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1  | INTRODUC TION

Ischemic stroke is one of the most common neurological disorders 
and a major cause of disability and death with limited transitional 
success of mounting stroke researches, posing an economic and 
societal burden.1,2 Under normal condition, the brain is under con‐
tinuous immune surveillance and regulation. The neurovascular 
unit (NVU) regulates the homeostasis of brain microenvironment 
for normal neuronal activity. It is composed of neurons, glial cells 

(oligodendrocytes, microglia, and astrocytes) and vascular cells (en‐
dothelial cells, pericytes, and smooth muscle cells as well as the basal 
lamina matrix within brain vasculature).3,4 Compared to the concept 
of NVU, the notion of blood‐brain barrier (BBB), which traditionally 
includes endothelia cells (ECs), astrocytes, pericytes, and the basal 
lamina matrix, tight junction proteins within the vasculature is more 
straight forward and more intensively studied.5-12

BBB damage is a common pathological feature shared by stroke 
and a variety of neurological diseases.13-18 Notably, it is closely 
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Summary
The blood‐brain barrier (BBB) is a highly regulated interface that separates the pe‐
ripheral circulation and the brain. It plays a vital role in regulating the trafficking of 
solutes, fluid, and cells at the blood‐brain interface and maintaining the homeostasis 
of brain microenvironment for normal neuronal activity. Growing evidence has led to 
the realization that ischemic stroke elicits profound immune responses in the circula‐
tion and the activation of multiple subsets of immune cells, which in turn affect both 
the early disruption and the later repair of the BBB after stroke. Distinct phenotypes 
or subsets of peripheral immune cells along with diverse intracellular mechanisms 
contribute to the dynamic changes of BBB integrity after stroke. This review focuses 
on the interaction between the peripheral immune cells and the BBB after ischemic 
stroke. Understanding their reciprocal interaction may generate new directions for 
stroke research and may also drive the innovation of easy accessible immune modu‐
latory treatment strategies targeting BBB in the pursuit of better stroke recovery.

K E Y W O R D S

blood‐brain barrier, peripheral immune response, stroke

www.wileyonlinelibrary.com/journal/cns
mailto:﻿
mailto:﻿
http://orcid.org/0000-0002-5721-9914
http://creativecommons.org/licenses/by/4.0/
mailto:peiyingli.md@gmail.com
mailto:ywf808@yeah.net


1116  |     LI et al.

associated with poor neurological outcomes.19-23 In response to ce‐
rebral ischemic stroke, the brain can release a variety of “danger” 
signals or “help me” signals, such as ATP, high‐mobility group box 
1 (HMGB1), hypoxia‐inducible factor 1α (HIF‐1α), S100B, brain‐de‐
rived antigens and et al, all of which activate multiple subsets of 
peripheral immune cells24,25.Once activated, these cells can migrate 
to the ischemic brain through detection of chemoattractant gradi‐
ents.26-28 Upon BBB disruption, the components in blood including 
immune cells can enter into brain sequentially and interaction of 
neuro‐immune interaction can be initiated.29-32 During their pene‐
tration through the injured BBB, these immune cells become a dou‐
ble edge sword, which could either exacerbate the BBB disruption 
or protect the integrity of BBB.36,37 Pleiotropic intracellular mecha‐
nisms and diverse secretory factors, including cytokines, proteolytic 
enzymes, exosomes, micro vesicles, and miRNAs, have been impli‐
cated in their interaction both in early disruption and later repair 
phase of the BBB.33-37 Importantly, distinct phenotypes and subsets 
of immune cells exhibit diverse impact on the poststroke BBB. This 
review will discuss the dynamic changes of BBB integrity after stroke 
followed by a discussion of the double‐faced roles of peripheral im‐
mune activation on the BBB integrity after stroke. Finally, the newly 
emerged mechanisms by which the peripheral immune cells impact 
the BBB integrity have also been covered at the end, including exo‐
somes and micro vesicles.

