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Abstract

Background: The influenza viruses circulating in animals sporadically transmit to humans and pose pandemic threats.
Animal models to evaluate the potential public health risk potential of these viruses are needed.

Methodology/Principal Findings: We investigated the guinea pig as a mammalian model for the study of the replication
and transmission characteristics of selected swine HIN1, HIN2, H3N2 and avian HIN2 influenza viruses, compared to those
of pandemic (H1N1) 2009 and seasonal human H1N1, H3N2 influenza viruses. The swine and avian influenza viruses
investigated were restricted to the respiratory system of guinea pigs and shed at high titers in nasal tracts without prior
adaptation, similar to human strains. None of the swine and avian influenza viruses showed transmissibility among guinea
pigs; in contrast, pandemic (H1IN1) 2009 virus transmitted from infected guinea pigs to all animals and seasonal human
influenza viruses could also horizontally transmit in guinea pigs. The analysis of the receptor distribution in the guinea pig
respiratory tissues by lectin histochemistry indicated that both SAx2,3-Gal and SAx2,6-Gal receptors widely presented in the
nasal tract and the trachea, while SAa2,3-Gal receptor was the main receptor in the lung.

Conclusions/Significance: We propose that the guinea pig could serve as a useful mammalian model to evaluate the
potential public health threat of swine and avian influenza viruses.
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Introduction

Five influenza pandemics have resulted in significant morbidity
and mortality around the world. Genetic analyses revealed that
these pandemic strains were entirely or partially derived from the
viruses of animal origin, including swine and avian strains [1]. So
far, animal influenza viruses have repeatedly transmitted to
humans with increasing genetic diversity, such as avian H5NI
and HIN2 influenza viruses, and swine HINI, HIN2, H3N2
influenza viruses [2,3], which served as an important reminder
that another influenza pandemic is highly likely. Among these
swine and avian influenza viruses, in addition to highly pathogenic
H5NI1 avian influenza viruses, many low pathogenic viruses are
also high on the list of candidates that could potentially cause the
next human pandemic. The efficiency of transmission is a key
factor in determining the severity of influenza epidemics. Despite
evidence for limited human-to-human transmission of some
animal influenza viruses, they have yet to exhibit sustained
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transmission among humans [4,5]. However, with typical human
flu-like illness in humans [6,7] that may be unrecognized, these less
pathogenic animal viruses can develop the ability of human-to-
human transmission. Thus, a mammalian disease model is needed
to evaluate the epidemic potential of these viruses.

Mice are a common mammalian model used in influenza
research but are not ideal for transmission studies and even the 1918
pandemic strain could not transmit between mice [8]. Ferrets,
however, are susceptible to influenza infection and develop similar
symptoms to humans and effectively transmit between individuals.
Nevertheless, the ferret model presents several practical disadvan-
tages [9]. Recently, guinea pigs have been shown to be an
acceptable alternative mammalian model for the study of human
influenza A virus transmission [10-12]. Guinea pigs are an
attractive model host due to their high susceptibility to and ability
to transmit low-passage human isolates (in contrast to mice), and
based on several practical considerations such as size and cost, make
them considerably more convenient for research purposes than
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ferrets [8]. Additionally, guinea pigs were also proposed as a useful
model to understand the virus-host interactions in influenza A virus
infection [13] because they possess similar innervations in the
airway to humans [14] and also have human-like bronchus-
associated lymphoid tissue in lungs [15].

Host receptor expression is one of the important factors influence
the infection of the respiratory tracts by influenza viruses. The HA
protein of influenza viruses initiates infection by binding sialic acid
(SA) which are bound to glycans through an 2,3 or 2,6 linkage
[16]. In general, human influenza viruses have a binding preference
for SAa2,6-Gal and avian influenza viruses preferentially binding
SA02,3-Gal [17,18]. The distribution of these two forms of sialic
acid compounds is known to be cell and species specific. Thus, host
receptor distribution is an important factor in consideration when
evaluating an animal model.

