@,

BiolVled Central

BNMVIC Systems Biology

Methodology article

Exploiting the pathway structure of metabolism to reveal
high-order epistasis

Marcin Imielinski*!2 and Calin Belta3

Address: 'Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, USA, 2MD/PhD Program, University of Pennsylvania
School of Medicine, Philadelphia, USA and 3Bioinformatics Graduate Program, Boston University, Brookline, USA

Email: Marcin Imielinski* - imielinski@chop.edu; Calin Belta - cbelta@bu.edu
* Corresponding author

Received: 5 December 2007
Accepted: 30 April 2008

Published: 30 April 2008
BMC Systems Biology 2008, 2:40  doi:10.1186/1752-0509-2-40
This article is available from: http://www.biomedcentral.com/1752-0509/2/40

© 2008 Imielinski and Belta; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Biological robustness results from redundant pathways that achieve an essential
objective, e.g. the production of biomass. As a consequence, the biological roles of many genes can
only be revealed through multiple knockouts that identify a set of genes as essential for a given
function. The identification of such "epistatic" essential relationships between network components
is critical for the understanding and eventual manipulation of robust systems-level phenotypes.

Results: We introduce and apply a network-based approach for genome-scale metabolic knockout
design. We apply this method to uncover over | 1,000 minimal knockouts for biomass production
in an in silico genome-scale model of E. coli. A large majority of these "essential sets" contain 5 or
more reactions, and thus represent complex epistatic relationships between components of the E.
coli metabolic network.

Conclusion: The complex minimal biomass knockouts discovered with our approach illuminate
robust essential systems-level roles for reactions in the E. coli metabolic network. Unlike previous
approaches, our method yields results regarding high-order epistatic relationships and is applicable
at the genome-scale.

Background

The complexity of biological systems arises from the
highly parallel and epistatic relationships between their
components. Determination of the systems level role of
biological components has been classically approached
through the study and characterization of knockout phe-
notypes. However, the robustness of biological systems
obscures the role of most individual components, which
are redundant and seemingly "dispensible". The role of
such robust modules can only be revealed through multi-
ple knockout of complex essential sets [1,2].

This property of complex biological systems is particularly
true for small-molecule metabolism, which is governed by
an intricate and highly robust network of biochemical
reactions that leaves most single knockouts without a dis-
cernible in vivo or in silico phenotype. A recent study by
Deutscher et al. employs in silico multiple knockout anal-
ysis to reveal novel essential roles for reactions in the yeast
metabolic network [1]. These results indicate the presence
of "deep" epistatic relationships between large sets of net-
work components that manifest only with multiple
knockouts. They suggest that systematic probing of such
complex "essential reaction sets" can establish novel links
between reactions and systems level functions.
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Interest in epistasis between biological network compo-
nents is motivated by practical considerations. Firstly, the
emergence of microbial resistance motivates the search for
new antibiotics. Systems biology can inform this search
through "rational" identification of multivalent pharma-
ceutical targets via a functional analysis of biological net-
work robustness. Secondly, higher order interactions
detected in in silico network models can help suggest "epi-
static" candidate gene combinations for genomic associa-
tion studies linking genotype to phenotype (e.g. human
disease). Derivation of such interactions from a functional
network model is one important way systems biology
could impact applied genomics.

Current approaches to in silico analysis of essentiality and
epistasis in metabolism employ flux balance analysis
(FBA), a linear programming (LP) based approach that
optimizes biomass production subject to a given combi-
nation of capacity constraints on reactions [3]. Applying a
"brute force LP" approach, one can exhaustively test all
combinations of single, double, triple etc. in silico
mutants. This approach, though applicable to analysis of
low-order (< 4) knockout combinations, is untenable for
higher-order mutant combinations [1]. For example, a
network of 1000 reactions would require over 104 linear
programs to exhaustively test all possible quintuple-
knockout combinations.

A more "elegant" approach for probing essentiality in
metabolic networks is the minimal cut set (MCS) algo-
rithm of Klamt and Gilles [4]. This algorithm employs the
elementary modes (EM) of a metabolic network to
uncover minimal cut sets, or minimal sets of reactions
whose knockout disables a particular objective reaction.
Underlying the MCS algorithm is the principle that a min-
imal cut set R for an objective reaction j is a minimal set
of reactions that intersects all j-containing EM [5]. As a
result, MCS can be enumerated for a network through the
simple identification of "minimal hitting sets" for j-con-
taining EM [6]. The main limitation of the MCS algorithm
is the intractability of EM calculation for large networks
(i.e. larger than 300 reactions) given current computing
resources and algorithms. This limitation renders the
Klamt and Gilles method inapplicable to genome-scale
models.

In this paper, we demonstrate a scalable approach for
uncovering high-order epistatic relationships between
components of large metabolic networks. Our method is
based on the analysis of pathway fragments, which arise as
the extreme pathways of a submatrix of the stoichiometry
matrix formed by taking a subset of its rows. Alternatively
stated, pathway fragments are flux configurations that
place only a subset of species in the system at steady state.
Pathway fragments naturally emerge in the intermediate
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steps of the tableau algorithm for elementary mode com-
putation [7], and are thus obtainable for a network of any
size. By employing properties of the feasible flux cone, we
show how knockouts, or cut sets, for an objective reaction
j can be constructed by enumerating minimal hitting sets
for j-containing pathway fragments. Though the resulting
cut sets are not guaranteed to be minimal, they can be
reduced to minimality via a second LP based step. As we
show, this method offers a practical and high-yield
approach for MCS computation and the study of epistasis
in genome-scale metabolic networks.

We demonstrate the applicability of this approach to a
genome scale metabolic model of E. coli, iJR904 [8]. We
use our method to calculate over 11,000 MCS for biomass
production. This greatly exceeds the yield of LP-based
brute force and random knockout approaches in identify-
ing such complex "essential sets". Our results represent
high order epistatic relationships between components of
E. coli metabolism and illuminate essential systems level
roles of reactions in highly redundant and robust E. coli
subnetworks.

Results and Discussion

Algorithm

Notation

R is the set of real numbers, R? is the set of all n - dimen-
sional vectors with real and positive components, and R™
xn is the set of all m x n matrices with real entries. Given
m, n € , we use the notation M = {1, ..., m} and N = {1, ...,
n}. For a set C, we use |C| to denote its cardinality. If A
Rm=nand U c M, then A;; denotes the submatrix of A con-

taining the rows with indices in the set U. Therefore, if x €
R, i e N, and U < N, then x; and x;; € RIUl denote its ith
component and the vector formed by taking components
with indices in set U, respectively. The inequality x > 0 is
interpreted componentwise, i.e., x;> 0, i = 1, ..., n. Each
vector x € R"induces a ray, r = {ax| @ > 0}. We denote the
set of nonzero indices of a ray r ¢ R"as NZ(r)  N. The
notation r! + r2, where r!, 12 are rays, refers to the usual
(Minkowski) set sum.

