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Abstract

Genetic mapping in 2-generation crosses requires genotyping, usually performed with single nucleotide polymorphism markers arrays which
provide high-density genetic information. However, genetic analysis on raw genotypes can lead to spurious or unreliable results due to
defective single nucleotide polymorphism assays or wrong genotype interpretation. Here, we introduce stuart, an open-source R package,
which analyzes raw genotyping data to filter single nucleotide polymorphism markers based on informativeness, Mendelian inheritance
pattern, and consistency with parental genotypes. The functions of this package provide a curation pipeline and formatting adequate for
genetic analysis with the R/qtl package. stuart is available with detailed documentation from https://gitlab.pasteur.fr/mouselab/stuart/.
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Introduction
Genetic mapping of Mendelian or quantitative traits in inbred
strains is classically achieved in 2-generation crosses such as
intercrosses (F2) and backcrosses (N2), in which the inheritance
of the trait is compared with the genotypes at multiple genetic
markers encompassing the genome map. Variations of a quanti-
tative trait are controlled by one or more quantitative trait loci
(QTLs). A QTL is defined as a marker at which individuals carry-
ing different genotypes show different average trait values. QTL
mapping searches for QTLs by testing the association between
trait values and genotypes at markers spanning the genome
map. The statistical significance of the association is expressed
as logarithm of the odds (LOD) score which is calculated for each
genotyped marker and, at intermediates positions, for pseudo-
markers created by interval mapping, generating an LOD score
curve (Broman 2001). The curve peaks at regions potentially asso-
ciated with the trait. These peaks are called QTLs if they reach
predefined statistical thresholds established either from general
statistical models (Lander and Kruglyak 1995) or by permutation
tests performed on the cross data. For each permutation, pheno-
types are shuffled between individuals to break real associations,
and LOD scores are calculated to identify peaks, which are all
false positives. The distribution of the peak LOD scores over a
large number (>1,000) of permutations provides statistical
thresholds: if a LOD score of 3.8 or higher is observed in 5% of the
permutations, this value will be taken as the P ¼ 0.05 threshold
(Doerge and Churchill 1996). QTL mapping on F2s and N2s can be
conducted with R packages such as R/qtl (Broman et al. 2003) and
R/qtl2(Broman et al. 2019).

With genome sequencing, single nucleotide polymorphisms
(SNPs) have become the standard across species for their very

high frequency, low cost, and high-throughput analysis using
various genotyping platforms. In mice, several generations of
Mouse Universal Genotyping Arrays (MUGA) have been devel-
oped, the most recent being GigaMUGA (143k SNPs; Morgan et al.
2015) and MiniMUGA (10.8k SNPs; Sigmon et al. 2020). GigaMUGA
provides high-density coverage for the fine characterization of in-
bred strains or outbred populations such as the Diversity Outbred
(Svenson et al. 2012), while the modest number of SNPs in
MiniMUGA is largely sufficient to genotype intercrossed or back-
crossed individuals. However, SNP reliability is affected by the
performance of genotyping platforms and polymorphism be-
tween and within inbred strains. Spurious or unreliable mapping
outputs can result from defective SNP assays or wrong genotype
interpretations. Therefore, raw data obtained from genotyping
services must be curated before performing genetic analyses.

Several tools exist for quality control of SNP genotyping arrays,
including Illumina’s GenomeStudio. R packages such as argyle
(Morgan 2015) analyze hybridization intensity signals from MUGA
arrays. The simple genetic structure of 2-generation crosses pro-
vides specific and efficient means for identifying spurious genotyp-
ing data, such as consistency with parental genotypes and expected
Mendelian proportions. The R/qtl package includes functions to
build genetic maps and check for genotype consistency (https://rqtl.
org/tutorials/geneticmaps.pdf). However, this control is performed
once genotypes have been imported and involves multiple steps of
manual curation. To provide a more automated process of data
curation before genetic analysis, we have developed stuart, an R
package that implements a pipeline for automatic filtering and
curation of SNP genotyping data from 2-generation crosses based
on simple rules. This package formats raw SNP allele calls from
Illumina files into genotypes ready for importation in R/qtl. Using 3
intercross datasets, we illustrate the consequences of inconsistent
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genotypes on the estimated marker map and QTL mapping, and
how the curation achieved by each function in stuart leads to trust-
able results.

