
Introduction

There has been a resurgence of interest in developing 
objective methods for the simple and rapid analysis of 
raw materials and final products during quality assurance 
programs of meat and meat products. Being nominated 
for on- line or at- line implementations, optical method 
depending on interaction of light with the food samples 
has been one of the most successful techniques casted 
for food quality assessment to provide several quality 
details simultaneously (Fernández Pierna et al. 2012). The 
interaction of electromagnetic radiation with food samples 
in the form of reflection, transmission, and/or absorption 
depends profoundly on the physicochemical characteristics 

of these samples. The light- sample interaction is depend-
ent on the wavelength of the incident light, type of the 
sample and main chromophores in the sample (Hlavác 
2013). Many experimental results showed significant cor-
relations between the sample’s biochemical composition 
and the corresponding reflectance or absorbance spectra 
recorded by spectral systems (Burger and Geladi 2006; 
ElMasry and Sun 2010; Kobayashi et al. 2012; Gowen 
2014). The ability of light to penetrate a biological mate-
rial, interrogate its components, and then escape the 
 material for detection is the key to food evaluation ap-
plications. The short- wave infrared light can penetrate 
relatively deep into biological soft materials due to the 
lower scattering property at NIR region than at visible 
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Abstract

A simulation method for approximating spectral signatures of minced meat 
samples was developed depending on concentrations and optical properties of 
the major chemical constituents. Minced beef samples of different compositions 
scanned on a near- infrared spectroscopy and on a hyperspectral imaging system 
were examined. Chemical composition determined heuristically and optical 
properties collected from authenticated references were simulated to approximate 
samples’ spectral signatures. In short- wave infrared range, the resulting spectrum 
equals the sum of the absorption of three individual absorbers, that is, water, 
protein, and fat. By assuming homogeneous distributions of the main chromo-
phores in the mince samples, the obtained absorption spectra are found to be 
a linear combination of the absorption spectra of the major chromophores 
present in the sample. Results revealed that developed models were good enough 
to derive spectral signatures of minced meat samples with a reasonable level of 
robustness of a high agreement index value more than 0.90 and ratio of per-
formance to deviation more than 1.4.
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region (Tsai et al. 2001). This makes NIR region a good 
spectral region for performing nondestructive measure-
ments on thick or bulky biological samples (Wetzel 1983). 
The NIR absorption property of such samples varies with 
their constituents especially water, fat, protein, collagen, 
and their combination ratio.

Several analytical models capable of simulating light 
propagation in biological media and approximating vari-
ous optical properties of biological samples have been 
developed. These models require a priori knowledge on 
the absorbing and scattering properties and allow for the 
calculation of the light distribution in the media. The 
measurement of light within or at the surface can also 
be used to determine sample’s optical properties (van 
Veen 2006). Using the essential optical parameters of the 
main chromophores in the biological samples inevitably 
leads to development of robust models to predict basic 
optical and spectral properties (Allen et al. 1969; Baret 
et al. 1988; Yamada and Fujimura 1988). For instance, 
the model developed by Jacquemoud and Baret (1990) 
and its subsequent versions (Fourty et al. 1996; Jacquemoud 
et al. 1996; Baret and Fourty 1997; Bousquet et al. 2005; 
Feret et al. 2008) is one of the efficient models for simu-
lating reflectance and transmittance over the whole optical 
domain with a minimum number of input optical 
parameters.

As the spectrum of a biological material in the visible 
and NIR regions results from the overtones and combina-
tions of O–H, C–H, and N–H groups’ stretching vibrations 
(Osborne et al. 1993; Ozaki et al. 2006; Prieto et al. 2009), 
spectral measurement is most likely to provide informa-
tion about samples’ composition, and this composition 
is correspondingly revealed by the spectral behavior of 
the sample. Given the fact that O–H, C–H, and N–H 
are the most abundant chemical bonds in biological 
 samples, it postulated to develop a predicting method to 
approximate the basic spectral characteristics of a sample 
based on chemical constituents containing these bonds 
(i.e., water, fat, and protein as the major contributors at 
NIR spectral region). By assuming that the intrinsic 
 absorption properties of each constituent do not change 
in spite of being alone or conjugated with other con-
stituents, the absorption spectra could be approximated 
by knowing the optical properties of these constituents 
and their relative concentrations. The central hypothesis 
of this work is that the optical absorption parameters of 
water, fat, and protein are sufficiently well differentiated 
from those of the other constituents in the NIR spectral 
range to permit the detection of various spectral behaviors. 
This study aims to approximate absorption spectra of 
standardized minced meat samples with known concentra-
tions of major constituents (water, protein, and fat). Rather 
than calculating optical properties for each constituent at 

every single wavelength separately, these data over the 
entire wavelength range were imported form relevant 
 authenticated references. In this study, two basic approaches 
were tested based on the basic form of Beer–Lambert 
law: one without considering scattering effect and the 
other by using the model developed by Jacquemoud and 
Baret (1990) that considers scattering processes within 
the sample’s internal structure. The later approach 
 assumed that the sample is composed of a pile of  elementary 
layers (N) separated by air spaces and each layer is char-
acterized by a refraction index (n) and an absorption 
coefficient (μa).