Minimal cut sets

A cut set for an objective metabolic function is a set of
reactions whose knockout abolishes that function [4].
Formally, a set of reactions C is a cut set for an objective
reaction j in metabolic network S if and only if v;> 0 is fea-
sible in the wild type (i.e. 3v € K|v;> 0) and

ve=0—-1;=0,VveK

where
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K={veRnS,=0,v>0}
is the feasible flux cone of S.

More generally, we call C — N a cut set for an objective
reaction set ] — N if the wild type is able to sustain flux
through every reaction in J and Equation 1 is satisfied for
at least one j e J. For example if J corresponds to the set of
biomass component sinks in the network, a cut set for J
will be a reaction set C whose knockout disables the pro-
ducibility [9] of at least one biomass component.

A cut set C is minimal if no proper subset of C is a cut set.
Minimal cut sets (MCS) represent "elementary failure
modes" of metabolic networks [5]. MCS also capture epi-
static relationships between network components that
have essential roles in robust systems-level functions. In
this paper, we refer to a reaction as "k-essential" (e.g. 1-
essential, 2-essential etc.) for a metabolic objective (e.g.
biomass production) if it belongs in a MCS of size k for
that function.

Brute force LP approaches (e.g. FBA) can be applied to
find MCS by exhaustively testing a collection of reaction
knockouts to determine which of these "cuts" the objec-
tive reaction j. To test whether a reaction set C is a cutset
for k, one employs an LP to determine the feasibility of v,

> 0 subject to v, = 0, v € K. MCS can also be identified as
"minimal hitting sets" of elementary modes [10]. In com-
binatorics, a hitting set of a collection of sets C , each taken
from a universe of items U, is a set H — U that intersects
every set in C . In this paper, we refer to aset H c N as a
hitting set for a collection of vectors E — R if H intersects
the nonzero components of r for every r € E. H is a mini-
mal hitting set for E if none of its subsets are hitting sets.

The results of Klamt and Gilles show that an MCS for an
objective reaction j is a minimal hitting set of the collec-
tion of all elementary modes that employ j [4,10]. This
network-based cut set criterion follows from the fact that
if one knocks out a set of reactions that disables all j-con-
taining elementary modes, then one will constrain the
flux through reaction j to 0 in all feasible fluxes. These
results directly extend to extreme pathways, which are
equivalent to the elementary modes of an irreversible
metabolic network [11]. Namely, an MCS for reaction j is
a minimal hitting set of all the j-containing extreme path-
ways. We choose the extreme pathway convention in this
paper because it tends to be a more compact representa-
tion of the pathway structure of metabolism [12].

Both the brute-force LP approach and the MCS algorithm
of Klamt and Gilles have deep limitations in discovering
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genome-scale MCS. The size of most genome-scale meta-
bolic networks (> 500 - 1000 reactions) renders brute-
force LP approaches practical only for finding low cardi-
nality MCS (k < 2), though high performance computing
and restriction of the search to a subset of model reactions
can extend this limit to k < 4 [1]. The MCS algorithm of
Klamt and Gilles is not applicable to the genome-scale
due to its dependence on elementary mode computation,
which is only feasible for small metabolic networks (i.e.
less than 300 reactions) [4,10,11,13].

In this paper we introduce NetKO, a three-step procedure
for generating genome scale MCS. In the first step, we use
the tableau algorithm to generate a collection of pathway
fragments for the metabolic network. In the second step,
we compute a collection of cut sets for each reaction j € J
through the analysis of pathway fragments. In the third
step, we use pairwise set comparisons and LP to generate
a collection of MCS for the objective reaction set J.

Extreme pathways

The feasible flux cone K of a metabolic network S is the set
sum of a finite and unique collection of extreme rays E(K),
called extreme pathways [14]. The standard tableau algo-
rithm for computing extreme pathways E(K) associated
with stoichiometry matrix S is an iterative procedure that
computes the extreme rays E(K?) for a series of polyhedral
cones Klc R, i € {0, ..., m} given by:

K'={v|Syv=0v20M,={l.i}}.

The algorithm is seeded with the initial cone K= R} . The
initial collection of generators E(K°) consists of rays
induced by the Euclidean basis vectors & € R". At each iter-
ation i € {1, .., m}, the generators E(K') are computed
from the analysis of rays in E(Ki-1) in three steps.

In the first step, each ray in E*! is tested to determine
whether it belongs to the hyperplane S;v = 0. Rays in E(K!
-1) that belong to this hyperplane are added to the collec-
tion E(KY). In the second step of iteration i, the algorithm
considers each ray pair in E(K' - 1) that lies on opposite
sides of the hyperplane S = 0. The intersection of the set
sum of each ray pair with Sy = 0 induces a new ray that
lies within the cone K'. Each such ray is added to the col-
lection E(KY).

The third and final step of each iteration i involves
removal of non-extreme rays from E(K?). This is imple-
mented by comparing the sparsity patterns of each ray
pair in E(K) and removing any ray r for which there exists
an r' such that NZ(r) « NZ(r). Following iteration m, the
tableau algorithm terminates, having computed the
extreme rays of polyhedral cone K = K™. However, given
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the computational complexity of the third step in each
iteration, the tableau algorithm fails to terminate (i.e.
reach iteration m) for most genome-scale metabolic net-
works.

Pathway fragments enable a "relaxed" cut set criterion

Each iteration i of the tableau algorithm produces a collec-
tion of rays E(K?) c R", which we refer to as pathway frag-
ments. Each pathway fragment in E(K') obeys the quasi
steady state assumption for the subset M; c M of species in

the system x = Sv, v > 0. Though a collection of pathway
fragments contains incomplete information about meta-
bolic network dynamics, we will show that it offers much
insight into its failure modes. We exploit this property in
our network-based genome-scale knockout design
approach. Each pathway fragment collection E(K!) con-
tains the extreme rays of the cone Kiin Equation 3.

Applying Klamt and Gilles' criterion to Equation 3, a min-
imal hitting set C for the j-containing rays in E(K?) is an
MCS for reaction j in the "relaxed" system S, v =0, v20.

This means that C is a minimal. set of reactions satisfying
the relation:

vc=0=v=0, Vv e K

Comparison of Equations 2 and 3 shows that the cone
Kigenerated by a pathway fragment collection E(K?) is an
overapproximation of the final feasible ux cone K (Figure 1).
Formally,

K c K.

As a result, any flux configuration that is infeasible in
Kiwill also be infeasible in K. Alternatively stated, if C sat-
isfies Equation 4 then it also satisfies Equation 1. Thus, C
is a cut set for j in the full system Sv =0, v > 0.

In this section, we have proven a "relaxed" version of
Klamt and Gilles' cut set criterion. Namely, we have
shown that a minimal hitting set for a collection of j-con-
taining pathway fragments is a cut set for j in a metabolic
network S. As a result, the problem of computing cut sets
for an objective reaction j can be reduced to the enumera-
tion of minimal hitting sets for the j-containing pathway
fragments. The latter can be achieved by iterating through
the j-containing pathway fragments via the procedure
MinHit (Table 3), described in the implementation sec-
tion. As we will show in the results, application of this
"relaxed" pathway-fragment based cut set criteria enables
network-based knockout design on the genome-scale.
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Pathway fragments enable a "relaxed" cut set crite-
rion. The feasible ux cone K of a metabolic network is con-
tained inside the cone Kigenerated by the pathway fragment
collection E(Ki) obtained from any iteration i of the tableau
algorithm. Because of this property, the knockout of a reac-
tion set R that intersects all j-containing pathway fragments in
E(K? will be guaranteed to "cut" the ux through an objective
reaction j.