2  | DYNAMIC CHANGES OF BLOOD ‐
BR AIN BARRIER INTEGRIT Y (BBB) AF TER 
STROKE

In response to ischemic stroke, the integrity of BBB compromises 
promptly and changes dynamically, which can be observed by mag‐
netic resonance imaging (MRI) and other imaging techniques.38-42 
During the early phase, cytoskeletal alterations in brain ECs can 
be initiated by actin polymerization followed by translocation of 
tight junctions (TJs) within 30‐60 minutes of reperfusion through 
activation of the Rho‐associated protein kinase (ROCK)/myosin.43 
The activation of ROCK pathway may further promote the cross‐
linking of F‐actin into force‐generating linear stress fibers through 
the phosphorylation/activation of myosin light chains (MLC) and 
increase cytoskeletal tension thus lead to the disassembly of TJs. 
These changes can widen the paracellular space between ECs, 
eventually resulting in hyperpermeability.43 In addition, opening of 
sodium and calcium channels, endothelial connexin‐43 hemichan‐
nels, the alterations in endocytotic vesicles, endothelial endocy‐
tosis/transcytosis, and transcellular vesicular trafficking, which 
could be mediated by caveolin‐1, endothelial growth factor, or 
exocytotic machinery, may also account for BBB hyperpermeabil‐
ity as early as 6 hours after cerebral stroke.44-47 Increased expres‐
sion of aquaporin 4 (AQP4) in astrocytes of the ischemic brain is 
also associated with the initial cerebral edema after stroke.48-50 
Additionally, pericytes may separate from basement membrane 
and detach from endothelial cells through paracellular pathway 

or transcellular routes, which contributes to increased micro‐
vascular permeability via disruption of pericyte‐tight junction 
interactions.51-53

The expression of TJ proteins may be decreased due to increased 
oxidative stress or matrix metalloproteinases 9 (MMP9)‐mediated 
protein degradation after stroke, leading to a “second wave” of in‐
creased BBB permeability.40 Disruption of BBB integrity is not only a 
common consequence of stroke, but also contributes to the progres‐
sion of stroke.54,55 Infarct size can progress with time after cerebral 
ischemia reperfusion, with more resident immune cells activated and 
more peripheral immune cells recruited to the brain and thereby fur‐
ther aggravates the injury of BBB.56 Cerebral ischemia upregulates 
the expression of adhesion molecules, such as intercellular adhesion 
molecule 1 (ICAM‐1), vascular cell adhesion molecule 1 (VCAM‐1), 
integrin and E‐selectin in the brain, which in turn facilitate a mas‐
sive “second wave” of immune cell entry into the brain parenchyma 
through the BBB, leading to exacerbated neuroinflammation. The 
inflammation in the lesioned brain also contributes to the “second 
wave” of BBB disruption.57,58 At 1‐3 days after stroke, BBB break‐
down is featured by TJ degradation, basement membrane disrup‐
tion, and eventually loss of endothelial cells.59 Chronic BBB opening 
caused by the loss of pericytes or chronic stress can lead to neuronal 
uptake of multiple blood‐derived neurotoxic products as well as re‐
ductions in microcirculation that in turn results in a chronic neuronal 
dysfunction and degenerative changes.60,61

During the late phase of stroke, the BBB dysfunction becomes less 
severe, in which BBB restoration possibly plays an important role.62 
Multiple processes may be involved in the restoration of BBB per‐
meability after stroke at the late phase of stroke. Neovascularization 
begins in the peri‐infarct region, which involves the proliferation of 
endothelial cells and sprouting of the vessels that eventually increase 
vascular density.24 Astrocytes act to maintain endothelial permea‐
bility and survival after stroke through improving tight junction con‐
stituents.52,63 Pericytes can stable actin filaments in endothelial cells 
and preventing their death, guiding the correct location of endothe‐
lial cells, and clearing up neuronal debris during injury.52,64 The illus‐
tration of structural changes of ECs, TJs, astrocytes, and pericytes of 
the BBB after ischemic stroke is shown in Figure 1.

3  | THE DOUBLE‐FACED ROLES OF 
PERIPHER AL IMMUNE AC TIVATION ON THE 
BBB INTEGRIT Y AF TER STROKE

The injured ischemic brain can release ATP, high‐mobility group box 
1 (HMGB1), HIF‐1α, S100B, brain‐derived antigens and et al as alarm 
signals to activate the peripheral immune system through purinergic 
receptors, TLRs, and the receptor for advanced glycation endprod‐
ucts (RAGE).61 Once activated, these cells can migrate to areas of 
injury through detection of chemoattractant gradients.24,26 During 
their penetration through the injured BBB, these immune cells be‐
come a double edge sword, which could either exacerbate the BBB 
disruption or protect the integrity of BBB.
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3.1 | Activated PMNS and BBB disruption after 
ischemic stroke

Polymorphonuclear neutrophils (PMNs) are the most abundant cell 
population present at the site of injury with a peak influx between 1 
and 3 days in the ischemic brain.56,65,66 Infiltration of PMNs is closely 
related to BBB disruption by a series of biological processes, such 
as releasing proteases, MMP, elastase, cathepsin G, and proteinase, 
producing reactive oxygen species (ROS), causing endothelial dys‐
function and disorganization of junctional proteins, all of which are 
known to damage the BBB.67,68