Thus far, influenza studies using the guinea pig model have
been performed with 1918 pandemic [19], 2009 pandemic HINI
[11], seasonal human HINI and H3N2 [10,13], and avian H5N1
influenza viruses [15,20,21], but little is known about other swine
and avian influenza virus infections, particularly those isolated in
recent years. To evaluate the applicability of the guinea pig model
for swine and avian influenza viruses, we describe the infectivity
and transmissibility in guinea pigs of the subtypes of viruses that
repeatedly transmit to humans (swine HIN1, HIN2, H3N2 and
avian HIN? influenza viruses) compared with 2009 pandemic and
human seasonal influenza viruses. Additionally, the expression of
SAa2,3-Gal and SAa2,6-Gal linked receptors in guinea pig
respiratory tissues were determined.

Results

Replication of human, swine and avian influenza viruses
in guinea pigs

To evaluate the replication of human, swine and avian influenza
viruses in guinea pigs, groups of 15 animals were anesthetized and
intranasally inoculated with 10° 50% egg infective dose (EIDs0) of
each virus listed in Table 1. On days 2, 4, 6, and 8 post-inoculation
(p-1.), three animals from each group were anesthetized and the
tracheas, lungs, hearts, livers, spleens, kidneys, brains, and colons
were collected for virus titration. Nasal washes from the remaining
three animals were collected on days 2, 4, 6, and 8 p.1., and titrated
by EIDso assay. The study indicated that, similar to human
influenza viruses, all swine and avian influenza viruses used in this
study replicated efficiently in the nasal passages of guinea pigs, with
peak virus titers in nasal washings ranging from 10** to 10°%°
EIDso/mL. The virus titer of BJ/317/09 (HIN1) was lower than
those of other pandemic 2009 (HIN1) virus reported previously
[22], possibly due to strain specificity. Most viruses grew to peak
titers on day 2 p.i. in the nasal passages of inoculated guinea pigs
and dropped to undetectable levels by day 8 p.i.. However, Sw/
GD/211/06 (H3N2), Sw/GD/968/06 (H3N2) and Qa/HK/G1/
97 (HIN2) strains possessed different shedding kinetics and were
cleared more slowly from the guinea pig nasal passages than other
viruses (Fig. 1 A-D). The nasal virus titers of these three virus-
infected animals remained high (>10>° EID5,/mL) on day 6 p.i.. In
particular, the Qa/HK/G1/97 (HIN2) virus still replicated well in
nasal passages on day 8 p.i. with mean titers of 10°* EID5o/mL.

Compared to nasal passages, tracheas and lungs had much lower
virus titers and viruses were cleared more quickly from these organs
(Table 2). Two human seasonal influenza viruses were not detected
in the lower respiratory tract, while the 2009 pandemic HINT1 virus
could replicate in the lung. For animal influenza viruses, only the
Sw/E]/204/07 (HIN1), Sw/GD/1222/06 (HIN2), Qa/HK/G1/
97 (H9N2) and Ck/SD/1/06 (HIN2) viruses could be detected in
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the lung. All of these viruses could not be detected in tracheas and
lungs on day 8 p... It is interesting that the European avian-like
swine HIN1 (Sw/F]J/204/07) and North American triple HIN2
(Sw/GD/1222/06) viruses, that were proposed to be the progenitors
of 2009 pandemic HINTI influenza viruses, both replicated more
efficiently and distributed in more tissues than other swine influenza
viruses, similar to the 2009 pandemic HIN1 virus (BJ/317/09). No
virus was detected in other organs, including heart, liver, spleen,
kidney, brain and colon during the observation period. Taken
together, the replication of tested influenza viruses was restricted to
the respiratory system of guinea pigs and virus replication in the
upper respiratory tract was higher than in the lower respiratory
tracts. Similar to human strains, swine and avian influenza viruses
replicated efficiently in nasal tracts without prior adaptation.