Post-processing for non-minimal cut sets

Our "relaxed" cut set criterion is able to generate genuine
cut sets for the entire metabolic network S despite employ-
ing only a traversal across the subset M; of metabolites.
However, the incompleteness of this traversal makes our
criterion sufficient but not necessary for determining
whether a reaction set C constitutes a cut set for reaction j.
This results in two caveats regarding the "quality" of cut
sets obtained from the analysis of pathway fragments: 1)
not all cut sets are guaranteed to be found and 2) cut sets
that are found are not guaranteed to be minimal. To fully
reduce cut sets generated by MinHit to minimality, we
apply an LP based post-processing step Reduce (Table 4) to
1) checks minimality of cut sets and 2) (if necessary)
reduces them to their minimal subsets. We describe
Reduce in more detail in the Methods section.

There may be additional sources of non-minimality when
one pursues MCS for a set of objectives J (e.g. the set of
biomass sinks). In this case a cut set obtained for one reac-
tion j! € J may be a subset of a cut set obtained for a sec-
ond reaction j2 € J. Both may be MCS for their respective
objectives, however one (or both) may be non-minimal
with respect to the objective set J. For example, if J corre-
sponds to the set of biomass sinks in the network, an MCS
for L-isoleucine production may be built by adding reac-
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tions to an L-threonine MCS. Such non-MCS may be
immediately pruned through a pair-wise comparison of
cut sets generated by MinHit for the various individual
sinks in J, and removal of sets for which there exists a sub-
set.

Guiding the tableau algorithm to maximize pathway fragment quality
As may be intuitively expected, the quality of cut sets
obtained with our approach directly depends on the
"quality" of pathway fragments. At each iteration, the tab-
leau algorithm "learns" more about network constraints
imposed by the steady state requirement for each individ-
ual species. As a result, later iterations of the tableau algo-
rithm yield more informative pathway fragments. In other
words, pathway fragments gathered from an early itera-
tion of the algorithm are "naive" and will yield fewer cut
sets that are farther from being minimal. Conversely,
"mature" pathway fragments gathered from a later itera-
tion will yield larger numbers of cut sets that are closer to
being minimal.

A simple approach that we apply to maximize the itera-
tion i reached by the tableau algorithm is the "local
greedy" optimization strategy described by Bell and Pals-
son [15]. This strategy is applied after each iteration of the
tableau algorithm to choose the "cheapest" metabolite for
the following iteration. The cost of each metabolite is
computed as the number of pathway fragments at that
iteration that consume that metabolite multiplied by the
number of pathway fragments that produce that metabo-
lite. This metabolite ordering strategy can be conceptually
understood as a network traversal that begins with the
least connected metabolites (e.g. network dead ends) and
saves highly connected metabolites (e.g. ATP, water) for
later iterations. Though we exclusively use this strategy for
this study, we will mention several alternative metabolite
ordering approaches that may be used for network-based
genome-scale knockout design later in the discussion.

Network-based approach yields 11,706 complex essential
sets in E. coli

To test our approach, we examined failure modes for rich
media biomass production in the E. coli JR904 genome-
scale metabolic network model. In rich media, all extracel-
lular nutrients are made available, resulting in many
redundant pathways for biomass biosynthesis. This
redundancy makes biomass production very difficult to
suppress via single or double knockouts.

Our network based analysis approach found 11,706 MCS
for biomass production in rich media. These MCS target
36 of 49 biomass components and employ 355 of the
1324 possible non-sink reactions in the E. coli network. As
shown in Figure 2, most of these 11,706 essential sets
have high cardinality (> 5 reactions). The vast majority
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NetKO uncovers high-cardinality minimal cut sets.
Our network-based genome-scale knockout design approach
preferentially discovers high cardinality minimal cut sets for
biomass production: 11,218 of the 11,706 minimal cut sets
discovered are of cardinality 5 or above. These minimal cut
sets represent high-order epistasis between parallelized met-
abolic network components.

(11343) of the MCS carry out a precise "surgical strike" on
biomass production, targeting the synthesis of only a sin-
gle component. Biomass components most often targeted
by these MCS are L-threonine (10655 MCS), dTTP (297
MCS), 5-methyl-THF (216 MCS), FAD (197 MCS), and
dGTP (190 MCS). All 11,706 MCS and their biomass tar-
gets are included as Supplementary Data [see Additional
File 1.

Essential sets reveal epistasis between diverse E. coli subsystems
The original model annotation of E. coli iJR904 groups
reactions into 30 "subsystems" [8]. The MCS obtained
from network analysis span 23 of these 30 reaction sub-
systems in the E. coli metabolic network. Superimposition
of the MCS on the subsystem reaction classification yields
58 unique "subsystem signatures", which are shown in
Figure 3. Analyzing these signatures shows that only 289
of the MCS discovered with our approach target a single
subsystem, while the vast majority (10838) target three or
four subsystems. The most prevalent (7720 MCS) of these
multivalent subsystem signatures target the combination
of "Cell Envelope Biosynthesis", "Threonine and Lysine
Metabolism", "Alternate Carbon Metabolism", and
"Extracellular transport". MCS with such signatures clearly
represent complex interactions between functionally dis-
parate and parallel portions of the E. coli metabolic net-
work.

NetKO efficiently uncovers complex interactions in E. coli metabolic
network

To demonstrate the utility of NetKO, we benchmarked it
against two standard in silico metabolic knockout analysis
approaches: brute-force LP and random knockout. For
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Figure 3

MCS target multiple E. coli subsystems. Minimal cut sets (MCS) for biomass production target 23 of 30 E. coli reaction
subsystems. The most often targeted subsystems are "Cell Envelope Biosynthesis", "Threonine and Lysine Metabolism", "Alter-
nate Carbon Metabolism", and "Extracellular Transport". 7 subsystems are not targeted by any MCS, including 'Alanine and
aspartate metabolism', 'Anaplerotic reactions', 'Pyruvate metabolism', and 'Citrate Cycle (TCA)'. Subsystem annotations are
taken from the original E. coli {R904 model annotation [8]. For compactness, subsystems "Unassigned", "Putative", and "Puta-
tive Transporters” were not included in the subsystem signatures shown in the above figure.

brute-force LP, we tested all single and double knockouts.
In our random knockout approach, we sampled 250,000
random reaction sets of cardinality 10. For each such set,
we determined whether its knockout cut the production
of biomass and reduced it to minimality with respect to
biomass production (via Reduce).