MMP9 is a subtype of matrix metalloproteinase. It may com‐
pletely degrade the basal lamina and TJ components through at‐
tacking type IV collagen, laminin, and fibronectin and result in 

gross barrier disruption,69,70 brain edema, leukocyte infiltration, and 
hemorrhage.71-73 Under normal condition, the expression of MMPs 
in the brain is very low. Ischemic stroke may induce increased ex‐
pression of MMPs, especially MMP9.74 Both brain vascular ECs 
and infiltrating neutrophils can produce MMP9 after focal cerebral 
ischemia, which can be used to predict stroke patient outcome.74-77 
In ischemic stroke patients, MMP9 increases in the plasma within 
the first 2 to 6 hours and the MMP9 mRNA in leukocytes increased 
within 3 hours78 Activated neutrophils may be an important source 
of pre‐existing intracellular MMP9 pool, which can be secreted in 
response to middle cerebral artery occlusion (MCAO) and oxygen‐
glucose deprivation (OGD) insults69 In addition, activated MMPs 
may also be triggered by increased TNF‐α, IL‐6, and α2‐antiplasmin 
in the blood79,80 The granulocyte‐colony stimulating factor (G‐CSF) 

F I G U R E  1   Blood‐brain barrier (BBB) integrity changes dynamically after ischemic stroke, BBB is composed of four major components, 
endothelia cells (ECs), basement membrane, astrocytes, and pericytes. After ischemic stroke, the structural of these cells changed. A, ECs: 
ECs are basic components and mainly connected by TJs to control the permeability of BBB. TJs comprise of junction adhesion molecules 
(JAM), claudins, and occludins, all of which are linked to the cytoskeleton via zonula occludens (ZO) protein. After ischemic stroke, 
cytoskeletal alterations in brain ECs are initiated by actin polymerization and increased cytoskeletal tension. Increased endocytosis/
transcytosis along with opening of ion channels and endothelial connexin‐43 hemichannels on ECs also contribute to brain edema. Increased 
expression of adhesion molecules attracts peripheral immune cells to enter the brain and release immune factors. B, Pericytes: pericytes 
detach from ECs, widening paracellular spaces. Neurotoxic products influx into neurons, causing neuronal injury. C, Astrocytes: the 
expression of AQP4 water channels elevates on astrocytes and leads to brain edema. All of the above changes contribute to the disruption 
of BBB after stroke [Colour figure can be viewed at wileyonlinelibrary.com]
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can stimulate the proliferation of peripheral neutrophils and thus in‐
crease the level of MMP9, leading to exacerbated BBB disruption 
and increased ischemic infarction.81

In addition to MMP9,the elastase secreted by neutrophils also 
degrades basal lamina and extracellular matrix.82 In mice lacking 
elastase, ischemia‐induced BBB disruption is reduced, as is infarct 
volume and cerebral edema. Inhibiting elastase can further decrease 
infarct volume and BBB disruption in MMP9‐null mice, suggesting an 
MMP9 independent mechanism of elastase on the BBB disruption.83 
Besides MMP9 and elastase, neutrophils are important source of 
ROS in cerebral ischemia and reperfusion injury. ROS itself can dis‐
rupt the BBB through direct damage to endothelial cells, pericytes, 
smooth muscle cells, and astrocytes.84 In addition, activated PMNs 
stimulate inflammatory cytokine production, which attracts more 
leukocytes from the periphery and aggravates the adhesion mole‐
cule expression on ECs, thus further propagates the postischemic in‐
flammation cascade that exacerbates BBB disruption85 and increases 
the risk of secondary bleeding within the ischemic focus.46,71,86

3.2 | The bright side of PMNS in poststroke 
BBB disruption

Given the well‐established negative impact of poststroke BBB 
disruption, PMNs may also have beneficial effects for the BBB to 
repair in the late phase of stroke.87 MMP9, which induces BBB 
disruption in the early phase, is suggested to promote BBB remod‐
eling in the late phase of stroke by enhancing degradation of pro‐
inflammatory DAMPs and vascular remodeling.87-90 In addition, 
PMNs can release antiinflammatory molecules, such as annexin‐1, 
lipoxin A4, resolvins, and protectins to alleviate the poststroke 
inflammatory reaction.91 PMNs also attract monocytes that clear 
apoptotic neutrophils and cellular debris through phagocytosis.36 
Neutrophil‐derived MMP9 is also involved in the regulation of the 
proangiogenic and release hematopoietic progenitor cells from 
the bone marrow.89 Like monocytes, PMNs are divided into two 
phenotypes, N1 and N2 phenotype. The N2 phenotype is encom‐
passed with antiinflammatory properties that may have protec‐
tive effects in stroke.92 Thus, under certain conditions neutrophils 
are not detrimental and may be beneficial in the progression of  
stroke.

