349 
synthesized muscle activity lies largely within a z-score of 2 standard deviations (blue violin plots). Black box plots 350 
denote median z-deviation (white bar), 25 to 75th percentile distributions (black box), and 10th to 90th percentile 351 
distributions (horizontal black line). C. A comparison of mean absolute error between time-shuffled physiological 352 
EMG data and synthetic excitation means to the real mean of the tracked data. Synthetic excitation means have lower 353 
MAE than the time-shuffled data in all three muscles recorded (two-sided t-test, biceps p = 2.2e-6, triceps long head 354 
p = 1.4e-6, triceps lateral head p =4.8e-4. P-values were Holm-Bonferroni corrected for multiple comparisons). Black 355 
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box plots denote median (red horizonal bar), 25 to 75th percentile distributions (black box), and 10th to 90th 356 
percentile distributions (short horizontal black lines and stems). 357 

Model muscle activity patterning for reaching movements 358 
 We tasked the model to synthesize muscle activity during reaching movements with optimal control. We 359 
experimentally recorded activity from the biceps, triceps lateral head, and triceps long head in 3 mice. We 360 
then synthesized muscle activity to recapitulate experimental kinematics with direct collocation using 361 
OpenSim Moco. As shown in the examples in Fig. 3A, we observe that the mean synthesized muscle activity 362 
closely resembles empirical muscle activity over the duration of the reach for all three muscles. We measure 363 
the performance of the model via the MAE of normalized ground truth EMG signals from model signals. 364 
The mean muscle excitations produced by the model were within a single standard deviation of the 365 
experimental EMG activity (Fig. 3B, red dots in violin plots; between 50-57 of the 60 reaches, 366 
depending on the mice and assayed muscle). On a reach-367 
by-reach basis, the muscle excitations produced by the model 368 
across all time points were typically within two standard 369 
deviations of the experimental EMG activity. Paired reach-to-370 
reach predictions were less accurate because mice were highly 371 
variable in their muscle patterning for the same kinematic 372 
profile (and some muscle patterns may be inefficient, more 373 
consistent with early learning or motor exploration, which 374 
would not be predicted as accurately by optimal control 375 
approaches). In Fig. 3C, we show that the mean model EMG 376 
predictions outperform the shuffled experimental EMG data 377 
(i.e., having the same distribution as the ground truth EMG; 378 
two-sided t-test, biceps p = 2.2e-6, triceps long head p = 1.4e-379 
6, triceps lateral head p =4.8e-4.; P-values were Holm-380 
Bonferroni corrected for multiple comparisons, N = 60 shuffled 381 
trials and 6 synthesized means).  382 
 383 
Mouse motor learning and optimal control  384 
The progression of reach kinematics and muscle patterning in 385 
mice learning a novel task is a relatively understudied 386 
phenomenon. We investigated the possibility that mice 387 
approach an optimal motor control solution during the 388 
progression of training by evaluating optimal control 389 
predictions during early and late sessions of training. In Fig. 3, 390 
we compared the optimal control predictions with reaches 391 
selected from expert mice (i.e., after at least 5 sessions of 392 
successful reaching). In Fig. 4, we compared how the optimal 393 
control predictions varied when the reaches were chosen in the 394 
early (i.e., in the first 3 sessions after the first successful reach 395 
to pellet) or late stages of learning. We found that mice tended 396 
to use muscle excitation patterns that converged more closely 397 
to those derived from optimal control in the later stages of 398 
learning. These results were significant when pooling the data 399 
across all recorded EMG channels but not on individual 400 
channels, likely because of our small sample size (early N = 4, 401 
late N = 6 for means comparisons, early N = 40, late N = 60 for 402 
trial-to-trial comparisons shown in Fig. 4. Comparison of trial-403 
to-trial data was compared with a two-sided t-test with a p-404 
value of 3.5e-6).    405 