Comparing the results (Table 1) we found that NetKO was

able to yield a larger number of MCS that targeted more
reactions in the network than either brute force or random

Table I: Benchmarking Results

knockout approaches. Table 1 shows that our network-
based genome-scale knockout design yielded over 50
times as many MCS as both brute-force and random KO
approaches. Furthermore, MCS obtained using our net-
work-based approach implicate a larger number of reac-
tions as k < 10-essential for biomass production for rich
media E. coli. Though we employ different cardinality lim-
its for the network based (k < 10) and brute force (k < 2)
approaches in this benchmark, we note that these results
reflect a similar order of magnitude of LP operations

Property Brute-force LP (k = 2) Random KO + Reduce (k = 10) NetKO (k = 10)
Number of MCS found 215 223 11,706
Highest Cardinality MCS Obtained 2 3 10
Reactions included in at least one MCS 263 235 355
Number of biomass components targeted 38 41 36
Number of linear programming steps 487,670 7,221,149 113,989

Comparison of our network-based genome-scale knockout design approach (NetKO) with two LP-based methods: The standard genome-scale
method for MCS computation for all single and double knockouts (Brute Force LP) and a random knockout approach combined with reduction to

minimality for 250,000 cardinality 10 reaction sets (Random KO + reduce).
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(115,243 vs 487,671), resulting in higher return for a sim-
ilar expenditure of computational resources. In compari-
son to the random approach, which also tests reaction sets
of cardinality 10, we note that NetKO employs two orders
of magnitude fewer linear programs than a random
knockout approach (113,989 vs 7,221,149) while yield-
ing many more high-order interactions.

Comparison of brute KO and NetKO results show that in
many ways the two approaches are complementary (Table
1). For example, NetKO is not guaranteed to find all cut
sets of a given cardinality: it misses 99 of the 215 MCS
found with brute-force LP. Furthermore, MCS obtained
using brute-force LP cover an alternate set of reactions and
biomass components than MCS discovered using NetKO.
This occurs because NetKO is biased towards finding high-
cardinality MCS. Though the number of reactions belong-
ing to Brute-force LP and NetKO derived MCS are the
same, we note that NetKO establishes k < 10-essential
roles for 184 E. coli reactions that have no 1- or 2- essential
role in biomass production. The differences in biomass
targets also reflect the fact that brute force LP is biased
towards biomass components targeted by low-cardinality
cut sets (e.g. LPS). Because of these differences, one can
use "brute force LP" results to determine general network
properties regarding the rate of interaction between genes
for a given degree of epistasis k [2], which cannot be
gleaned from the results of NetKO. Conversely, unlike
brute force LP, one can use NetKO to uncover very high-
order epistatic relationships for robust network functions.

Our random KO results demonstrate quite strikingly how
difficult it is to find high order MCS in the E. coli meta-
bolic network (Table 1). Though many (52%) of the
250,000 random reaction sets of size 10 cut biomass pro-
duction, all of these cut sets are built from a relatively
small number (223) of size 1 to 3 MCS. The rarity of high
cardinality MCS in these results is a testament to the effi-
cacy of NetKO in exploiting network structure for knock-
out design. Additionally, the difference between the size
of these cut sets and the size of MCS they contain shows
why it is so expensive (requiring over 7 million LP's) to
reduce these random high-cardinality cut sets to minimal-
ity. In contrast, cut sets generated through pathway frag-
ment analysis in NetKO are much closer to minimality,
requiring much fewer LP's in the Reduce computational
step.

Minimal cut sets targeting L-threonine reveal a robust 4| reaction
biosynthetic subnetwork

In E. coli iJR904, L-threonine production is invulnerable
to all single or double knockouts. However, NetKO dis-
covers 10655 MCS that target the production of this
amino acid: all but 10 of these L-threonine targeting MCS
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employ more than 5 reactions, and 9725 involve 8 or
more reactions.

Interestingly, these 10655 genome-scale MCS arise exclu-
sively from a 41 reaction subnetwork of E. coli, which is
depicted in Figure 4. Furthermore, only 7 of the reactions
in this subnetwork (ASAD, ASPK, DAPabc, HSDy,
METabc, 26dap-M and met-L nutrient fluxes) have 1- or 2-
essential roles in rich media biomass production; how-
ever, low cardinality MCS containing these reactions tar-
get peptidoglycan and L-methionine rather than L-
threonine production. Our MCS results thus rigorously
establish novel systems-level roles for all 41 of these reac-
tions. These results link the systems-level process of L-
threonine production in E. coli to the functioning of a
highly parallelized biosynthetic subnetwork. Epistasis
between components of this subnetwork only become
apparent through the analysis of high-order knockouts.
The L-threonine subnetwork shown in Figure 4 is com-
posed of reactions from the 'Alternate Carbon Metabo-
lism', 'Cell Envelope Biosynthesis', 'Putative Transporters’,
'Threonine and Lysine Metabolism', and "Transport, Extra-
cellular' subsystems. Though it is responsible for a large
number of MCS, this subnetwork can be easily under-
stood as the convergence of several pathways linking
extracellular carbon sources, cell membrane components,
amino acids, and other intracellular species to L-threo-
nine. As we show below, analysis of these pathways yields
biochemically intuitive rationale for why these reaction
subsets emerge as biomass MCS.

The simplest of the 10655 L-threonine targeting MCS dis-
covered using our approach consist of reactions immedi-
ately upstream of L-threonine in this subnetwork. As
shown in Figure 4, the most direct sources of L-threonine
in the intracellular environment are three transport reac-
tions that couple the influx of L-threonine to the import
of sodium (THRt4), the import of proton (THRt2r), and
the hydrolysis of ATP (THRabc). L-threonine is also syn-
thesized from L-aspartate via a pathway that employs L-
homoserine as an intermediate. The third major source of
L-threonine is via the threonine aldolase reaction
(THRAr), whose substrates are acetaldehyde and glycine.

The most intuitive of these MCS consists of the three L-
threonine transporters (THRt4, THRt2r, THRabc) in com-
bination with threonine synthetase (THRS) and threonine
aldolase (THRAr). Variants of this MCS replace THRS with
aspartate-semialdehyde dehydrogenase (ASAD), homo-
serine kinase (HSK), homoserine kinase (HSK), or aspar-
tate kinase (ASPK). A second set of variants replaces the
three L-threonine transporters with the L-threonine nutri-
ent flux. 5 MCS apply an interesting variation upon this
theme by replacing the sodium dependent THRabc trans-
porter with either the sodium nutrient flux or inhibition
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Figure 4

MCS uncover robust L-threonine biosynthesis subnetwork. 10,655 minimal cut sets discovered using our approach
target L-threonine synthesis via this 4| reaction subnetwork of E. coli metabolism. None of these reactions are |- or 2-essential
for L-threonine production, though 7 participate in size | or 2 MCS for peptidoglycan and L-methionine production. Though
many of these cut sets are complex (i.e. involve 7 or more reactions) they can be intuitively understood as simultaneous
attacks on a few distinct pathways that converge on L-threonine (thr-L) synthesis. For ease of presentation, we omit water and
proton in the reaction depictions. Please refer to Table 2 for explanation of metabolite and reaction abbreviations. Please refer

to the text for further discussion.

of the three sodium proton antiporters (NAt3_2,
NAt3_1.5, NAt3_1). Because of their minimality, the
knockout of any subset of these MCS will allow L-threo-
nine production to be maintained in this silico strain. For
example, knockout of L-threonine transport and threo-
nine-aldolase will allow L-threonine to be produced from
L-aspartate via the pathway shown in the bottom left of
Figure 4. Alternatively stated, the minimality of these cut
sets attests to the fact that the wild type in silico can

employ any one of these parallel pathways for L-threonine
biosynthesis.