3.3 | Pleiotropic effects of microglia/macrophages 
on the BBB integrity after stroke

The function of microglia/macrophages function is complex and 
largely depends on the existence of varied, plastic, and multi‐
layered macrophage phenotypes.93 The impact of microglia/
macrophages activation on the ischemic BBB largely depends on 
the phenotype or status of these cells which can be affected by 
micro‐environmental cues.94-96 According to distinct cues, the 
microglia/macrophages can differentiate into two subtypes—in‐
flammatory and antiinflammatory phenotypes.97 In their proin‐
flammatory phenotypes, they can aggravate the BBB injury while 

in their phagocytosis or antiinflammatory phenotypes they may 
play distinct roles toward BBB repair and regeneration.98-101 
However, recent studies suggest that the terminology of micro‐
glia/macrophage polarization may be limited. Transcriptomic and 
proteomic profiles, regional heterogeneity, sexual dimorphism, 
and age could all take into account while determining the func‐
tions of microglia/macrophages.102

The destructive effects on BBB are mainly mediated by M1 
phenotypes which are characterized by the production of proin‐
flammatory mediators including IL‐1β, TNF‐α, IL‐6, and IL‐12 and 
MHC II,103,104 MCP1/CCL2.105,106 These effects mainly fall into 
several categories: (a) increased expression of inducible nitric oxide 
synthase (iNOS); (b) increased production of ROS; (c) synthesis of 
proteolytic enzymes (MMP9, MMP3)107; (d) upregulated expression 
of macrophage migration inhibitory factor (MIF); (v) phagocytosis 
of endothelial cells; and (vi) recruit other proinflammatory cells to 
further exacerbate the inflammatory cascade. It has been reported 
that proinflammatory cytokines together with nitric oxide (NO) and 
proteolytic enzymes can induce the increase of BBB permeability108 
by downregulating TJ proteins expression in ECs and modulate the 
expression of adhesion molecules.109 ROS, generated by NADPH ox‐
idase, provokes EC contractions and consequently increases perme‐
ability of the BBB.110 Both inflammatory microglia and macrophages 
have been suggested to produce ROS after neurological diseases, 
including stroke.111-114 MIF, also known as glycosylation‐inhibiting 
factor (GIF) is an important regulator of innate immunity. It has been 
shown to promote leukocyte‐endothelial cell interactions through 
promoting endothelial adhesion molecule expression.115,116 It has 
recently been suggested to directly degrade the BBB after ischemic 
brain.117 Perivascular microglia/macrophages migrate toward the 
disrupted blood vessels and further damage them by phagocytiz‐
ing ECs.118 Simultaneously, they also attract more proinflammatory 
cells, such as Th1 cells by secreting CXCL9, CXCL10 and IL‐6 and 
IL‐23.119-123 The interaction between microglia/macrophages and 
monocytes and lymphocytes may further exacerbate the BBB dam‐
age and immune cascades.110

Unlike the M1 phenotype, microglia/macrophages have a dis‐
tinct M2 phenotype, which is mainly protective in cerebral isch‐
emic injury.124,125 The impact of M2 microglia/macrophage on the 
BBB after stroke may include (a) immunosuppressive functions; (b) 
phagocytosis of ischemic debris; and (c) pro‐angiogenesis. Initially, 
M2 are the dominant cell type in the ipsilateral penumbra after 
stroke.126 They can not only express antiinflammatory cytokines, 
such as IL‐4, IL‐10, and TGF‐β by themselves to maintain the integrity 
of the neurovascular unit in murine stroke models99,127-129 but also 
stimulate Th2 cells, which produce high levels of IL10 and IL13130 
and drive Treg polarization by IL‐10 and TGF‐β.131 Both microglia 
and infiltrated macrophages can migrate into the infarction area and 
elicited phagocytic response, which contribute to the clearance of 
cell debris or hematoma in the context of ischemia and intracerebral 
hemorrhage.118,132 Osteopontin (OPN), an adhesive glycoprotein,133 
has been suggested as a cell surface receptor associated with their 
phagocytosis function after ischemic stroke.133 Phagocytosis by 
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microglia/macrophages can also exert favorable effects through en‐
gulfment of infiltrated PMN.36

3.4 | Dualistic roles of T lymphocytes on the BBB 
integrity after stroke

Similar to neutrophils and microglia/macrophages, peripheral T 
lymphocytes infiltrated to the ischemic brain also exert dualistic 
roles on the evolution of BBB damage based on their different 
subtypes.