Theoretical background

Chromophores are referred to the sample compounds 
which absorb light in the spectral region of interest. Each 
chromophore has its own particular absorption spectrum 
which describes the level of absorption at each wavelength 
(Branco 2007). The dominant chromophores in meat 
samples that absorb substantial electromagnetic spectrum 
in the NIR region (900–2500 nm) are moisture, protein, 
and fat with distinctive absorption features at certain 
wavelengths. In the visible range of the spectrum there 
are contributions from other dominant chromophores 
such as oxyhemoglobin (HbO2), deoxyhemoglobin (Hb), 
melanin, cytochrome c oxidase, myoglobin, etc. These 
chromophores absorb more light in the ultraviolet and 
visible region than the longer wavelengths regions. 
Therefore, these chromophores can be largely ignored in 
the NIR range, as they contribute little to the overall 
attenuation (Schmidt 2000). Optical properties of biologi-
cal materials, particularly scattering and absorption coef-
ficients and refractive index, quantitatively describe the 
light- material interaction. In essence, a photon incident 
on a biological sample moves in all directions and may 
be scattered or absorbed and transmits its energy to the 
molecules causing excitation of the molecular electronic, 
vibrational, or rotational states (Hlavác 2013).

The simplest form of optical properties of biological 
tissues is the refractive index n, which determines the 
speed of light in a medium. Any change in the refractive 
index, either continuous or abrupt (at boundaries), gives 
rise to scattering, refraction, and reflection (Branco 2007). 
The refractive index n is a dimensionless number deter-
mining the speed of light c under the vacuum compared 
with its speed ν propagating within the sample tissue 
described by the following equation:

(1)

At the interface between two media with different 
 refractive index, refraction occurs and is described by 
Snell’s law as:

n = c∕v
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(2)

where θ1 is angle of incidence, and θ2 is angle of refrac-
tion. Basically, refractive index is related with the other 
essential optical properties because the complex refractive 
index, n = n′ + jn″, includes real and imaginary refractive 
indexes. The real index, n′, describes energy storage and 
hence affects the speed of light in a medium and deter-
mines the scattering properties of the sample tissue. If 
n′ values were dominantly constant at all wavelengths, it 
means that there would be no scattering. On the other 
hand, the imaginary refractive index, n″, describes energy 
dissipation and inevitably specifies the absorption coef-
ficient, μa = 4πn″/λ (Jacques 2013). As sample tissues are 
heterogeneous in composition, one may need to know 
the refractive indexes for the various constituents or an 
averaged value for the sample as a whole. As the biologi-
cal sample could be considered as turbid, inhomogeneous 
medium, it will have a refractive index higher than air 
(n = 1) and it is usually considered to be around 1.4 
for most biological specimens (Delpy et al. 1988).

Because the refractive index for any material is a func-
tion of wavelengths, it can be numerically approximated 
using different empirical equations in the NIR wavelength 
range (Ding et al. 2006).

(3)

To ensure that this equation gives accurate estimation 
of refractive indexes, values of refractive indexes calculated 
by this equation were compared with some reported values 
of refractive indexes of fresh meat muscles at certain 
wavelengths. There was a great coincidence between cal-
culated and reported values in the visible and NIR ranges. 
For example, refractive index of porcine muscles was 1.38 
and 1.37 at wavelengths of 632.8 and 1341.4 nm, respec-
tively, as reported by Shuying et al. (2003) and Hui and 
Shusen (1996), which exactly the same values obtained 
from the abovementioned equation. Notwithstanding, the 
values of refractive index depend mostly on the charac-
teristics of sample such as percentage of water, protein, 
fat, and other contents. More interestingly, there is no 
difference in refractive index between whole block of tis-
sue and homogenized (mashed) tissues (Shuying et al. 
2003).

On the other hand, the measured intensity I is depend-
ent on the incident intensity Io, the light traveling path 
l, and the average absorption coefficient of the sample 
μa in an exponential manner:

(4)

where μa (cm−1) represents the probability of a photon’s 
energy being absorbed by the molecules per unit length. 
Absorption coefficient describes how far photon can 

penetrate into sample tissue before being absorbed. 
Absorption can be also described by particle density ρ 
and absorption cross section σa (Hlavác 2013) as: 

(5)

The transmittance T is the ratio of transmitted intensity 
to the incident intensity (I/Io), and the absorbance A 
(representing the loss in light intensity), is related to the 
transmittance in the form: 

(6)

Combining previous equations leads to the following equa-
tion known as Beer–Lambert’s law. As a fundamental 
theory for the measurement of chromophore concentration 
within a sample, this law relates the absorption of light 
to the properties of the sample through which the light 
is traveling. 