A large number of MCS discovered using our approach
target L-threonine biosynthesis by disabling pathways
upstream of acetaldehyde. As shown in Figure 4, acetalde-
hyde is directly brought into the cell from the nutrient
media via a transport reaction. Acetaldehyde is also sup-
plied by the breakdown of phosphatidylethanolamine
and phosphatidylglycerol, which are cell membrane com-
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Table 2: List of Abbreviations
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Abbreviation  Full Name

Abbreviation  Full Name

2drlp 2-Deoxy-D-ribose |-phosphate

2dr5p 2-Deoxy-D-ribose 5-phosphate

3HCINNMH  3-hydroxycinnamate hydroxylase

3HPPPNH 3-(3-hydroxy-phenyl)propionate hydroxylase
3hcinnm 3-hydroxycinnamic acid

3hcinnm [e]  3-hydroxycinnamic acid (Extracellular)

3hpppn 3-(3-hydroxy-phenyl)propionate

3hpppn [€] 3-(3-hydroxy-phenyl)propionate (Extracellular)
4h2opntn 4-Hydroxy-2-oxopentanoate

4pasp 4-Phospho-L-aspartate

ACALDt acetaldehyde reversible transport

ASAD aspartate-semialdehyde dehydrogenase

ASPK aspartate kinase

DHCINDO  2,3-dihydroxycinnamate |,2-dioxygenase
DHPPD 2,3-dihydroxyphenylpropionate dehydrogenase
DRPA deoxyribose-phosphate aldolase

ETHAAL Ethanolamine ammonia-lyase

GPDDA2 Glycerophosphodiester phosphodiesterase
HCINNMt2r  3-hydroxycinnamic acid transport

HKNDDH 2-hydroxy-6-ketonona-2,4-dienedioic acid hydrolase
HKNTDH 2-hydroxy-6-ketononotrienedioate hydrolase
HOPNTAL  4-hydroxy-2-oxopentanoate aldolase
HPPPNDO  2,3-dihydroxypheylpropionate |,2-dioxygenase
HPPPNt2r 3-(3-hydroxyphenyl)propionate transport
HSDy homoserine dehydrogenase (NADPH)

HSK homoserine kinase

LPLIPA2 Lysophospholipase L (acyl-glycerophosphoethanolamine)
LPLIPA4 Lysophospholipase L (acyl transfer to phosphatidylglycerol)
NAt3_|I sodium proton antiporter (H:NA is |:1)
NAt3_I.5 sodium proton antiporter (H:NA is 1.5)
NAt3_2 sodium proton antiporter (H:NA is 2)

O2t o2 transport (diffusion)

OP4ENH 2-oxopent-4-enoate hydratase

PLIPA2 Phosphlipase A (phosphatidylethanolamine)
PPM2 phosphopentomutase 2 (deoxyribose)
PPPNDO Phenylpropanoate Dioxygenase

PPPNt2r 3-phenylpropionate transport

THRAr Threonine Aldolase

THRS threonine synthase

THRabc L-threonine transport via ABC system
THRe2r L-threonine reversible transport via proton symport
THRt4 L-threonine via sodium symport

acald Acetaldehyde

acald [e] Acetaldehyde (Extracellular)

adp ADP

agpe_EC acyl-glycerophospoethanolamine (E. coli) **
apg EC acyl phosphatidylglycerol (E. coli) **

asp-L L-Aspartate

aspsa L-Aspartate 4-semialdehyde

atp ATP

cechddd cis-3-(3-carboxyethyl)-3,5-cyclohexadiene- 1,2-diol
dhcinnm 2,3-dihydroxicinnamic acid

dhpppn 3-(2,3-Dihydroxyphenyl)propanoate

etha Ethanolamine

fum Fumarate

g3p Glyceraldehyde 3-phosphate

g3pe sn-Glycero-3-phosphoethanolamine

gly Glycine

glyc3p Glycerol 3-phosphate

h H+

h2o H20

h [e] H+ (Extracellular)

hdca Hexadecanoate (n-C16:0)

hdcea hexadecenoate (n-C16:1)

hkndd 2-Hydroxy-6-oxonona-2,4-diene-|,9-dioate
hkntd 2-hydroxy-6-ketononatrienedioate

hom-L L-Homoserine

nal Sodium

nal [e] Sodium (Extracellular)

nad Nicotinamide adenine dinucleotide

nadh Nicotinamide adenine dinucleotide — reduced
nadp Nicotinamide adenine dinucleotide phosphate
nadph Nicotinamide adenine dinucleotide phosphate — reduced
nh4 ammonium

02 02

o2 [e] O2 (Extracellular)

ocdcea octadecenoate (n-C18:1)

op4en 2-Oxopent-4-enoate

pe_EC Phosphatidylethanolamine (Ecoli) **
pg EC Phospatidylglycerol (Ecoli) **

phom O-Phospho-L-homoserine

pi Phosphate

PPPN Phenylpropanoate

pppn [€] Phenylpropanoate (Extracellular)
pyr Pyruvate

succ Succinate

thr-L L-Threonine

thr-L [e] L-Threonine (Extracellular)
ttdca tetradecanoate (n-C14:0)

ttdcea tetradecenoate (n-Cl4:1)

List of metabolites, reactions, and their abbreviations.

ponents. Acetaldehyde is also formed from extracellular
phenylpropanoate, 3-(3-hydroxy-phenyl)propionate, and
3-hydroxycinnamic acid, which are substrates for the syn-
thesis of intracellular 2-Oxopent-4-enoate. The latter is
transformed into acetaldehyde via 2-oxopent-4-enoate
hydratase (OP4ENH) and 4-hydroxy-2-oxopentanoate
aldolase (HOPNTAL), producing pyruvate as a byproduct.
Another source of acetaldehyde is via the breakdown of
deoxyribose sugars via the reactions deoxyribose phos-
phate aldolase (DRPA) and phosphopentomutase 2

(PPM2). The more complex L-threonine targeting MCS
replace the THRAT reaction in the simple MCS described
above with a combination of the reactions responsible for
acetaldehyde biosynthesis. One such combination is
DRPA, HOPNTAL, ACALDt, and ethanolamine ammo-
nia-lyase (ETHAAL). A variation of this MCS interchanges
ETHAAL in the latter combination with Phospholipase A2
(PLIPA2). Another combination replaces HOPNTAL with
the combination of phenylpropanoate, 3-(3-hydroxy-
phenyl)propionate, and 3-hydroxycinnamic acid trans-
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porters. 160 MCS target L-threonine production through
a unique mechanism that involves the repression of the
oxygen nutrient flux. Like the MCS discussed in the previ-
ous paragraph, these sets include reactions that involve
acetaldehyde formation from cell membrane phospholip-
ids, ribose sugar breakdown, and acetaldehyde transport.
However unlike the previously described sets, these MCS
exploit the oxygen-dependence of the pathways facilitat-
ing acetaldehyde production from extracellular phenyl-
propanoate, 3-(3-hydroxy-phenyl)propionate, and 3-
hydroxycinnamic acid. As shown in Figure 4, the reactions
3-(3-hydroxy-phenyl)propionate hydroxylase
(3HPPPNH), Phenylpropanoate Dioxygenase (PPP-
NDO), 3-hydroxycinnamate hydroxylase (3HCINNMH),
2,3-dihydroxycinnamate 1,2-dioxygenase (DHCINDO),
and 2,3-dihydroxyphenylpropionate 1,2-dioxygenase
(HPPPNDO) all depend on the presence of oxygen as a
substrate.