Materials and methods
stuart is a tidyverse (Wickham et al. 2019) based R package requir-
ing R version 3.5.0 or later. Its open source is available on Institut
Pasteur’s GitLab: https://gitlab.pasteur.fr/mouselab/stuart/ and
can be installed with devtools (Wickham et al. 2021). stuart’s vi-
gnette provides detailed descriptions of data import and of each
function.stuart imports SNP allele calls from MUGA Illumina
platform or other sources using the same file format. The central
object of stuart is the marker table which summarizes for each
marker, the alleles found in the population, the number of indi-
viduals of each genotype and the exclusion status resulting from
the curation steps. stuart exports curated data to an R/qtl com-
patible format. The SNP annotation file used was downloaded
from https://raw.githubusercontent.com/kbroman/MUGAarrays/
master/UWisc/mini_uwisc_v2.csv (last accessed August 29,
2022).

Three datasets were used to test the package. This article
presents the results from 176 (CC001/Unc X C57BL/6J-Ifnar1 KO)
F2 mice (dataset 1). The analysis of 2 other data sets, 94 (C57BL/
6J-Ifnar1 KO X 129S2/SvPas-Ifnar1 KO) F2 mice (dataset 2) and 89
(C57BL/6NCrl X CC021/Unc) F2 mice (dataset 3) is presented as
Supplementary data. Quantitative traits were studied in the 3
F2s. Phenotype distributions are presented in Supplementary
Fig. 1. Genotyping was performed by Neogen (Auchincruive,
Scotland) with MiniMUGA on DNA prepared from tail biopsies us-
ing standard phenol-chloroform extraction. Genotype call rate
was 0.927, 0.931, and 0.948 for dataset 1, dataset 2, and dataset 3,
respectively. QTL mapping was performed using R/qtl. Statistical
significance of phenotype–genotype association was computed
by data permutation (Doerge and Churchill 1996), which provides
genome-wide thresholds accounting for multiple testing. The fol-
lowing thresholds were used, as commonly accepted (Members
of the Complex Trait Consortium 2003): P ¼ 0.05 for significant as-
sociation, P ¼ 0.1 and P ¼ 0.63 for the suggestive association. All
figures were designed with ggplot2 (Wickham 2016) or R/qtl.

Results and discussion
Consequences of inconsistent genotypes
SNP data delivered by the Illumina platform are base alleles that
need to be translated into genotypes for genetic analysis. From
our experience on multiple 2-generation crosses, we identified
several types of genotype inconsistencies that were responsible
for distorted marker maps and spurious QTL mapping results.
Recombination fraction (RF), which measures the genetic dis-
tance between 2 markers, is estimated in a cross by analyzing the
proportion of recombinants between adjacent markers in all indi-
viduals. The map of markers calculated from the cross data
should be consistent with their known positions. The R/qtl est.-
map() and plotMap() functions produce a graphical comparison
of the 2 maps (Fig. 1a and Supplementary Fig. 2, a and b). For
each chromosome, the known position of each marker provided
in the annotation file (left) is connected with the estimated posi-
tion (right) based on observed RF. With minimally curated geno-
types (exclusion of nonpolymorphic markers and markers with
over 50% missing genotypes), large RF was found in many instan-
ces between closely linked markers, resulting in fan-like patterns.
To further describe these distortions, we computed the

distribution of the ratio between the calculated and the known
genetic distances between adjacent markers (Fig. 1b and
Supplementary Fig. 2, c and d; to avoid exaggerated ratios, we
considered only markers with a known distance of 1 cM or more).
This analysis revealed 2 groups of markers. In dataset 1, for 43%
% of them, the ratio was below 5 and followed a Gaussian distri-
bution with mean¼ 1.31 and SD¼ 0.77. The other markers (57%)
showed a ratio between 5 and 981.87 (Fig. 1b) which necessarily
results from incorrect genotypes, as only a few individuals should
show recombination between adjacent markers. On chromosome
1, while the known marker positions spanned �100 cM, the cu-
mulated genetic distance estimated from observed RF was
�40,000 cM. As QTL mapping relies on coherent genotypes at a
series of markers encompassing a genetic interval, problematic
genotypes at a given marker will perturb the analysis and, in
some cases, may result in peaks of the LOD score curve in the ab-
sence of true association (Cheung et al. 2014). Such false positives
increase significance thresholds calculated by data permutation.