Histopathology of human, swine, and avian influenza
viruses in guinea pigs

To compare the histopathological changes in human, swine, and
avian influenza viruses in guinea pigs, the nasal, trachea, and lung
specimens from infected animals on day 4 p.i. were fixed in 10%
neutral buffered formalin and processed for routine histology. The
representative histopathology changes are shown in Fig. S1. A-L.
Nasal lesions in infected guinea pig were characterized by
phlebectasia and congestion in the submucosal capillaries and veins
(Fig S1 A-C), dropout of the mucous epithelium and erythrocytes
adhering to the surface of the mucosa (Fig S1 D). The tracheal
mucous membrane showed edema and thickening (Fig S1 E) and
dropout of tracheal epithelial cells (Fig S1 G, H). The infected lungs
showed bronchiolitis with inflammatory cellular infiltrate and
dropout of mucous epithelial cells in the bronchioles (Fig S1 I),
peribronchiolitis was also observed with edema and inflammatory
cells infiltrate around bronchioles and blood vessels (Fig S1 I, K).
The results suggested that the tested viruses showed varying levels of
pathological lesions. In particular, the histopathological changes in
guinea pigs infected with Qa/HK/G1/97 were more severe than
those caused by other viruses. In this group, the epithelial cells of the
tracheal mucosa were severely desquamated resulting in exposure of
the lamina propria (Fig SI H). Severe bronchiolitis, peribronchi-
olitis, and bronchopneumonia were also observed with alveolar
lumens and bronchioles flooded with edema fluid mixed with fibrin,
erythrocytes, and inflammatory cells (Fig S1 L). For the tissues in
virus was not detected, lesions were mild or absent (Fig S1 F, J).

Transmission of human, swine, and avian influenza
viruses in guinea pigs

We next tested the propensity of the viruses to be transmitted by
direct contact. Briefly, groups of three animals were intranasally
inoculated with 10° EIDs, of tested virus and housed in a cage. At 24
h p.i., three naive guinea pigs were placed in the same cage for each
virus. On days 2, 4, 6, and 8 p.., the nasal washings of the three
inoculated animals and three contact animals were collected and
titered by EIDj5q assay. Evidence of transmission was based on the
detection of virus in the nasal washing and seroconversion at the end
of the three-week observation period. All of the viruses replicated
efficiently in inoculated animals, as for the replication study;
however, the transmissibility of these viruses in guinea pigs was
variable. As shown in Fig. 2 and Table 1, transmission of BJ/317/09
(HINT1) virus occurred with 100% efficiency: all three exposed
animals were detected to be positive on day 3 post-exposure
(corresponding to day 4 p.i.). The two seasonal human influenza
viruses transmitted less efficiently with only one of three and two of
three exposed animals becoming infected, respectively. However, no
virus shedding or seroconversion was detected in any direct contact
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Figure 1. Growth kinetics of pandemic H1N1. (A), seasonal human (B), swine (C), and avian (D) influenza viruses in the nasal passages of guinea
pigs. Groups of three guinea pigs were intranasally inoculated with 10° EIDs, of virus. Nasal wash titers (mean + SD) are plotted on days 2, 4, 6, and 8
p.i. Nasal wash titers of different strains are represented by different colors. The lower limit of detection was 10" EIDso/mL.

doi:10.1371/journal.pone.0015537.g001

animal of swine and avian influenza viruses. These results
demonstrate that although the swine and avian influenza viruses
replicated effectively in the inoculated guinea pigs, they lacked
successful direct contact transmissibility. As no contact transmission
occurred for swine and avian influenza viruses, we did not test the
propensity of influenza viruses to be transmitted via the aerosol route.

Of note, we observed that guinea pigs in the inoculated group
and contact group of BJ/317/09 (HINI1) infections began to
sneeze on days 3 and 4 p.1., respectively. Some guinea pigs in the
GD/41/06 (HINI) infected group also sneezed during the
observation period. Except for sneezing, no other clinical
abnormalities were observed in any of the animals during the
observation period.