(7)

where εa is the molar extinction coefficient or molar ab-
sorptivity in the unit of cm−1(mol/L)−1 (or cm−1 M−1), 
and c is the concentration of the absorber or chromophore 
inside the sample in the unit of mol/L (or M). Sometimes 
one wishes to describe the absorption properties of a 
 material that does not have a well- defined concentration, 
so that an alternative concentration must be used. For 
example, if concentration c was measured in unit (mg/
mL), an alternative extinction coefficient must be used, ε 
(cm−1 [mg/mL]−1). The product εc still has units of cm−1, 
and εcl is dimensionless. So, while the literature usually 
uses c (M), ε (cm−1 M−1), and l (cm), alternative units 
for c, ε, and l may be used, as long as εcl is dimension-
less (Jacques 2013). Alternative units such as cm2 mol−1 
could be also used by substituting the concentration with 
the unit of mol/cm3. This change in units emphasizes the 
point that ε is a molar cross section for absorption analo-
gous to the mass attenuation coefficient μa/ρ (Singh et al. 
2002). Generally, molar extinction coefficient depends upon 
the wavelength of the incident radiation and is greatest 
where the absorption is most intense. Equation 7 implies 
that the absorbance is linear with the concentration of 
chromophores. If the path length and the molar absorptiv-
ity are known and the absorbance is measured, the con-
centration of the substance can be deduced. The equation 
can be extended when the specimen contains several dif-
ferent absorbing chromophores. Thus, the absorption coef-
ficient of a meat sample is the sum of contributions from 
all absorbing chromophores (water, protein, and fat) within 
the sample. Assuming homogeneous distribution of the 
major chemical compounds (chromophores) and because 
the detailed molecular composition of the sample is not 
well specified, the global or average absorption coefficient 
μa could be determined as:
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(8)

where fv.i is the volume fraction (or mass fraction) of a 
chromophore i and the absorption coefficient of that pure 
chromophore is μa.i. In case of a minced meat sample 
with three major chromophores (water, protein, and fat), 
the previous equation takes the following form: 

(9)

where fw, fp, and ff are mass fraction of water, protein, 
and fat with corresponding absorption coefficients of μw, 
μp, and μf, respectively.

In case of intact sample examined in the reflectance 
mode of spectroscopy or hyperspectral imaging systems, 
the absorption can be easily obtained using equation 7. 
However, in reflectance mode, the path length l can hardly 
be measured. The product cl in the previous equation 7 
is thus replaced by ceff, named as effective 
concentration.

In the basic Beer–Lambert model shown in equation 6 
or equation 7, it is assumed that the photon passes 
through the material without being scattered. In practice, 
photons are scattered into different paths inside inho-
mogeneous turbid materials like the meat sample, and 
some of them are simply lost after multiple scattering 
leaving only a small fraction of photons following the 
pathways and they are then collected by the detector. 
Photons will be scattered even in a very thin layer of 
the specimen before being absorbed. Due to the interac-
tion with scattering particles, the direction of the photon 
is changed and after several numbers of scattering events 
light loses its initial trajectories. Scattering is mainly 
caused by changes in refractive index on the microscopic 
level. Scattering is also dependent on the wavelength 
and usually decreases with the increasing wavelength 
(Hlavác 2013). Obviously, scattering causes light to travel 
extra distance in the specimen, increasing the probability 
of photon absorption. Visible light will be greatly scat-
tered and absorbed within the depth of just a few hun-
dred microns. The relatively low absorptivity in the 
near- infrared spectral region allow light to be detected 
after many scattering events in inhomogeneous materials 
(Pelletier and Pelletier 2010). This makes NIR region a 
good spectral region for performing nondestructive meas-
urements on thick or bulky biological specimens (Wetzel 
1983). Notwithstanding, many complicated mathematical 
models have successfully been developed to evaluate the 
absorption properties of different materials under 
 absorption and scattering conditions. When Beer–Lambert 
law considered scattering process, the coefficient of scat-
tering μs can be used instead of absorption coefficient 
μa in equation 6.

Materials and Methods

Datasets

Samples of minced beef with different concentrations of 
fat trimming were used as reference data (Morsy and Sun 
2013). The dataset contains spectral and chemical con-
stituent data of a series of minced beef samples with dif-
ferent chemical compositions. Each sample was first scanned 
in NIR spectroscopy in the reflectance mode followed by 
chemical composition assessment of water and fat contents 
using Smart Trac System (CEM Corporation, Matthews, 
NC) and protein content using LECO total nitrogen de-
terminator (Model FP- 428; LECO R Corporation, St. 
Joseph, MI). Mean reflectance spectrum in both visible 
and NIR range 400–2498 nm was collected for each sample 
using NIR system (Model 6500; Foss NIRSystems Inc., 
Laurel, MD) with 14 nm incremental interval yielding 
150 data points per spectrum. However, the spectral data 
were adapted to 5 nm incremental interval with 421 data 
points using an interpolation algorithm. The absorbance 
was then calculated as (Absorbance = log [1/Reflectance]) 
for subsequent modeling. As some important chromophores 
such as hemoglobin and melanin concentrated in the vis-
ible range of the spectrum were unavailable in this dataset, 
only the data in the NIR range of 900–2400 nm were 
used for testing the models. The obtained dataset repre-
sents a wide range of internal structure and chemical 
composition of different concentrations of water, protein, 
and fat contents. The spectral patterns of these samples 
were approximated by the proposed models and then 
compared with those reported by the reference.