These 2 consequences of genotyping inconsistencies are illus-
trated in Fig. 1c and Supplementary Fig. 3, a and b which were
obtained using the R/qtl scanone() function on a quantitative
trait from the uncurated F2 datasets. For dataset 1, the P ¼ 0.05
significance threshold was estimated at 19.4 (Fig. 1c), while it
usually ranges between 3.3 and 4.3 depending on the inheritance
model for crosses of this type and size (Lander and Kruglyak
1995). Several peaks were detected although none reached P
¼ 0.05 significance. Moreover, their narrow profile was highly un-
expected in F2 crosses. Indeed, these peaks involved only 1–3
markers, and the LOD score curve felt abruptly between these
and adjacent markers on both sides (Fig. 1d), while genetic link-
age between closely linked markers should result in progressive
decrease of the LOD score curve on both sides of a peak (Guénet
et al. 2015). Among the 3 datasets, we identified 4 narrow peaks
reaching suggestive significance level (P < 0.63): 2 were located at
a marker with non-Mendelian allelic proportions and 2 were
located at 1–3 pseudomarkers adjacent to a marker with non-
Mendelian proportions (Supplementary Fig. 3, c, d and e, f,
respectively). We identified 5 other narrow peaks (LOD score be-
tween 6.72 and 10.03) out of which 4 resulted from the same
situations as above and one was located on a pseudomaker and a
marker with non-Mendelian proportions.

Inconsistent marker maps may also originate from the wrong
assignment of markers to their chromosome and position pro-
vided to the mapping program. Indeed, R/qtl developer K.
Broman identified errors in MUGA arrays annotation files affect-
ing marker positions, probe sequences mapping to several loca-
tions, and unmappable markers. We recommend using K.
Broman’s corrected annotation files available on GitHub. The
conversion of SNP alleles (A, C, T, G) observed in second-
generation individuals (SGIs) to genotypes encoded according to
the parental alleles may also create genotype errors. Reference
SNP alleles established for many mouse strains may be used to
infer the SGI genotypes. However, we recommend genotyping
individuals of the parental strains used in the cross since they
could differ from the reference panel. In our example dataset, the
2 parental strains used in the cross showed allelic differences
with their reference panel counterpart at 200 markers.

Data control and curation performed in stuart
Although each of stuart’s functions can be called independently,
we present a logical analysis workflow appropriate for 2-genera-
tion crosses. Table 1 summarizes the data curation and filtering
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performed by each function, and the number of markers of data-

set 1 retained after each step.

Data importation
Genetic mapping requires both genotype and phenotype data.

Required formats and instructions are detailed in the vignette

(see example of phenotype data in Supplementary Table 1).

Parental strains’ genotyping data can be loaded from the same
genotyping results as the SGI, from a previous genotyping file or

from a reference file. Annotation data from K. Broman can be

imported directly from GitHub. The geno_strains() function for-

mats parental genotypes from a 2-allele encoding in Illumina for-

mat into a single letter encoding, and merges these data with the
annotation table into a table with parental allele and marker

positions.

Consistency between parents and SGI alleles and genotypes
Several generations of MUGA arrays have been developed (Mega,

Giga, Mini), each with successive versions differing by multiple

SNP markers. If parental and SGI data were produced on different
versions, the marker lists must be compared to retain only com-
mon SNPs. This is achieved by the mark_match() function.

Converting alleles into genotypes requires that SGI segregate
for the 2 parental alleles, and that each allele is found only in one
parent. The aim of the mark_allele() function is to control consis-
tency of allele’s origin at multiple levels.

First, this function excludes markers with missing data in
both parents. If allele data are available for only one parent and
this allele is also found in SGI, the other allele present in SGI
will be assigned to the parent with missing allele. However, this
imputation is not error-free since we have observed, in rare
occasions, markers which alleles were identical in the parental
strains but were polymorphic in the SGI (Table 2 for such SNPs
in dataset 1). This situation may occur when the parental
strains used in the cross have diverged from those of the refer-
ence panel, or if one parent is heterozygous. Such markers will
be excluded by the mark_allele() function but they could escape
detection if allele information was missing in one parent.