T‐helper 1(Th1), Th17, γδT cells, and CD8+ T cells mainly play 
detrimental roles on the BBB disruption after several neurologi‐
cal diseases, including stroke.84,99,134-136 Th1 cells promote BBB 
permeability by secreting proinflammatory cytokines (IL‐2, IFN‐γ, 
and TNF‐α) and mediating a cellular immune response.137 IFN‐γ 
activates the small GTPase RhoA and increases the expression of 
Rho‐associated kinase (ROCK), which in turn phosphorylates and 
activates MLC.138 TNF‐α stimulates NF‐kβ to increase myosin light 
chain kinase (MLCK) transcription, which further correlates with 
increased MLCK protein levels, MLC hyper‐phosphorylation, and 
paracellular permeability. Activated MLCK phosphorylates MLC and 
decreases TJ protein amounts, leading to cytoskeletal rearrange‐
ment and impairment of TJ integrity.139 In addition, Th1 cells can 
interact with M1 phenotype through releasing soluble cytokines, 
which transform the microglia to M1 type and thereby increase 
secondary ischemic damage.140 Th17 cells release IL‐17, IL‐21, and 
IL‐2234 and clear pathogens by inflammatory immunity,141 playing 
a proinflammatory role distinguished from Th1 cells. Th17 cells 
are demonstrated to disrupt the BBB by the activation of IL‐17A 
and promote the recruitment of additional CD4+ lymphocytes.84 
IL‐17A induced NADPH oxidase‐dependent ROS production. The 
resulting oxidative stress activated the endothelial contractile ma‐
chinery, which was accompanied by a downregulation of the TJ 
molecule occluding.84,142 As unconventional T lymphocytes, γδT 
cells respond swiftly to ischemia and are regarded as detrimental 
to the BBB, largely through their production of cytotoxic cytokines, 
including IL‐17.136,143 Depletion of γδT cells reduces brain injury 
secondary to experimental stroke with reperfusion.144 CD8+ T cells 
mainly promote BBB damage and play proinflammatory roles by 
killing target cells directly or indirectly.144 They initiate BBB break‐
down through perforin‐mediated disruption of TJs. In turn, leakage 
from the vasculature into the parenchyma causes brain swelling 
and edema.145,146

The subtype of Th2 cells mainly exerts antiinflammatory func‐
tion thus maintain the BBB integrity after stroke by releasing an‐
tiinflammatory cytokines, such as IL‐4, IL‐5, IL‐10, and IL‐13, which 
can promote the M2 polarization.120,147,148 Regulatory T cells 
(Tregs) are one of the most important subtypes of Th2 cells in pro‐
tecting ischemic brain injury. They release TGF‐β and IL‐10149 to 
maintain immune tolerance and counteract tissue damage.150 They 
inhibit the activation of neutrophils, lymphocytes, and microglia, 
thus function as key endogenous modulators of postischemic neu‐
roinflammation.151 The inhibition of neutrophils of Tregs through 

the inhibitory molecule programmed death‐ligand 1 significantly 
reduces the level of MMP9, thus protects against BBB disruption 
after stroke and attenuates tPA‐induced hemorrhagic transforma‐
tion.152-154 Importantly, adoptive transfer of Tregs does not exacer‐
bate poststroke immunosuppression but improves immune status 
after focal cerebral ischemia155 and is beneficial for protection/
repair following stroke.131 However, there are also conflicting data 
showing that depletion of Treg in a depletion of regulatory T cell(‐
DEREG) mouse model protects brain from acute ischemic stroke 
while adoptive transfer of Tregs worsens outcome after ischemic 
stroke.144,150,156 The conflict finding may be attributed to discrep‐
ancies in Treg delivery protocols used in different studies.157

3.5 | The function of other immune responses after 
ischemic stroke

In addition to the above‐mentioned immune cells that have been in‐
tensively investigated after cerebral ischemic stroke, there are also 
some special subsets of immune cells that gained relatively less at‐
tention in the field of poststroke BBB integrity, including mast cells, 
dendritic cells, B lymphocytes, and NK cells.158-160 B cells are im‐
portant adaptive immune cells that have been suggested to have 
beneficial effects on the ischemic brain as early as 24‐48 hours 
after MCAO.161 Lack of B cells substantially increases infiltration of 
various leukocyte subpopulations into the brain and exacerbates the 
BBB disruption.162 On the other hand, B cells may also have detri‐
mental effects to the ischemic brain injury by eliciting antibody‐me‐
diated immune response. Since brain proteins are detected in the 
cerebral‐spinal fluid and the peripheral blood of stroke patients, 
these proteins could elicit the activation of antigen‐presenting cells, 
such as dendritic cells after stroke and later on even induce antibody 
production from B cells, just like what have been seen in multiple 
sclerosis lesions.159,160 NK cells are key members of the innate im‐
mune system, accumulating in the ischemic hemisphere.163,164 NK 
cells can function as very early responders to pathogen invasion 
through their cytolytic activity.163,164 In mice with large infarcts in‐
duced by MCAO, NK cells promote local inflammation and exacer‐
bated brain infarction and BBB damage and determine the size of 
the brain infarct.164,165 In addition, the activation of the complement 
system, which is part of the innate immune response, has been de‐
scribed in clinical and experimental stroke.166 The complement sys‐
tem also has dual roles during the injury and recovery of ischemic 
stroke.167 It contributes to the recruitment and activation of immune 
cells, especially microglia, which may worsen BBB damage.168 It also 
plays a role in stroke recovery by promoting the resolution of in‐
flammation and regeneration.169,170 Despite the above findings, the 
relationship between these immune cells and the poststroke BBB 
integrity remains largely unknown and investigation in this regard 
would be of interesting and worthwhile.