The L-threonine subnetwork described in this section
demonstrates a biologically intuitive pathway-like struc-
ture. The ease with this network can be understood testi-
fies to the ability of NetKO to unravel the link between
network components and systems-level functions. We fur-
ther note that unlike manual pathway annotations, this
subnetwork is derived purely through the analysis of flux
dynamics in the genome-scale metabolic model. As a
result, it serves as a rigorous and objective distillation of E.
coli iJR904's behavior with respect to a particular function,
i.e. L-threonine production.

Applications

Drug design

MCS for essential metabolic objectives (e.g. biomass) rep-
resent potential targets for drug development. Though the
model employed in this study represents a non-patho-
genic strain of E. coli, there are numerous genome-scale
metabolic reconstructions of pathogenic microbes in
which such an approach could be used to reveal drug tar-
gets. Such organisms include S. aureus, H. pylori, and B.
anthracis [16-19]. Furthermore, high-order MCS could be
applied to models of human metabolic networks to
define novel anti-proliferative chemotherapeutic regi-
mens [20].

Epistatic candidate gene models for genetic association

MCS correspond to subsets of genes whose perturbation
or knockout is predicted to effect a network-level pheno-
type. Such a gene subset provides a reasonable "epistatic”
candidate hypothesis for a genetic association study that
explore links between genotype and phenotype, e.g. for
human disease. Current approaches to whole genome
association studies employ a unsupervised approach that
test all possible loci for association with a phenotype.
Given the high dimensionality of genotypic (e.g. SNP)
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data, these studies are limited by computational resources
and statistical power to searching for binary gene-gene
interactions. A "systems-based candidate-gene" approach
based on NetKO could provide a powerful approach to
apply "a posteriori" biological knowledge to study the
role of epistasis in disease. Namely, one could employ
NetKO to generate hypothesis in the form of MCS on a
given pathway model and test such hypotheses against
genotype-phenotype data.

Elucidating systems-level roles of reactions in metabolism

MCS discovered using our approach cluster into subnet-
works that link individual reactions to their systems-level
roles. In contrast to the daunting complexity of the entire
metabolic network, these subnetworks have an intuitive
pathway structure that can be understood by simple
inspection. The close dual relationship between the fail-
ure and function of of metabolism has been previously
outlined by Klamt [5]. This dual relationship suggests that
these local pathways are likely "projections" of genome-
scale extreme pathways/elementary modes onto these
important reaction subsets. This hypothesis could be ver-
ified by applying the method of Urbanczik and Wagner to
compute generators for the projection of the flux cone K
onto these reaction subsets [21].

Many of our MCS reveal essential roles for reactions
whose function is normally obscured by metabolic net-
work redundancy. Deutscher et al. refer to this generalized
concept of essentiality as "k-robustness” in their investiga-
tions of multiple knockouts in yeast metabolism [1]. Each
complex MCS of cardinality k identified by our approach
is conceptually equivalent to Deutscher et al.'s "essential
set". High cardinality MCS represents an instance of a
higher-order genetic or biochemical interaction between
several reactions, enzymes, and genes that is mediated by
the metabolic network. Similar to the results of Deutscher
et al., we find that application of this generalized notion
of essentiality significantly increases the number of E. coli
reactions that can be thought of as participating in "essen-
tial processes" (as defined by biomass production).

The use of a genome-scale model to find essential links
between genes and systems-level processes exemplifies a
novel "network-based" approach to functional gene
annotation. Shlomi et al. show that such an approach may
be better equipped to capture functional features such as
condition-dependence when compared to traditional
structured vocabulary-based annotation schemes like
Gene Ontology [22]. NetKO provides a powerful tool for
this kind of annotation by helping uncover functional
links that are normally buried by redundant pathways.
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Iterative model building and refinement

Our approach can be applied in an iterative model build-
ing protocol that combines in vivo experiment and in silico
analysis.

One specific application of NetKO is the simple validation
of model completeness and accuracy on the genome-
scale. A more profound application is to unravel the sys-
tems-level roles of individual reactions, in particular those
participating in robust and redundant network functions.

Fundamentally, each MCS can be understood to suggest
several important in vivo model validation experiments.
The first corresponds to the knockout of that MCS and the
subsequent lethality prediction. If the in vivo knockout
fails to be lethal, then this suggests that either there is
additional redundancy in the pathway structure of the
network or the specific biomass target of that MCS is non-
essential for growth [9]. Once an MCS is verified as being
in vivo lethal, an interesting set of experiments can be per-
formed that test the contributions of individual reactions
to the function disabled by a given MCS. To do so, one
would design knockouts that disable all but one of the
reactions in that MCS. Such a perturbation would "pinch"
the network, allowing only extreme pathways that utilize
the remaining reaction in that MCS. As a result, the flux
through that reaction would be predicted to become a
simple linear multiple of the growth rate (determined
only by the steady state intracellular concentration of the
target biomass component and its fractional contribution
to biomass).

For example, the cysteine transporter (CYSabc), taurine
transporter (TAURabc), biotin synthase (BTS2), and the
sulfate transporter (SULabc) form an MCS for biomass by
targeting L-cysteine production. Knockout of CYSabc,
TAURabc, and BTS2 would be predicted by this network
model to force all fluxes destined for L-cysteine produc-
tion through the sulfate transporter (SULabc). According
to the model, the rate of uptake of sulfate in this triple
knockout will be in direct proportion to the flux through
the L-cysteine sink, which corresponds to the growth-
mediated dilution of L-cysteine and its consumption by
protein synthesis. Such a discrete "pinching" experiment
would determine whether the sulfate transporter is suffi-
cient to sustain L-cysteine production. Extension of such
an experimental paradigm to analyze further subsets of
complex MCS at intermediate levels of inhibition could
be used to quantitatively identify the "marginal" contribu-
tions of individual reactions/pathways to systems-level
functions.

Improving MCS yield
NetKO discovers valid genome-scale MCS using only par-
tial information regarding metabolic network dynamics.

http://www.biomedcentral.com/1752-0509/2/40

However, because it only employs partial information, it
is not guaranteed to find all MCS for a given objective. For
example, despite detecting many high-order interactions,
our approach fails to detect nearly half of the cardinality k
<2 MCS. Furthermore, the biomass targeting MCS that we
find utilize only 355 of the potential 1324 reactions in the
model. Though this may suggest that the remaining reac-
tions in the network participate only in highly redundant
(i.e. k > 10-robust) network functions, it is also likely that
our approach fails to find a significant number of k < 10
MCS.