As our task is to confirm the capability of the models 
in predicting spectral patterns despite the source of 
 acquisition devices, another dataset of other minced meat 
samples scanned in a NIR hyperspectral imaging system 
in the spectral range 900–1700 nm as described by ElMasry 
et al. (2013) were also tested. The acquired imaged were 
standardized by extra two reference images to calculate 
absorbance spectra at each single pixel in the image. The 
basic concept of hyperspectral imaging originated from 
the fact that the amount of radiation that is reflected, 
absorbed, or emitted varies with wavelength and conveyed 
to each single pixel in the image. Average spectra were 
then extracted from each image to represent the whole 
sample being used for the comparison with the approxi-
mated spectra calculated from the prediction models 
 explained below. As the extracted spectral data from 
 hyperspectral images were very noisy at both edges of 
the spectrum, only spectral data in the spectral range 
950–1650 nm were considered.

Digital values registered by the camera are limited by 
its dynamic range and the number of bytes assigned to 
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each pixel to represent the light intensity. Dynamic range 
represents the camera’s ability to display/reproduce the 
brightest and darkest portions of the image and how many 
variations in between. The largest possible signal is directly 
proportional to the maximum number of electrons per 
pixel (i.e., the full well capacity of the pixel). In other 
words, it describes the ratio between the maximum and 
minimum measurable light intensities from the sample. 
Dynamic range is not equal to digitization level such that 
a camera with a 12- bit analog/digital (A/D) converter does 
not necessarily have 12 bits of dynamic range because 
this does not consider the noise that contains sensor 
readout noise and dark current noise. For simplicity, dur-
ing this context of this study we considered the DV (digital 
values) only without going through more sophisticated 
details in the optical and hardware complexity. For  example, 
camera used in the hyperspectral system was of a 12- bit 
A/D converter, which provides digital count values in the 
range 0–4095.

For quantitative assessment, it is preferable to convert 
the raw DV of the hyperspectral image data to physical 
quantities before using the data to interpret the composi-
tion of the sample. Important physical quantities include 
radiance, reflectance, or transmittance. As an image is a 
resultant of both illumination of the light source and 
reflected radiance from the sample, the DV registered by 
the camera could be converted to intensity values at any 
wavelength for any pixel in the image using the following 
formula 

(10)

where a and b are the gain and offset for each spectral 
channel (wavelength). Also, it is well- known that the key 
relationship between the illuminating/incident irradiance 
(Fλ) and the reflected radiance (Iλ) is given by the fol-
lowing formula using spectral reflectance (Rλ): 

(11)

Also, it is important to emphasize that the total reflected 
radiance received by the detector (IAll) is a sum of the 
upward reflected radiance from the sample (ISample) and 
any accompanying or complementary radiance (IComp) 
resulting from the surroundings or even from the camera 
dark current. 

(12)

The complementary radiance depends on the strength 
of the illumination and the density of scattering particles 
in the field of view. It will be a decreasing function of 
wavelength, because shorter waves are scattered more than 
long waves as stated before (Tsai et al. 2001; Hlavác 2013). 
Owing to this trend, it can often be ignored in the NIR 
(near- infrared). Therefore, in case of a typical dark object 

with reflected radiance equaling zero, the total radiance 
of the detector will exhibit the commentary radiance. In 
general, the reflected radiance of the sample will equal 
what is read in the camera detector minus the comple-
mentary radiance. 

(13)

Applying equations (10), (11), and (13) on standard 
white and black surfaces with maximum ‘one’ and mini-
mum ‘zero’ reflectance value, respectively, at each wave-
lengths results in: 

(14)

(15) 

(16)

Equation (14) leads to b − IComp = -  a.DVD
Subtracting equation (14) from equation (15) leads to 

(17) 

(18)

Substituting both (17) and (18) in (16) leads to the 
well- known equation of calculating reflectance of the sample 
using the DV recorded by the camera for the sample as 
well as for white and dark references. 