(a) (b)

(c) (d)

Fig. 1. Analysis of the dataset 1 illustrating the consequences of genotyping errors and inconsistencies on QTL mapping. Nonpolymorphic markers and
markers with more than 50% missing genotypes were excluded to avoid excessive calculation time. a) Comparison of the known marker map (left) and
the genetic map estimated from observed RF (right), as calculated by est.map() and represented by plotMap() functions of R/qtl. Lines connect the
positions of each marker in the 2 maps. The estimated map is considerably expanded because of multiple genotype inconsistencies. b) Distribution of
the ratio between estimated and known distances between adjacent markers. Markers with known and calculated distances below 1 cM were removed
as they may lead to extremely small or large ratios. The expansion of the estimated map leads to a distribution tail of high ratios. The y-axis is in
logarithmic scale. Fifty-seven percent of markers have a ratio above 5 (dashed line). c) Output of the scanone function of R/qtl showing the
identification of narrow LOD score peaks. Genome-wide significance thresholds computed by data permutation are shown as plain (P ¼ 0.05), dotted
(P ¼ 0.1), and dashed (P ¼ 0.63) lines. d) Magnification of the scanone plot restricted to chromosome 13 (peak p2). The LOD score peak is located on one
marker (red tick) distant by 1.728 and 1.24 cM from the proximal and distal markers, respectively, on the known marker map, but by 1,001.582 and
1,001.506 cM based on calculated RF.
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Adding the parNH ¼ FALSE argument to the mark_allele() func-
tion will exclude markers missing one parental allele or for
which one parent is heterozygous. However, while preventing
rare errors, this option will also exclude a number of truly infor-
mative markers.

The mark_allele() function also discards markers at which
parents and SGI carry different alleles, and, for backcrosses,
markers for which some SGI are homozygous for the wrong allele.

Nonpolymorphic markers
Genetic analysis requires polymorphic markers, i.e. for which
parents carry different alleles which segregate in the SGI. The
mark_poly() function excludes markers for which all genotyped
SGI carry the same allele, which saves computation time.

Missing genotypes
Reliable QTL mapping results depend on markers with medium
to high rate of successful genotyping. Figure 2a shows markers
distribution based on the proportion of missing genotypes. For
over 95% of markers genotyping rate was above 50%. Genotyping

failures may result from poor-quality genotyping assay. The mar-
k_na() function excludes such poorly genotyped markers.

Mendelian proportions
In 2-generation crosses between inbred strains, the proportions of
the 2 or 3 classes of genotypes are predictable, i.e. for autosomes,
25% of each type of homozygotes and 50% of heterozygotes in an
intercross, and 50% of homozygotes and 50% of heterozygotes in
a backcross. Comparing the observed proportions with these
expectations provides another criterion of filtering.

The mark_prop() function filters markers based either on a
minimum proportion of each genotype or on the statistically sig-
nificant departure from the expected proportions (Chi2 test, with
a P-value threshold). Figure 2b shows the exclusions of the auto-
somal markers depending on the proportion of each genotype. X
chromosome genotypic proportions differ from autosomes,
therefore, different arguments of mark_prop() function are used
to filter X-linked markers for more precise curation.

Filtering report and impact on QTL mapping results
At every step, the markers filtered out are annotated in a marker
table which can be exported for further inspection. The last col-
umn of Table 1 shows the number of markers retained after each
step in the example dataset 1. Most of the starting markers
(7,180/11,125¼ 65%) which were eventually removed by stuart’s
functions were removed by mark_poly() as nonpolymorphic, a ra-
tio expected for crosses between 2 standard mouse inbred strains
(Frazer et al. 2007). mark_allele() rejected 750 markers, mark_na()
457 and mark_prop() 484. Across the 3 datasets, we found 1,546
markers with either non-Mendelian proportions or allele incon-
sistencies between parental strains and SGIs. Overall, 619 of
them were retained by stuart’s filtering in at least one of the

Table 1. stuart analysis pipeline and application to dataset 1.

Steps Function Excluded markers Number of markers retained

1. Import SGI alleles from MUGA
arrays

read.table()/read_tsv() – 11,125

2. Add data from parental strain
Genotyped with SGI: make consensus geno_strains() – –
Imported from another dataset:

import and make consensus
read.table()/read_tsv(), geno_strains – –

Imported from reference read.table()/other readr function
depending on the format

– –

3. Filter on allele consistency between
parents and SGI

Same set of markers between parents
and SGI

mark_match() Not present in both parents and
SGI

11,125

Alleles consistent between parents
and SGI

mark_allele Missing alleles in both parents 10,375

Not polymorphic in parents but
polymorphic in SGI

Different alleles in parents and
SGI

In backcrosses: homozygotes for
the wrong allele

Optional: one parent missing or
heterozygous

4. Exclude markers with high
proportion of missing genotypes

mark_na() >50% of missing genotypes by
default

9,918

5. Exclude nonpolymorphic markers
in SGI

mark_poly() Nonpolymorphic in SGI 2,738

6. Verify Mendelian proportions mark_prop() Departure from expected
Mendelian segregation (pro-
portion of each class or statis-
tical threshold)

2,254

7. Verify RF between markers est.map() followed by mark_estmap() High RFs with adjacent markers 2,251

Table 2. Markers of dataset 1 non polymorphic between parental
strains but polymorphic in SGI.