As mentioned earlier in the paper, the yield of our method
depends directly on the "quality" of pathway fragments
generated from the application of the tableau algorithm
to the stoichiometric matrix. Specifically, the number of
reactions belonging to a biomass-targeting MCS identified
by our approach corresponds to the number of reactions
that share a pathway fragment with a biomass sink.
Improving the reaction "span" of these biomass-contain-
ing pathway fragments would increase the number of
reactions employed by biomass-targeting MCS as well as
the total yield of MCS.

One approach for improving the yield of MCS would be
to achieve additional incremental improvement in the
progress of the tableau algorithm. Each iteration of the
tableau algorithm processes the steady state requirements
of another metabolite in the network, and thus "learns"
more about the constraints imposed by network structure.
By applying more raw computational power in the form
of memory and processor speed, one could achieve sev-
eral more iterations that would link more reactions to the
collection of biomass-containing pathway fragments. In
addition, one could apply high performance computing
employing a parallel out-of-core approach to achieve
additional progress [23]. Though such approaches have
been investigated in the past with the goal of completing
the entire extreme pathway computation for a genome-
scale metabolic network, our approach offers an incentive
for performance-improving modifications that achieve
even incremental progress in the tableau algorithm.

A more finessed approach for improving MCS yield may
be to use an alternative metabolite "traversal" strategy for
the tableau algorithm. In our implementation, we use a
"local greedy optimization" strategy that chooses the
"cheapest" next metabolite using a generic evaluation of
each metabolite's "cost" [15]. Though this approach may
be optimal for achieving total progress in the algorithm
(i.e. with respect to iterations), it may not be the best
approach of generating MCS for a particular metabolic
objective. A simple approach to maximize the number of
cut sets is to ensure that the pathway fragment algorithm
traverses the substrates of the objective reaction of inter-
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est. In the case of the biomass reaction, it may not be com-
putationally feasible to generate a pathway fragment
collection that traverses all substrates simultaneously, but
one may compute cut sets for individual biomass compo-
nents through separate pathway fragment runs. More gen-
erally one would like to guide the tableau algorithm from
the out set to choose metabolites that expand the number
of reactions that share a pathway fragment with the objec-
tive reaction (e.g. a biomass component). One way of
achieving this is to look for "bridging" species at each iter-
ation that link a reaction that shares pathway fragments
with the objective reaction and a second reaction that
does not. We are currently investigating such approaches.

Alternative approaches

Our approach is not the first attempt at "rational"
genome-scale knockout design. Maranas and colleagues
have previously applied mixed integer linear program-
ming (MILP) to design mutants that improve byproduct
yield or identify "minimal reaction sets" that are capable
of sustaining a given biomass optimum [24,25]. These
applications of MILP approaches differ fundamentally
from the knockout design problem approached in this
paper. Unlike the computation of minimal reaction sets,
which corresponds to finding a maximal number of reac-
tion deletions that allow biomass production to be sus-
tained, the computation of MCS corresponds to finding a
minimal number of reaction deletions that cause biomass
production to be abolished.

Though a precedent does not exist, MCS discovery could
potentially be formulated as a MILP. Such a MILP would
employ as its objective the minimization of the number of
deleted reactions that abolish biomass production. Once
an MCS is found as the solution of the MILP, additional
MCS could be discovered through the execution of succes-
sive MILPs that incorporate additional constraints to pre-
vent the rediscovery of previous optima. Such an
approach is promising, however requires further investi-
gation to address at least two major concerns: Firstly,
MILPs are NP-complete, and thus scale poorly with the
dimension of the search space, i.e. the number of reac-
tions. Secondly, repeated addition of constraints to dis-
cover alternative optima may increase the "stiffness" of
successive MILPs as further MCS are sought. As a result, it
is a priori unclear that a MILP-based MCS algorithm would
be able to generate as many MCS as our network based
approach.

Conclusion

We have introduced and applied a network-based method
for genome-scale knockout design. Our approach identi-
fies high-order essential epistatic interactions that are nor-
mally obscured by metabolic network redundancy. These
interactions cluster along interesting and physiologically
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important subnetworks that allow systems-level roles of
individual reactions to be precisely and intuitively cap-
tured. Our method provides a plethora of predictions that
can readily translate into informative in vivo knockout
experiments in E. coli. These experiments could be used
for iterative model building and functional annotation of
genes. Future applications of our network based knockout
design approach includes analysis of the metabolic net-
works of pathogenic organisms and generation of epi-
static candidate models for genome-wide association
studies.

Methods

Tableau algorithm

We implement the tableau algorithm according to previ-
ously described implementations [7,15], adding a "path-
way fragment limit" that forces the algorithm to terminate
and output intermediate pathway fragment results E(K)
at the first iteration i that this limit is met. In our imple-
mentation, we also apply heuristic "local greedy" optimi-
zation strategy that dynamically rearranges the rows of S
at the end of each iteration with the goal of minimizing
computation at the next iteration [15]. Specifically, at
each iteration i, we rearrange rows i + 1, ..., m of S to min-
imize the number of ray pairs in E(K') that lie on opposite
sides of hyperplane S;,,v = 0.

Minimal hitting set algorithm

We compute the A of all minimal hitting sets of cardi-
nality k or less of a collection E of rays (i.e. pathway frag-
ments) using MinHit (Table 3), which is a modification of
the Berge algorithm [26]. In MinHit, a collection of mini-
mal hitting sets for the collection of rays E is built through
an iterative traversal through E. The initial collection con-
tains a single set: the empty set. At each iteration ¢, a new
collection is built by augmenting sets in the old collection
that fail to intersect the positive components in the cur-
rent ray. Each non-intersecting set is augmented by com-
bining it with an element corresponding to a single
positive component of the current ray. The latter is done
for positive component of the current ray and every non-
intersecting set in the old collection. After each set is aug-
mented in this manner, the new collection is scanned to
eliminate sets that are non-minimal (i.e. for which there
exists a subset in the collection). The resulting collection
can be easily shown to form a minimal hitting set collec-
tion for the rays 1...q in collection E that have already been
processed. Upon iterating through the entire collection E,
the output H is a minimal hitting set for E.