In conclusion, the peripheral immune response is a double edge 
sword for the poststroke BBB. Distinct subtypes or phenotypes 
of immune cells may have diverse effects on the BBB disruption 
or repair at distinct phases after stroke (Figure 2). Understanding 
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the roles of immune cells and their underlying mechanisms in BBB 
damage may help the development of promising BBB protective 
strategies for ischemic stroke patients.

4  | OTHER RELE A SED SIGNALING 
FROM PERIPHER AL IMMUNE CELL S 
THAT MEDIATE BBB DISRUPTION OR 
PROTEC TION AF TER STROKE

Over the past decades, enormous efforts have been put in explor‐
ing the mechanisms underlying the BBB disruption or protection 
afforded by peripheral immune cells after stroke. The immune cells 
may impact the integrity of the BBB by direct contact of the en‐
dothelial cells, through their cell surface molecules. For example, 
the regulatory T cells (Tregs) are able to be recruited to the ischemic 
BBB through the chemokine receptor, CCR5,153 and inhibit neutro‐
phil‐derived MMP9 production through the programmed death‐li‐
gand 1 (PD‐L1) molecule, and meanwhile inhibit CCL2 expression in 
endothelial cells, thereby exert protective effect on BBB.152,154,155 
Releasing proteins, proteinases, cytokines, and chemokines consti‐
tutes as another important mechanism to impact the BBB, in which 
some of the cytokines and chemokines propagate the inflammatory 
cascade and degrade the BBB structure as discussed above while 
others promote the BBB recovery (Table 1). In addition, the periph‐
eral immune cells may also affect the BBB disruption after stroke 
through releasing exosomes, microvesicles, and miRNAs.

4.1 | Exosomes

Emerging evidence is showing that activation of peripheral im‐
mune cells may release exosomes and microvesicles, both of which 
have been implicated in the evolving of BBB damage after stroke.195 
Exosomes are endosome‐derived small membrane vesicles. They carry 
proteins, lipids, and genetic materials and play essential roles in inter‐
cellular communication between source and target cells under physio‐
logical and pathophysiological conditions.196,197 Both immune cells and 
nonimmune cells can secret exosomes. It is recently suggested that 
exosomes released from activated immune cells are responsible for 
carrying proinflammatory contents including miRNAs to the brain via 
the brain endothelium.195 These exosomes alone can activate human 
brain microvascular endothelial cells to increase the expression of ad‐
hesion molecules such as CCL2, ICAM1, VCAM1, and cytokines such 
as IL‐1β and IL‐6.195,198 Preventing exosome release from activated 
monocytes could completely inhibit the expression of inflammatory 
molecules on brain endothelial cells and therefore regulate the BBB 
function under different diseases.195,198 Exosomes from different cell 
types may have diverse functions on the BBB integrity. It has been 
shown that exosomes from circulating endothelia progenitor cells and 
stem cells may transfer miRNAs into cerebral endothelial cells and peri‐
cytes, thus activate PI3K/Akt signaling pathway and notch signaling 
pathway to mediate angiogenesis and to maintain BBB integrity.199-201 
Thus, it is highly possible that there are specific subtypes of peripheral 

immune cells may release exosomes carrying BBB protective proper‐
ties. However, studies in this regard are still warranted.

4.2 | Microvesicles

Microvesicles (MVs) are small membranous vesicles released from 
various cells in response to diverse biochemical agents or mechani‐
cal stresses.202 Leukocyte‐derived microvesicles (LMVs) are one of 
microvesicles, which act as proinflammatory mediators implicated 
in some diseases.203,204 LMVs originate from mature leukocytes, in‐
cluding monocyte, lymphocyte, and granulocytes.205 It is suggested 
that LMVs are involved in the vascular inflammation in cardiovascular 
diseases and cerebrovascular diseases including stroke.206,207 LMVs 
can increase the production of TNF‐α, IL‐6, IF‐8, activated protein C, 
and IF‐1β206 and induce the translocation of NF‐kβ into the nucleus, 
leading to increased production of IL‐8 and monocyte chemoattract‐
ant protein 1(MCP1),208 both of which can promote the inflamma‐
tory response, leading to vascular endothelial cell dysfunction and 
vascular permeability. During cerebral ischemia, circulating MVs in‐
crease significantly and cause a large increase in barrier permeability 
and reduce trans‐epithelial electrical resistance (TEER) in in vitro en‐
dothelial barriers.209 MVs themselves contain pro‐TNF‐α, RhoA, and 
Rho‐associated protein kinase (ROCK), increasing the permeability 
of barriers in rat brain microvascular endothelial cells (RBMVECs) by 
activating caspase 3 and Rho/ROCK signaling pathways.209