(19)

The resulting reflectance (RSample) values could be con-
verted easily to absorbance (ASample) values called virtual 
absorbance or pseudoabsorbance to comply with the 
Beer–Lambert’s law using the following expression: 

(20)

Data modeling

Model 1

Although it is a smart method to find a sample’s chemical 
composition nondestructively and without specific sample 
preparation, the conventional spectroscopy is unfortunately 
unable to provide composition gradients and to provide 
information about the heterogeneity of the samples being 
analyzed because it has virtually no spatial information 
and it only collects the aggregate amount of light reflected, 
emitted or transmitted from a small area of a sample (a 
single- point measurement where the sensor is located). 
Accordingly, the approximation models assume a 
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homogeneous distribution of the major constituents in 
the tested samples. The first method for approximating 
spectral signature of a minced meat sample depends on 
using the basic form of Beer–Lambert’s law (Equations 6 
and 7) ignoring scattering process to calculate the absorb-
ance values at each wavelength in the NIR range. The 
measured concentrations (or mass fraction) of water, 
protein, and fat contents and their corresponding absorp-
tion coefficients collected from relevant references were 
used for calculations. By assuming a constant path length, 
substitution of constituents’ given data (absorption coef-
ficients and mass fractions) directly into equation (9) 
μa = fwμw + fpμp + ffμf and equation (7) ASample = 0.4343μal 
gives an approximation of the average absorbance (A) of 
the examined sample. This can be written in a matrix 
form as: 

(21)

Model 2

The method explained by Jacquemoud and Baret (1990) 
was used to model the optical parameters of the major 
constituents in the sample and their corresponding con-
centrations to reconstruct the reflectance values at every 
wavelength using a structural parameter (N) that mimics 
the scattering process. In this model, the fundamental 
optical characteristics such as absorption and scattering 
were exploited. As the analyzed samples were minced 
meat, it is assumed that the samples have a pile of N 
homogeneous layers separated by N−1 air spaces as the 
infinite reflectance is a simple function of the ratio  between 
the absorption and the scattering coefficients. Scattering 
is described by the refractive index of sample materials 
(n) and N parameter. As water is the main component 
of the meat sample the refractive index was used in the 
model. The model based on the “plate model” developed 
by Allen et al. (1969) and its modified form that assumes 
that when a light ray penetrates inside a layer of a bio-
logical object, the light flux is assumed to be diffuse and 
isotropic. Then the reflectance ρ90 and transmittance τ90 
in the elementary layer can be written as follows for a 
given wavelength: 

(22) 

(23)

where 

(24) 

(25) 

(26)

and 

(27)

tav(α, n) is the transmissivity of a plane surface averaged 
over all directions of incidence and over all polarizations. 
It is a rather complex expression but it can be exactly 
calculated based on the refractive index n values at each 
single wavelength, transmission coefficient θ and incident 
angle α. The transmission coefficient θ at each single 
wavelength is related to the absorption coefficient through 
the following expression (Allen et al. 1969): 

(28)

The integration part of the previous equation could be 
put in the form ∫∞

�

e−x

x
dx which represents the typical form 

of the exponential integral that can be easily solved using 
the Matlab function “expint” written as ‘expint (μa)’. 
Hence, the average absorption coefficient μa was first cal-
culated form equation (9) μa = fwμw + fpμp + ffμf by 
using the mass fractions of water, protein, and fat and 
their corresponding absorption coefficients from relevant 
literatures Kou et al. (1993), Buiteveld et al. (1994), 
Jacquemoud et al. (1996), Altshuler et al. (2003) and van 
Veen et al. (2004), respectively. The resulting value of 
absorption coefficient μa was then used in equation (28) 
to calculate the transmission coefficient θ that correspond-
ingly used to calculate reflectance and transmittance at 
an incident angle α using equations (24) and (25), 
 respectively. Hence, the ‘total’ reflectance and transmit-
tance for N layers are given by the following equation: 
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(31)

where 

(32) 

(33) 

(34)

In this study, the calculations assumes that the incident 
angle α was typically 45°, number of layers N was assumed 
to equal 25 and the refractive index values at different wave-
lengths in the NIR range were calculated from equation (3). 
Running the model under these assumptions was expected 
to give a reasonable estimation of the average reflectance 
values of the tested samples at different wavelengths. The 
estimated reflectance was then converted to absorbance values 
using equation (20) ASample = log (1/RSample) being compared 
with the actual measured absorbance values of the samples 
to check the approximation accuracy of the models.

Results and Discussion

Optical properties and spectral features

The absorption coefficient of pure water, protein, and fat 
as the major chromophores in meat samples in the NIR 