 
Figure 4.  A comparison of the utility of 
the simulated muscle excitations in 
predicting trial-to-trial 
electromyography (EMG) during early or 
late training sessions (i.e. the first three 
sessions after the first successful 
reaches being early and sessions later 
than four sessions after the initial 
successful reach being late.) Late 
reaches, on bulk, have a significantly 
lower mean absolute error than early 
sessions (two-sided t-test, p = 3.5e-6, 
early N = 40, late N = 60) for predicting 
trial-to-trial EMG activity. Black box 
plots denote median (red horizonal bar), 
25 to 75th percentile distributions (black 
box), and 10th to 90th percentile 
distributions (short horizontal black 
lines and stems). 
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DISCUSSION 406 
Mouse models are widely used to study the neural control of movement, motor disorders, muscle 407 
physiology and develop novel brain-computer interfaces and neurotechnologies. Despite the widespread 408 
use of mice in the health sciences, the only available biomechanical model of the mouse forelimb is based 409 
on educated guesses, which could lead to inaccurate kinematics and muscle activity predictions. We used 410 
high-detail anatomical reconstruction from large scale light sheet microscopy scans to develop the first 411 
physiological biomechanical model of the mouse forelimb in terms of musculoskeletal geometry and 412 
muscle architecture (Mathewson et al., 2012). Dissections to determine the musculoskeletal geometry 413 
would have been too challenging because of the small size of the mouse forelimb, especially in determining 414 
the attachment points of the minuscule tendons of the elbow. Other imaging techniques such as microCT 415 
would have likely also been adequate to produce sufficient soft tissue contrast for the reconstruction 416 
(Charles et al., 2016). We then used this biomechanical model with optimal control for usage in optimal 417 
control-based simulations to synthesize muscle coordination patterns that produce reaching movements that 418 
match experimental kinematics. Accurately predicting muscle activity is very challenging because of the 419 
infinite possible coordination patterns consistent with the tracked experimental kinematics and the high 420 
physiological variance in the patterns observed in real mice (i.e., for very similar kinematics, mice often 421 
use very different muscle activation strategies, some of which may be energetically costly, have high or low 422 
co-contraction, be robust to disturbances, etc.). Our optimal control cost function only has terms to 423 
encourage low energy (via the sum of muscle activations squared proxy) and producing kinematics 424 
consistent with experimental data. Therefore, we would not expect the optimal control predictions to closely 425 
match the experimental muscle activity on a reach-by-reach basis because of the high variability in the 426 
experimental muscle patterning data. Nevertheless, we found that the mean optimal control muscle activity 427 
predictions have strong resemblance with the mean empirical muscle activity (Fig. 3A). These results held 428 
for all three recorded muscles with EMG (biceps, triceps long head and triceps lateral head). As far as we 429 
know, this is the first work in any species, including humans, showing resemblance between synthesized 430 
and experimental muscle activity for three-dimensional reaching movements with a biomechanical model.  431 

Neuroscience experiments are sometimes limited in scope by the difficulty of simultaneous 432 
recording of behavior, neurological signals, and, in some cases, muscle activity. Multisite muscle 433 
recordings are often limited to a handful of accessible sites, and this limitation is exacerbated in mice, where 434 
access to and implantation of many muscles is often infeasible. This model is meant to supplement 435 
experiments where knowledge of muscle activity patterning could bring insight about the nature of neural 436 
activity patterning. Scientists with behavioral data can extract an estimate of whole-forelimb muscle activity 437 
from the model given a set of kinematics over time. Tracking of mouse kinematics has become broadly 438 
accessible through the advent of pose-based tracking software like DeepLabCut, which was used in the 439 
present study to monitor limb position during reaching behaviors (Mathis et al., 2018). The conjunction of 440 
tracking and synthesis of full-limb muscle activations promises to expand research into behavioral control 441 
significantly.  442 
 There are several extensions to our biomechanical model and computational tools possible for 443 
future work. Our computational tools assume that no EMG is available during the experiments. If EMG is 444 
collected during the experiment, the optimal control problem can be solved to predict the muscle activity 445 
of muscles without EMG recordings while matching experimental EMG and kinematics data in tracking 446 
simulations (Dembia et al., 2021). It is also possible to change the cost function in the optimal control 447 
problem and produce predictive simulations that do not require any experimental data, including 448 
kinematics. The optimal control problem could then predict the reaching kinematics and muscle activity 449 
when there is a change in the task (e.g., a new pellet location) or to limb biomechanics (e.g., a weight placed 450 
on the forelimb). This study is focused on the ballistic phase of reaching movements. We did not model the 451 
grasping phase during the reach as we would have needed to include the muscles that control the wrist and 452 
fingers in the model and simulate interaction with the pellet. One discrepancy between our simulation and 453 
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the empirical reach is that mice, before starting their reach, were resting on a bar, which we did not simulate 454 
(and may impact the predicted muscle activity at the start of the ballistic phase).  455 