4.3 | MicroRNAs

MicroRNAs are small noncoding RNAs that broadly affect cellular 
and physiological function in all multicellular organisms. More than 
5000 miRNAs likely exist in humans and each miRNA binds an aver‐
age of 200 RNAs.210 MicroRNAs are divided into three categories, 
for example, proinflammatory, antiinflammatory, and mixed immu‐
nomodulatory. All of these regulate neuroinflammation in various 
pathologies, including spinal cord injury, multiple sclerosis, and is‐
chemic stroke.211 After ischemic stroke, miRNAs can also mediate 
BBB disruption by regulating gene expression at transcriptional and 
posttranscriptional levels.212,213 MiR‐130a aggravates BBB leakage 
and brain edema via various ways.214 It executes its damaging ef‐
fects on BBB by downregulating HoxA5 and thereby reducing oc‐
cludin expressions.213 Besides HoxA5, microRNA‐130a might act as 
a suppressor of aquaporin 4 by targeting its transcripts.215 MiR‐130a 
can also reduce the expression of caveolin‐1 and increase the level of 
MMP‐2/9, which contributes to the increased permeability of BBB 
and increased perihematomal edema after intracerebral hemor‐
rhage.214 MiRNA‐15a (miR‐15a) has recently been shown to contrib‐
ute to the pathogenesis of ischemic vascular injury through direct 
inhibition of the antiapoptotic gene bcl‐2.216 Of particular interest, 
miR‐15a itself was found to be transcriptionally regulated by per‐
oxisome proliferator‐activated receptor (PPARδ). Administration of 
PPARδ agonist significantly reduced ischemia‐induced miR‐15a ex‐
pression, increased bcl‐2 protein levels, and attenuated caspase‐3 
activity, leading to decreased BBB disruption and reduced cerebral 
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infarction in mice after transient focal cerebral ischemia.216 In addi‐
tion, miR‐15a can suppress the angiogenesis in the peri‐infarct re‐
gion by decreasing FGF2 and VEGF levels,217 thus downregulation 
miR‐15a can promote angiogenesis and maintain BBB integrity.201 

Overexpression of let‐7 and miR‐98 in vitro and in vivo resulted in 
reduced leukocyte adhesion to and migration across endothelium, 
diminished expression of proinflammatory cytokines, and increased 
BBB tightness, attenuating barrier “leakiness” in neuroinflammation 

F I G U R E  2  Peripheral immune cells have dual roles in poststroke BBB integrity. After ischemic stroke, the peripheral immune cells, 
including PMNs, macrophages, lymphocytes, infiltrate into the brain and induce inflammatory or antiinflammatory responses via distinct 
pathways. These responses can impact the BBB integrity in different ways. ① PMNs release proteases, MMP, elastase, cathepsin G, 
proteinase, and reactive oxygen species (ROS), causing endothelial dysfunction. The release of MMP9 can be induced by TNF‐α, IL‐6, 
α2‐antiplasmin and G‐CSF and MMP9 degrades BBB through attacking type IV collagen, lamin, and fibronectin. ② PMNs can release 
antiinflammatory molecules, such as annexin‐1, lipoxin A4, resolvins, and protectins to alleviate the poststroke inflammatory reaction. 
Neutrophil‐derived MMP9 is also involved in the regulation of pro‐angiogenesis. ③ M1 microglia/macrophages produce proinflammatory 
mediators including iNOS, ROS, MIF, MMP9, MMP3 et al, and phagocytize ECs, all of which induce the increase of BBB permeability. ④ 
M2 microglia/macrophages produce antiinflammatory cytokines and phagocytize ischemic debris to maintain the integrity of BBB. ⑤ Th1, 
Th17, γδT cells and CD8+ T cells have detrimental effects on BBB. Th1 cells release IL‐2, IFN‐γ, and TNF‐α, which activates the small GTPase 
RhoA and phosphorylates MLC then decreases TJ proteins. Th17 cells release IL‐17, IL‐21, IL‐22, and γδT cells induce IL‐17 to disrupt the BBB. 
⑥ Th2 cells, especially Tregs, release antiinflammatory cytokines: IL‐4, IL‐5, IL‐10, and IL‐13, which can promote the M2 polarization. Tregs 
inhibit neutrophils and reduces the level of MMP9, thus protects against BBB disruption [Colour figure can be viewed at wileyonlinelibrary.
com]

www.wileyonlinelibrary.com
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conditions.212 Therefore, a variety miRNAs could be used as a thera‐
peutic tool to prevent neuroinflammation and BBB dysfunction.