Marker Allele
parent 1

Allele
parent 2

Allele
SGI 1

Allele
SGI 2

S6J017555686 C C T C
S6J113080150 G G A G
gJAX00038569 C C T C
mUNC21540855 C C A C
gUNC21555204 T T T C
gUNC21596600 A A A G

4 | G3, 2022, Vol. 12, No. 11



other crosses, ruling out their misassignment to the genetic map.
Out of the residual markers, 85 were removed from all datasets
for another criterion than absence of polymorphism and were

therefore considered as unreliable.
At this step, the dataset may still contain markers showing

high RFs with adjacent markers either for a reason not tested by
the current version of stuart or due to the parameters used in
mark_na() and mark_prop() functions. These markers can be
identified by calculating the estimated map using R/qtl est.map()

and using stuart’s mark_estmap() function which excludes
markers presenting high RFs with adjacent markers. Over the 3
datasets, 9 markers were removed by mark_estmap(). Five of
them were retained in at least one other dataset, indicating the
problem was dataset specific. Finally, for dataset 1, 2,251 markers

passed all steps resulting in an average genetic interval between

adjacent markers lower than 2 cM, which is largely sufficient to
perform QTL mapping (Darvasi et al. 1993). After curation, pheno-
type and genotype data are combined and exported in the R/qtl
format using the write_rqtl() function. The qtl2convert package
(Broman 2021) converts this output into the adequate format re-
quired by the more recent R/qtl2 package.

Figure 3a and Supplementary Fig. 4, a and b show the marker
maps calculated after data curation with stuart. The known
marker map and the estimated genetic map are consistent, with
minimal expansions or contractions. Large ratios between the
calculated and the known genetic distances between adjacent
markers have been eliminated (Fig. 3b, Supplementary Fig. 4, c
and d). QTL mapping analysis on curated dataset 1 is shown on
Fig. 3c (to be compared with Fig. 1c; see Supplementary Fig. 5 for
datasets 2 and 3). LOD thresholds are in the expected range for
an F2, and the LOD score curve reveals broader peaks than in
Fig. 1b, with progressive LOD score decrease on both sides of the
peak marker. One significant and 3 suggestive QTLs were identi-
fied on chromosomes 12 (P-value¼ 0.037, Fig. 3d), 5 (P-val-
ue¼ 0.460), 10 (P-value¼ 0.157), and 15 (P-value¼ 0.244) which
were not visible using noncurated data due to very high LOD
score thresholds.

Being very simple to use and efficient at curating genotyping
errors, stuart will facilitate the use of genotyping arrays for ge-
netic mapping purposes in 2-generation crosses, bridging the gap
between raw allele data produced by SNP platforms and genetic
analysis software. Moreover, its functions can be used indepen-
dently to analyze inbred strains genotypes. For example, geno_-
strain() creates a genotype consensus between 2 or more
individuals of the same strain suitable for further inspection,
which can be useful when genotyping or regenotyping a strain of
interest. Comparing genotyping results of an inbred strain after
several generations of breeding with mark_allele() will readily
identify variants that have emerged or been selected over time.
Likewise, this function will help identifying genetic variants be-
tween substrains.

Web resources
The source code of the stuart package and the code used for the
figures of this article are publicly available from https://gitlab.pas
teur.fr/mouselab/stuart/.

Data availability
All datasets used as examples in this article are available from
https://gitlab.pasteur.fr/mouselab/stuart/. Dataset 1 is included
in the package and can be loaded once the package is loaded (see
the vignette for details). The 2 other datasets are available from
GitLab in the “article” directory in separate folders (i.e. “data2”
and “data3”). Each folder contains the genotypes of the SGIs in
file “geno_dataX.csv,” the phenotypes of the SGIs in file
“pheno_dataX.csv,” the parental strains’ genotypes in file
“parents_dataX.csv” and the reference genotypes for the parental
strains in file “ref_geno_dataX.csv.” Analysis of each cross is in
each folder in an R markdown file (“dataX.Rmd”).

Supplemental material is available at G3 online.
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