Our simulations were evaluated with head-fixed mouse reaching. Using the biomechanical model 456 
in free-reaching mice may be less accurate because it has more significant scapula movements, which we 457 
assume to stay fixed in our model. In future work, researchers could either add a degree-of-freedom and a 458 
joint motor to allow translational movement of the scapula or incorporate the muscles that control the 459 
scapula as a free body in the biomechanical model (our scans available in supplementary materials should 460 
help delineate these muscles). The optimal control solutions produce open-loop muscle coordination 461 
patterns that are not responsive to noise or changing task or environmental constraints. It is however 462 
possible to develop closed-loop controllers to track the optimized trajectory or to develop feedback 463 
controllers with reinforcement learning, or introduce stochastic noise representing imprecise neural controls 464 
(e.g., Van Wouwe et al., 2022).  465 
 We make our computational tools freely available as open-source. Users of our computational tools 466 
should note that the optimal control predictions are expected to more closely resemble empirical muscle 467 
activity on a mean-basis rather than on a trial-by-trial basis and carry the assumption of closely matched 468 
kinematics. Furthermore, the predictions are expected to improve when mice have learned to perform the 469 
task well as opposed to when mice are still in the early stages of learning; nevertheless, the model 470 
predictions in the early stages of learning are still within one standard deviation of empirical results and 471 
represent a significant improvement over randomized guesses from the naturalistic EMG distribution. An 472 
exciting use case for our biomechanical model is to control it with artificial neural networks and relate the 473 
activity in these networks with empirical neural activity from system neuroscience laboratories (Aldarondo 474 
et al., 2024). Combining our computational tools and experimental data could lay the foundations for future 475 
studies elucidating the principles that drive the control of movement. 476 
 477 

  478 
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Table 1. Muscle origins and insertions. 618 
Muscle Name Origin 

Parent-

Body 

Origin Coordinates (m) Insertion 

Parent-

Body 

Insertion Coordinates (m) 

Anconeus Humerus [5.2e-3, 5e-4, 1.07e-2] Ulna [2.4e-3, -2e-4, 8.8e-3] 

Anconeus, Short 

Head 

Humerus [3.6e-3, -9e-4, 9.1e-3] Ulna [3.8e-3, -6e-4, 8.3e-3] 

Biceps, Long Head Scapula [8.5-3, 2.3e-2,1.2e-2] Ulna [2.1e-3, 4.9e-5, 8.8e-3] 

Biceps, Short Head Humerus [9.1e-3, 1.5e-3,1.2e-2] Ulna [2.1e-3, 9.8e-5, 8.8e-3] 

Brachialis, Proximal 

Head 

Humerus [2.3e-3, 5.9e-5, 8.8e-3] Ulna [2.2-3, 5.9e-5, 8.8e-3] 

Brachialis, Distal 

Head 

Humerus [8.2e-3, 1.4e-3, 1.2e-2] Ulna [2.2-3, 5.9e-5, 8.8e-3] 

Brachioradialis Humerus [4e-3, 6.5e-4, 9.1e-3] Radius [-3e-3, 1.3e-3, 1.2e-2] 

Deltoid, Medial Clavicle [9.3e-3. 5e-4, 1.3e-2] Humerus [5.5e-3, 1.2e-3, 1.2e-2] 

Deltoid, Posterior Scapula [8.7e-3, 1.2e-3, 1.2e-2] Humerus [5.9e-3, 1.5e-3, 1.1e-2] 