range are shown in Figure 1. Also, the figure displays 
the measured spectral absorption of two different samples: 
one of high- fat content (80.60%) and the other of low- fat 
content (2.49%) to demonstrate the remarkable absorption 
peaks compared with the basic chromophores. In general, 
the corresponding absorption coefficients curves of the 
main components display classical features with little spec-
tral shifts of the principal absorption peaks compared to 
those observed in the real meat samples. As the figure 
demonstrates the absorbance in the NIR range only, it 
is expected not to see absorption peaks of other chromo-
phores such as hemoglobin (oxygenated and/or deoxygen-
ated forms) and melanin as they contribute little to the 
overall attenuation (Schmidt 2000). The absorption prop-
erties of hemoglobin and its derivatives are lower than 
that of water and fat in the wavelength region beyond 
1000 nm. Thus, NIR infrared absorption of these chromo-
phores was rather weak in long wavelength region (Tsai 
et al. 2001), and the propagation of light becomes diffuse 
(Niemz 2007). From Figure 1, it can be seen that water 
(dashed line) has low absorption coefficients at the begin-
ning of the NIR range and then exhibits remarkable peaks 
at 1440 and 1920 nm. In fact, samples containing a certain 
chromophore should exhibit its absorption peaks in spite 
of the spectral shift. Accordingly, the same two peaks of 
water were explicitly recognized in the measured spectra 
of mince samples with high absorbance values of low- fat 
content sample as it contains high content of water. As 
reported in literatures (Xu et al. 2010; Wang et al. 2013), 
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Figure 1. (right axis) Absorption coefficients of water (Kou et al. 1993; Buiteveld et al. 1994), protein (Jacquemoud et al. 1996), and fat (Altshuler 
et al. 2003; van Veen et al. 2004) in the near- infrared spectral range 900–2400 nm, (left axis) spectral signature of low-  and high- fat content samples.
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water has absorption peak at 970 nm, where the high- 
order combination bands of symmetric and asymmetric 
stretching modes of the O–H bond reside. However, this 
peak was rather difficult to discern due to axis scale and 
its magnitude is smaller than that at longer wavelengths 
(1440 and 1920 nm).

Similarly, the absorption peaks of fat appeared in the 
absorption coefficient curve of pure fat at 1200, 1715, 
1750, 2125, 2300, and 2340 nm were correspondingly 
noticeable in the sample spectra especially in the high- fat 
content sample. In Figure 1, the two small absorption 
peaks at 930 and 1040 nm in the high- fat content spec-
trum are the combinations of stretching and bending of 
the methyl and methylene (CH2) groups in fatty acids 
(Ozanich et al. 1992). The large absorption peak near 
1200 nm is the second overtone of the C–H stretching 
vibration in fatty acids. Absorption bands 1715 and 
1750 nm related to C–H first stretching overtones and 
at 2125, 2300, and 2340 nm related to C–H combination 
tones (Cozzolino et al. 2002; Hoving- Bolink et al. 2005) 
are all characteristics of fat and fatty acid molecules in 
the sample. Nevertheless, two ‘valleys’ exist in the water 
absorption curve at 1000–1300 and 1600–1850 nm. 
Importantly, the second and first overtone transitions of 
C–H bonds are located at these two spectral windows, 
respectively. These spectral features produce two optical 
windows for C–H bond- selective imaging (Xu et al. 2010; 
Wang et al. 2013).

On the other hand, as the volume fraction of proteins 
in the sample was relatively small and probably <5% in 

high- fat content samples, the contribution by protein 
 absorption peak in minced samples was very small and 
buried in the strong absorption peak of water and fatty 
acids at the same wavelength regions (Tsai et al. 2001) 
because it is responsible for binding most of water content 
in meat samples. The difference among samples in protein 
content related to N–H overtones was usually observed 
at 1187, 1510, 1690, and 2265 nm (Park et al. 2001), 
but most of them were rather difficult to be discerned 
from the sample spectra due to their closeness to fat and 
water absorption bands as these bands are very broad 
(Morsy and Sun 2013). As the position of the fundamental 
absorption bands in the NIR region is very well docu-
mented, they can be used as a starting point in the pre-
diction of the corresponding overtone bands seen in the 
NIR spectrum.

Approximation of spectral patterns

In model 1, without considering the path length value, 
equation (9) calculates only the overall absorption coef-
ficient μa = 0.4343 ∑ μa.i fi and it does not give an esti-
mation of the absorption itself. Because path length l 
values are unavailable of the examined minced meat 
specimens, the calculated overall absorption μa coefficients 
are plotted against the measured values of absorption 
spectrum of only one sample. The resulting exponential 
relationship was then used to convert the calculated 
 absorption coefficient μa to absorbance A as shown in 
Figure 2.

Figure 2. Development of a relationship to calculate absorbance value ‘A’ from absorption coefficients μa = 0.4343 ∑ μa.ifv.i in the near- infrared 
spectral range.
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Figure 3 shows spectra produced by both models (Model 
1 and Model 2) for samples of very low (2.49%) and 
very high (80.60%) fat contents. It was very astonishing 
to find spectral peaks and valleys of the approximated 
spectra by both models were positioned at the same loca-
tions as those of the original measured spectra. However, 
both models failed to locate the O–H absorption peak 
at 970 nm because the magnitude of the absorption coef-
ficient value at this particular band was rather low com-
pared to the other absorption peaks of water at 1440 and 
1920 nm as stated before. Notwithstanding, the accuracy 
of approximating spectra in case of samples of low- fat 
content was not so high, but it was generally concurred 

with the spectral patterns of the measured sample. This 
could be attributed to the physical properties of those 
samples such as particle sizes, particle size distribution, 
and bulk and/or compact density. To overcome this prob-
lem, various spectral transformations could be tried to 
suppress the physical information in NIR spectra because 
it obscures the chemical information (concentrations of 
the chromophores). The accuracy was augmented in case 
of samples of high- fat content in which both models suc-
ceeded to identify all CH absorption peaks at 930, 1200, 
1715, 1750, 2125, 2300, and 2340 nm precisely with almost 
the same values of the absorption magnitudes as the 
original measured spectra.