Receptor distribution in the respiratory system of guinea
pigs

We examined the receptor binding specificity in the respiratory
tract of guinea pigs by lectin histochemistry assay. Biotinylated
Maackia amurensis lectin II (MAA 1), and Sambucus nigra agglutinin
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(SNA) were used to detect SAa2,3-Gal and SAa2,6-Gal linked
receptors, respectively. In the nasal tract, both the SAa2,3-Gal and
SAa2,6-Gal receptors were widely expressed by stratified squamous
epithelial cells, vascular endothelial cells and the epithelial cells of
the serous gland (Fig. 3 A, B). In the trachea, both of SA«2,3-Gal
and SAa2,6-Gal receptors were widely expressed by epithelial cells
of the tracheal mucosa (Fig. 3 D, E). In the lungs, SA«2,3-Gal
receptor was mainly expressed by the alveolar cells and the vascular
endothelial cells and was also expressed by the bronchial mucosa
epithelial cells, however, SAa2,6-Gal receptor was only rarely
expressed in the alveolar cells (Fig. 3 G, H). Taken together, the data
suggested that SAa2,3-Gal and SAa2,6-Gal receptors were present
in the nasal and tracheal areas of the guinea pig. In contrast,
SAa2,3-Gal was the dominant receptor type in the lung.

Discussion

In the present study, we investigated the guinea pig as a
mammalian model for the study of the replication and
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Table 2. Replication of influenza viruses in guinea pigs.

Swine and Avian Influenza Viruses

Virus (Subtype)

No. of positive guinea pigs/total no. of guinea pigs on dpi (mean virus titers [ log,oEIDso/gram]+SD)?

2 4 6

Trachea Lung Trachea Lung Trachea Lung
BJ/317/09 (H1N1) 3/3(3.4%+0.1) 3/3(3.7%+0.1) 3/3(3.3+0.1) 2/3(2.1+1.6) 1/3(3.3) 0/3
GD/41/06 (HINT1) 3/3(3.5%+0.3) 0/3 3/3(1.8%+1.3) 0/3 0/3 0/3
JX/262/05 (H3N2) 3/3(3.6%0.3) 0/3 3/3(3.3%0.1) 0/3 1/3(<) 0/3
Sw/GD/33/06 (H1N1) 3/3(2.6*+1.4) 0/3 3/3(24%1.2) 0/3 1/3(<) 0/3
Sw/FJ/204/07 (HIN1) 2/3(3.4+0.2) 2/3(3.4+0.2) 3/3(3.4+0.2) 2/3(3.3+0.1) 1/3(3) 1/3(3.3)
Sw/GD/1222/06 (H1N2) 2/3(3.4+0.2) 3/3(3.7+0.1) 1/3(3.0) 3/3(3.2+0.1) 1/3(<) 3/3(1.7+1.2)
Sw/GD/7/06 (H3N2) 2/3(3.5+0.4) 0/3 1/3(3.5) 0/3 1/3(3.0) 0/3
Sw/GD/211/06 (H3N2) 0/3 0/3 1/3(4.3) 0/3 1/3(4.0) 0/3
Sw/GD/811/06 (H3N2) 0/3 0/3 0/3 0/3 0/3 0/3
Sw/GD/968/06 (H3N2) 1/3(3.5) 0/3 2/3(23*+1.8) 0/3 0/3 0/3
Qa/HK/G1/97 (HIN2) 3/3(4.0+0.7) 3/3(4.3+0.7) 0/3 0/3 0/3 0/3
Ck/SD/ZB/07 (HON2) 1/3(3.3) 3/3(3.8+0.5) 1/3(3.3) 3/3(3.4%0.3) 0/3 0/3
Ck/HeB/LC/08 (H9N2) 1/3(<) 0/3 0/3 0/3 0/3 0/3