Recent findings in exosomes, microvesicles, and miRNAs have 
evidenced that their releases from peripheral immune cells play crit‐
ical roles in the evolution of BBB pathology after stroke. Notably, 
exosomes, microvesicles, and miRNAs released from distinct im‐
mune cells under distinct contexts may exert divergent roles on the 
BBB integrity after stroke.

5  | SUMMARY AND CONCLUSION

Targeting the highly dynamic events that occur during stroke in 
the relatively inaccessible brain microenvironment is challenging. 
Emerging evidence suggests that peripheral immune cells could pro‐
vide promising therapeutic targets to rescuing BBB after stroke. In 

clinical, some drugs with translational potential to target the periph‐
eral immune response in order to preserve the BBB integrity after 
stroke are being tested in clinical settings, such as minocycline, adju‐
din, and curcumin.218-222 Further understanding of the interactions 
between the immune system and the BBB disruption and repair pro‐
cess could move the translation of promising preclinical results for‐
ward. Recent studies suggest that the peripheral immune response is 
a double edge sword both for the disruption and repair of BBB after 
stroke. Distinct subtypes or phenotypes of immune cells may have 
diverse impacts on the BBB integrity at distinct phases after stroke. 
Considering the double facet roles of immune cells and their pleio‐
tropic underlying mechanisms in BBB damage and repair, we envi‐
sion that researches regarding the interaction between peripheral 
immune cells and BBB may gain increasing attention in the pursuit 
of developing effective and easy accessible therapeutic targets of 
stroke.

TA B L E  1   Immune cell produced factors that impact blood‐brain barrier (BBB) integrity after stroke

Name Source cells Mechanisms Effects References

IL‐1 Mononuclear cells TJ disruption; upregulation of ICAM‐1; activation of MMPs Disruption 171,172

IL‐6 Macrophages, T cells, 
endothelia cells

TJ protein loss; PKC‐dependent cytoskeletal rearrangement; Disruption 173,174

IL‐9 Mononuclear cells and T cells Induce eNOS production; downregulation phosphorylated pkβ/
pp3k signaling; TJ protein loss

Disruption 175,176

IL‐17 Th17 cells and γδT cells Induce ROS production Disruption 34,144

IFN‐γ T cells Activate the small GTPase RhoA and activate myosin light 
chains

Disruption 138

MIF Endothelia cells and 
macrophages

Disruption TJs Disruption 117

TNF‐α CD4+ T cells, NK cells, 
neutrophils, astrocytes, and 
neurons

Downregulation of TJ proteins Disruption 174,177

CCR5 Microglia and astrocytes Enhance MMP9 activity, regulate the migration and activity of T 
cells, monocytes, and dendricytes

Disruption 24,178

CCL2 Astrocytes, microglia, EC, and 
macrophages

Redistribute the TJs and AJs and reorganization of actin 
cytoskeleton

Disruption 179,180

HMGB1 Neurons Induces a contractile response in pericytes and vascular ECs Disruption 181-187

TGF‐β Microglia/macrophages Inhibit MMPs Recovery 184,185

IL‐1α Macrophages Induce angiogenic mediator expression and promote formation 
of tube‐like structures

Recovery 186,187

IL‐10 Th2 cells Promote the M2 polarization and maintain immune tolerance Recovery 27,148,150

LCN‐2 Neutrophils and neurons Enhance angiogenesis and induce tube formation and migration Recovery 188,189

HIF‐1α Lymphocytes Regulate VEGF and control MMPs induce BBB damage or 
promote angioneurogenesis

Disruption/
recovery

190-192

MMP9 Neutrophils and ECs Degrad the TJ proteins and basal lamina proteins and active 
proinflammatory agents: CXCL‐8, IL‐1β or TNF‐α

Disruption/
recovery

36,69,89,193,194

Facilitate tissue remodeling, activate bound growth factors: 
VEGF‐A, regulate pro‐angiogenesis

TJ, tight junction; ICAM‐1, intercellular adhesion molecule; MMP, matrix metalloproteinase enzymes; PKC, protein kinase C; eNOS, endothelial nitric 
oxide synthase; ROS, reactive oxygen species; GTPase, guanosine triphosphatase; RhoA, Ras homolog gene family, member A; MIF, macrophage migra‐
tion inhibitory factor; IFN‐γ, interferon gamma; TNF‐α, tumor necrosis factor alpha; NK cell, natural killer cell; CCR5, C‐C chemokine receptor type 5; 
CCL2, chemokine (C‐C motif) ligand 2; HMGB1, high‐mobility group box‐1 protein; TGF‐β, transforming growth factor beta; EC, endothelial cell; LCN‐2, 
lipocalin‐2; VEGF, vascular endothelial growth factor; HIF‐1α, hypoxia‐inducible factor‐1
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