Flexorcarpiradialis Humerus [3.4e-3, -9.3e-4, 9.2e-3] Hand [-4e-3, 1.6e-3, 1.2e-2] 

Infraspinatus Scapula [1.1e-2, 1.3e-3, 1.2e-2] Humerus [8.3e-3, 1.6e-3, 1.2e-2] 

Latissimus Dorsi, 

Caudal 

Spine* [1.8e-2, -3e-3, 1e-2] Humerus [5.5e-3, 1.7e-3, 1.1e-2] 

Latissimus Dorsi, 

Rostral 

Spine* [1.5e-2, -7.1e-4, 1.3e-2] Humerus [5.9e-3, 1.5e-3, 1.1e-2] 

Pectoralis Major, 

Anterior 

Rib-cage* [9.1e-3, -1.6e-3, 1.7e-2] Humerus [5.3e-3, 1.4e-3, 1.2e-2] 

Pectoralis Major, 

Posterior 

Rib-cage* [1e-2, -3.1e-3, 1.5e-2] Humerus [5.5e-3, 1e-3, 1.2e-2] 

Pectoralis Minor, 

Clavicular 

Clavicle [1.1e-2, -9.6e-4, 1.3e-2] Humerus [5.6e-3, 1.2e-3, 1.2e-2] 

Pronator Teres Humerus [3.6e-3, -6.7e-4, 9.3e-3] Radius [8.8e-4, 1.2e-3, 1e-2] 

Subscapularis Scapula [1.3e-2, 4e-4, 1.3e-2] Humerus [8.2e-3, 6.2e-4, 1.2e-2] 

Triceps, Long Head Scapula [9.8e-3, 1.2e-3, 1.2e-2] Ulna [4.2e-3, -5.7e-4, 8e-3] 

Triceps, Lateral Head Humerus [8.4e-3, 1.6e-3, 1.2e-2] Ulna [4.1-3, -4.5e-4, 8.3e-3] 

Triceps, Medial Head Humerus [6.5e-3, 2.5e-4, 1.1e-2] Ulna [3.8e-3, -2.3e-4, 8.4e-3] 

* Spinal and rib attachments made to Scapula fixed ground object.  619 
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Table 2. Muscle Parameters 620 
Muscle Name Max Isometric 

Force (N) 

Optimal Fiber 

Length (m) 

Pennation 

Angle (rad) 

Tendon Slack 

Length (m) 

Anconeus 0.023 0.003 0.1 0.0002 

Anconeus, Short 

Head 

0.02 0.0015 0.1 0.00015 

Biceps, Long Head 0.093 0.0085 0.1 0.0002 

Biceps, Short Head 0.018 0.005 0.1 0.0005 

Brachialis, Proximal 

Head 

0.066 0.007 0.1 0.0001 

Brachialis, Distal 

Head 

0.067 0.007 0.1 0.0001 

 

Brachioradialis 0.02 0.007 0.1 0.0001 

Deltoid, Medial 0.069 0.006 0.2 0.0002 

Deltoid, Posterior 0.068 0.0035 0.2 0.0001 

Flexorcarpiradialis 0.02 0.007 0.1 0.0001 

Infraspinatus 0.065 0.003 0.2 0.0001 

Latissimus Dorsi, 

Caudal 

0.133 0.011 0.36 0.0005 

Latissimus Dorsi, 

Rostral 

0.1133 0.011 0.36 0.0005 

 

Pectoralis Major, 

Anterior 

0.233 0.008 0.3 0.0002 

Pectoralis Major, 

Posterior 

0.170 0.007 0.3 0.0005 

Pectoralis Minor, 

Clavicular 

0.033 0.0056 0.25 0.0002 

Pronator Teres 0.02 0.003 0.1 

 

0.0001 

Subscapularis 0.34 0.005 0.2 0.0001 

Triceps, Long Head 0.612 0.008 0.3 0.0007 

Triceps, Lateral 

Head 

0.125 0.007 0.17 0.0001 

Triceps, Medial 

Head 

0.16 0.004 0.2 0.0001 
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