Additional arguments to MinHit are a cardinality limita-
tion k and a subset of indices of interest R to which mini-
mal hitting sets can be restricted. The cardinality
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Table 3:

H = MinHit(E, k, R)

: I/ Arguments:

I E={r!, ..., rlEl}, a collection of rays in Rn.
: I/ (e.g. j-containing pathway fragments)

1 /1 k, a cardinality cutoff (infinite by default).
/'R, a subset of N to which the search

: // for minimal hitting sets can be limited
/I (= N by default)

: I/ Output:

O 00 NONUT A WN —

2/l HH , a collection of minimal hitting sets for E
10: // (with cardinality k or less, limited to subsets of R)

In: H ={x}

12: for all r € Edo

13: 7—43mp ={

14: //Augment non-intersecting sets in H to
I5: //"hit" nonzero components of ray r of E

l6: forallH ¢ H do
17: //If the H does not intersect the nonzero
18:  //lcomponents of r, then augment H

19:  /fand add to H,,,,
20 if H N NZ(r) = @ then

21: for all i € R for which r;# 0 do
22: add H U {i} to (]_éemp

23: end for

24. else

25: add H to Hemp

26: end if

27: end for

28: //Populate %ew with minimal, non-duplicate, sets
29: /lffrom %emp that meet the cardinality threshold
300 H =§

31: forallH e H,,,do

322 ifHe H,,, and it | H < Hand |H| <k then

33: add H to %ew

34 end if
35: end for

36: H = H,,
37: end for
38: return H

limitation is implemented by discarding all sets with car-
dinality greater than k at each iteration. The subset limita-
tion is implemented by only considering elements in R at
each augmentation step.
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Reducing non-minimal cut sets

We apply an LP based procedure called Reduce (Table 4)
to reduce non-minimal cut sets (represented by collection
H ) for an objective reaction set J to minimality. For each
cut set Hin H , subsets of cardinality |H| - 1 are tested to
see if they are cut sets for J. If none is found, then this cut
set H is shown to be minimal. Otherwise, the newly found
cut sets are added to a cardinality-sorted collection ToDo
and later tested for minimality in the same way. When a
given subset of H is shown to be minimal or non-mini-
mal, all of its super-sets are removed from ToDo. The final
output of Reduce is an LP verified collection of MCS for the
objective set J.

Minimal cut set computation in E. coli ijlR904

We use the computational framework developed in this
paper to compute MCS for biomass production in the E.
coli iJR904 genome scale model [8], which has 761 metab-
olites involved in 931 reversible and irreversible chemical

Table 4:

MCS = Reduce( H ,}, S)

I: 1/ Argument:

2:// HH , a collection of cut sets for objective reaction
3://set/ < Ninsystem S € Rmx*n

4: // Output:

5: /I MCS, a collection of MCS for |

6:

7: MCS, Done = empty collection

8: for all sets H in collection /H do

9: ToDo = {H};

10: while ToDo is not empty do

Il: H =alowest cardinality set from ToDo
12: //Apply LP based test to all

13: //immediate subsets of H to determine

14:  /lwhich cut at least one flux in objective set |

15: 9D = collection of size | H | - | subsets of H that are also cut
sets for objective set | in S

l6: add H to collection Done
17: if D is empty then

18: add H to collection MCS
19: else if 9 contains one set then

20: add sole setin 9 to MCS and Done
21: else

22:  addsetsin D to ToDo

23: endif

24:  Remove from ToDo super sets of any set in collection Done
25: end while

26: end for

27: return MCS
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reactions. We convert each reversible reactions into two
irreversible reactions and supplement the network with
143 extracellular nutrient FLuxes, 5 intracellular nutrient
fluxes representing supply of cofactors and carrier proteins
from outside of small molecular metabolism, and 761
species sink fluxes for each species in the system. This
yields a stoichiometry matrix S (Equation 2) of dimension
761 x 2085.

Reactions in S represent the inflow, outflow, and inter-
conversion of small-molecule chemical species in an E.
coli cell grown in a rich nutrient media. Each species
"sink" reaction represents its growth mediated dilution
and macromolecular consumption. Of the 761 species, 49
correspond to "biomass components" that are considered
to be essential substrates for survival and growth in the
original Reed et al specification [8]. In this model, knock
out of biomass production (and thus growth and survival)
corresponds to "cutting" flux through at least one of the
sinks corresponding to an essential biomass component.

We then applied the batch procedure NetKO (Table 5) to
the E. coli stoichiometry matrix S compute MCS with car-
dinality limit & = 10 for the collection J of biomass sinks,
limited to subsets of non-sink reactions R — N. Briefly,
NetKO first applies the tableau algorithm to generate the
set E of pathway fragments using the "local greedy" opti-
mization strategy outlined by Bell and Palsson [15]. The
tableau algorithm terminates at an iteration at which the
number of pathway fragments exceeds the limit PFL. For
this implementation, we set PFL = 150,000 according to
what we found to be feasible given our current computing
resources. NetKO then calls MinHit for each biomass sink
j € J to generate cut sets of cardinality k from the collection
of j-containing pathway fragments EJ, limited to the subset
R. The procedure then removes non-minimal cut sets
from the collection H of pooled results through a pair-
wise set comparison and applies Reduce to generate the
final collection of MCS.

Application of the NetKO procedure E. coli IJR904 net-
work in rich media yielded 11,706 MCS for biomass pro-
duction. Analyzing the performance of individual steps in
NetKO: the tableau algorithm generated 164,093 pathway
fragments following execution of 708 of 761 iterations of
the tableau algorithm during about 2 hours of execution.
Application of the MinHit algorithm (Table 3) to this
pathway fragment collection yielded 71,230 cut sets of
cardinality k < 10 that disable flux through one or more of
the 49 biomass component sinks. This computational
step required just over 2 minutes to execute. Of the cut sets
produced by MinHit, 59,279 could be shown to be non-
minimal via pair wise comparison to other cut sets in the

http://www.biomedcentral.com/1752-0509/2/40

Table 5:

MCS = NetKO(S, J, k, R, PFL)

I: /I Arguments:

2: /1 S, stoichiometry matrix

3://] = N, a set of objective reactions

4: /I k, cardinality limit for MCS

5: /I R, reactions from which MCS should be chosen
6: // PFL, pathway fragment limit for tableau algorithm
7: /] Output:

8: /I MCS, a collection of MCS for |

9: E = tableau(s, PFL)

0o: H =

Il:forallj € ] do

12: B = subset of j-containing pathway fragments in E

13: H’ = MinHit(B, k, R);

14 H=H o H

15: end for

16: remove sets H ¢ H from FH for which there exists a subset in
H

I7: MCS = Reduce( H , ], S)
18: return MCS

collection. Application of the LP-based Reduce procedure
to the remaining 11951 cut sets yielded 11,706 MCS for
biomass production. Though very few cut sets in the input
to Reduce were non-minimal, this step was the most
expensive computationally, requiring 113,989 linear pro-
grams over about 12 hours of computation.

We also computed MCS using a brute-force LP knockout
analysis by determining the feasibility of flux through the
collection of biomass sinks J for each single and double
reaction knockout in the network. For the analysis of dou-
ble knockouts, we only considered reaction knockout
pairs that failed to disable biomass production as single
reaction knockouts. When performing brute-force LP
analysis, we treated knockout reaction pairs correspond-
ing to the same reversible reaction as single knockouts.

All algorithms were written and executed within the MAT-
LAB programming environment on a Pentium 2.0 GhZ
PC with 2 GB of RAM. We used the semidefinite program-
ming package SeDuMi for MATLAB to implement the lin-
ear flux feasibility analysis used in Reduce and the brute-
force LP approach [27]. In this flux feasibility analysis, we
evaluate whether a reaction set C is a cut set for objective
set ] by checking the feasibility of {v € K|vc= 0, v;# 0} for
each objective j e J through analysis of primal and dual
feasible points in a sequence of linear programs. In the
vast majority of knockouts (and all knockouts examined
in this study), this procedure determines the feasibility of
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fluxes in J through the execution of a single linear pro-
gram.
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