Figure 3. Approximated spectra resulted from Model 1 (dotted line) and Model 2 (dashed line) for minced meat samples of (A) low- fat content 
(2.49%) and (B) high- fat content (80.6%).

(A)

(B)
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Similarly, the resulting approximated spectra from both 
models compared with the original measured spectra of 
samples of different chemical compositions are shown in 
Figures 4 and 5 for spectral data collected using NIR spec-
troscopy and from hyperspectral images, respectively. As a 
general attitude, spectral behavior was found to be similar 
to that of the measured spectral signature for each sample. 
More positively, the smoothed spectral curves obtained im-
plied that the illustrated spectra could be used to estimate 
spectral responses of the samples for any wavelength of 
interest in the examined NIR range. This is not applicable 
for the visible region where there is a trend for the ap-
proximated data to underestimate or overestimate the meas-
ured spectral values because some essential components such 
as hemoglobin and melanin that are dominant in the visible 
range (van Veen 2006) have not been considered in this 
study. Actually, there was some variation between approxi-
mated and original spectra that could be attributed to pro-
found effects of some vital factors such as: (1) difference 
in environmental conditions such as humidity and tempera-
ture at which reference optical properties were measured 

and those at which spectral data extracted, (2) inconsideration 
of other chemical components (chromophores) such as 
gelatin, collagen, fiber, etc., or any other minor chromophores 
(3) unavailability of experimentally refractive index values 
that should be estimated for the examined samples, and (4) 
unavailability of absorption coefficients for all components 
under experimental conditions. Moreover, if the real values 
of path length were measured heuristically or the extinction 
coefficients (ε) were available for the chromophores in con-
sideration, the performance of the model could be positively 
improved in approximating the spectral signatures. Indeed, 
if one is interested in spectroscopic detection, then the minor 
contributions are important, but if one is interested in un-
derstanding light penetration into the sample and its behavior 
after penetration, then the minor contributions usually do 
not significantly perturb the light transport (Jacques 2013).

Model evaluation

Variation in performance of spectral prediction for sam-
ples of different chemical compositions by the two 

Figure 4. Comparison between measured and approximated spectra produced by Model 1 (dotted line) and Model 2 (dashed line) for minced meat 
samples of different fat contents (3.04–60.56%). The measured spectra (solid line) are extracted from minced samples scanned by near- infrared 
spectroscopy.
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proposed models should be evaluated with some objectively 
statistical measures. Therefore, the approximation capacity 
of the models was evaluated by calculating RMSE (root- 
mean- square error), the RPD (ratio of performance to 
deviation), and index of agreement d. The RMSE calcu-
lated from the following equation is a measure of the 
differences between spectral values predicted by a model 
ŷ

k
 and the spectral values actually measured yk at any 

wavelength k. The value of RMSE represents the standard 
deviation of ‘residuals’ or the differences between pre-
dicted values (by the model) and measured values to 
aggregate the magnitudes of the errors throughout the 
whole spectrum into a single parameter as a measure of 
accuracy. 

(35)

On the other hand, the RPD is a capacity parameter that 
is defined as the relationship between the SD (standard 
 deviation) of the original measured spectrum and the SE 
(standard error) (or ‘RMSE’) of the approximated spectrum 
by the model (Williams 2003; González- Martín et al. 2007). 
The higher the value of RPD was, the greater the probability 
of the model to approximate the spectra would be. According 
to the value of RPD, three categories could be identified to 
indicate the accuracy of approximating the spectrum. The 
RPD value >2.0 denotes robust models that can accurately 
predict the spectrum, models of RPD values in the range 
1.4–2.0 are intermediate models that can be possibly  improved, 
and models falling in RPD values <1.4 are unreliable that 
have no prediction ability (Chang and Laird 2002).

Moreover, index of agreement d suggested by Willmott 
(1982) and used by some other authors (Willmott et al. 
1985; Sivacoumar and Thanasekaran 2001) was calculated 
by the following equation for the assessment of models’ 

RMSE=

�∑n

k=1

�
ŷ

k
−y

k

�2

n

Figure 5. Comparison between measured and approximated spectra produced by Model 1 (dotted line) and Model 2 (dashed line) for minced meat 
samples of different fat contents (6.0–80.0%). The measured spectra (solid line) are extracted from minced samples scanned by near- infrared 
hyperspectral imaging system.
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accuracy. The mean value of the measured and predicted 
spectrum indicates the position of central value about 
which the measurements are distributed, and these two 
should be as close as possible for a good model. 

(36)

The calculated values of these three statistical parameters 
(RMSE, RPD, and d) are presented in Table 1. Basically, 
the ideal model should have value of d close to 1, RMSE 
close to zero and RPD >2. By deep contemplation of the 
results shown in Table 1, one can figure out that the 
capacity of spectrum approximation by both models was 
reasonably adequate for determining spectral signatures of 
minced meat samples of different fat contents. For spectral 
data either from spectroscopy or hyperspectral images, the 
quantitative statistical measures recommended above concur 
with the more qualitative, graphic representations illustrated 
in Figures 3–5. Except the sample of very low- fat content, 
the values of RPD of both models in all cases was >1.4 
with RMSEs ranging from 0.043 to 0.402 indicating robust 
or intermediate models that can be possibly improved.

Closeness to the original measured spectrum was evalu-
ated using the values of agreement index (d) that can 
tell which model is superior over another in approxima-
tion. The values of d indicated that both models performed 
very well in approximating sample spectrum, but Model 
2 was slightly more accurate when fat content was <24.67%. 

Above this threshold, both models performed almost the 
same in approximation with d values over 0.95. Consistent 
with the patterns of d values shown in Table 1, the mag-
nitudes of RMSE errors indicate that Model 2 produces 
relatively smaller errors and larger values of RPD (> 2.0) 
at or above this threshold. The RPD value above 2.0 for 
both models confirms a very good potential of prediction 
for these two models.

Indeed, by accurate estimation of sample’s spectral sig-
nature by either model, the optical properties of each 
chromophore could be then predicted with acceptable 
 accuracy if the difference between the original and ap-
proximated spectra was mathematically minimized. This of 
course could be modeled in a retrieval process to estimate 
the optical properties of the chromophores concomitant 
with their corresponding concentrations. This step is out 
of the scope of the current paper but should be considered 
in our future research endeavors in more details.

Conclusion

In the near- infrared domain, the absorption features re-
sulting from the combination of harmonics and overtones 
of the fundamental frequencies of each chemical bond 
was used as the input to approximate the spectral pat-
terns of minced meat samples of different chemical com-
positions. Two datasets of samples were examined from 
the literature, the first were spectral data in the NIR of 
900–2400 nm for samples scanned by NIR spectroscopy 
and the second were spectral data in the range 

d=1−

∑n

k=1

�
ŷ

k
−y

k

�2

∑n

k=1

���ŷk
− ȳ��+ ��yk
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, 0≤d≤1

Table 1. Statistical measures to evaluate models’ ability to approximate the spectral signatures of minced meat samples having a wide range of fat 
contents.

Fat content (%)

Model 1 Model 2

RMSE RPD d RMSE RPD d

Spectra from NIR spectroscopy
 2.49 0.525 1.105 0.765 0.453 1.282 0.867
 3.04 0.198 2.540 0.946 0.186 2.704 0.972
 5.63 0.402 1.432 0.826 0.353 1.517 0.907
 7.93 0.311 1.676 0.882 0.276 1.888 0.940

 14.30 0.322 1.680 0.879 0.275 1.971 0.942
 24.67 0.183 2.647 0.951 0.219 2.215 0.959
 35.30 0.174 2.834 0.959 0.202 2.441 0.965
 37.06 0.144 3.307 0.970 0.197 2.418 0.965
 43.19 0.139 3.251 0.971 0.220 2.061 0.955
 60.56 0.212 2.745 0.952 0.210 2.775 0.957
 80.60 0.043 6.144 0.998 0.182 2.403 0.966
Spectra from NIR hyperspectral images

 6.0 0.167 1.916 0.924 0.202 1.582 0.914
 8.0 0.198 1.959 0.904 0.251 1.549 0.888

 23.0 0.170 1.802 0.912 0.161 1.907 0.933
 80.0 0.046 5.155 0.992 0.139 1.716 0.919

RMSE, root- mean- square error; RPD, ratio of performance to deviation; NIR, near- infrared.
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950–1650 nm from samples scanned by NIR hyperspectral 
imaging system. The theoretical background of the optical 
properties was first elaborated followed by testing two 
different models. Models exploited the optical properties 
of the main chromophores in the meat samples and their 
corresponding concentration for approximating samples’ 
spectral signatures. The models’ performance was evalu-
ated comprehensively and objectively by some statistical 
 parameters to compare the original signatures of the 
samples with those computed by both models. Results 
revealed that developed models were accurate enough to 
derive spectral signatures of minced meat samples with 
a reasonable level of robustness and consistent with pre-
vailing scientific theory. Possible alternatives of improving 
the capability of the simulation model should be intro-
duced as the model’s performance changes with the 
chemical composition of the samples by considering par-
ticle size, particle size distribution and compactness of 
the samples. However, the proposed model is very useful 
to give an overview of the spectral behavior of the ex-
amined samples as an expeditious way of quality evalu-
ation. Indeed, when applied to intact samples, retrieval 
of the chemical composition is much more complex due 
to the strong absorption of water that masks the weakest 
absorption features of some major compounds such as 
protein and other minor components. Also, sample struc-
ture adds another tough burden of the problem and 
represents additionally confounding factors that complicate 
the assessment of the optical properties. More importantly, 
the proposed models could have relevant impacts on 
industrial applications for food industry that needs to 
know how their products will look like in the market 
under different storage conditions that alter products’ 
chemical composition.
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