doi:10.1371/journal.pone.0015537.t002

transmission characteristics of selected swine HIN1, HIN2, H3N2
and avian HIN2 influenza viruses. We compared these charac-
teristics to those of pandemic (HIN1) 2009, and seasonal human
HIN1 and H3N2 influenza viruses. Our results showed that all the
tested swine and avian influenza viruses replicated effectively in
guinea pig nasal tracts without prior adaptation and the
replication of these viruses was restricted to the respiratory system.
The replication characteristics of swine and avian influenza viruses
were similar to those of pandemic (HIN1) 2009 and seasonal
human HINI1, H3N2 influenza viruses in addition to those of
other influenza viruses reported by previous studies [13,19,21].
Moreover, some swine and avian viruses (namely, Sw/GD/211/
06 (H3N2), Sw/GD/968/06 (H3N2) and Qa/HK/G1/97
(HON2) viruses) were cleared more slowly from the guinea pig
nasal passages than pandemic (HIN1) 2009 and seasonal human
viruses. Histopathological analyses indicated that no significantly

B GD/41/06 (H1N1)

<, virus was detected in the undiluted samples. The lower limit of detection was 10" EIDso/mL of tissue homogenate.

different pathological changes between human, swine and avian
influenza viruses upon infection of the guinea pig. Of note,
however, the histopathology after Qa/HK/G1/97 (HIN2)
infection was the most severe of the viruses tested.

Pandemic (HIN1) 2009 influenza viruses possess effective
human-to-human transmission ability and rapidly spread around
the world. Similar to the transmissibility in humans, the
transmission results in the present study in guinea pigs indicated
that the 2009 pandemic virus can be passed from infected guinea
pigs to all the uninfected contacts. Steel et al. has also demonstrate
that transmission of a pandemic (HINT) 2009 strain occurred with
100% efficiency in guinea pigs [11]. Two human seasonal viruses
also showed transmission between guinea pigs. Additionally, Lamb
et al. reported that during the 1918 epidemic, a parallel outbreak of
pneumonial disease among their laboratory guinea pigs emerged
[23]. Although sporadic instances of human infection with swine

C Jx/262/05 (H3N2)

Nasal wash titer (logy oEIDg/ml)

A BJ/317/09 (H1N1)

= 8- = 8-
5 5
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Figure 2. Contact transmission of pandemic H1N1 BJ/317/09, seasonal human H1N1 GD/41/06, and seasonal human H3N2 Jiangxi/
262/05 in guinea pigs. Three guinea pigs were intranasally inoculated with 10° EIDs, of BJ/317/09 (A), GD/41/06 (B) or JX/262/05 (C) viruses and
housed in a cage for each virus. At 24 h p.i,, three naive guinea pigs were placed in the same cage for each virus. Nasal washing titers are plotted as a
function of time post-inoculation. Titers of intranasally inoculated animals are represented by dashed lines and filled squares; titers of exposed guinea
pigs are shown with solid lines and filled triangles.

doi:10.1371/journal.pone.0015537.9002
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Figure 3. Receptor distribution in the respiratory system of guinea pigs. Tissue sections were stained with MAA Il (specific for binding the o-
2,3-linked sialic acid) (A, D and G) or SNA (specific for binding the a-2,6 linked sialic acid) (B, E and H). C, F, and |, neuraminidase pre-treatment was
applied prior to lectin staining. After pretreatment with neuraminidase, neither MAA Il nor SNA showed a positive reaction. This confirms the
specificity of both lectin stainings. A-C, nasal mucosa. (A) MAA staining is visible on stratified squamous epithelial cells ( 1) and vascular endothelial
cells (ﬂ). (B) SNA staining is identified on stratified squamous epithelial cells ( 1) and vascular endothelial cells (ﬂ). D-F, trachea. (D) MAA Il staining is
visible on almost all epithelial cells ( 7). (E) SNA staining is visible on almost all epithelial cells (7). G-I, lung. (G) MAA Il staining is positive on alveolar
cells (1), vascular endothelial cells ([[) and bronchial mucosa epithelial cells (A). (H) Except for some alveolar cells (1), SNA staining is negative. C, F
and |, following pre-treatment with neuraminidase, neither MAAII nor SNA shows positive reaction. This confirms the specificity of both lectin stains.

Scale bar, 50 um.
doi:10.1371/journal.pone.0015537.g003

and avian influenza viruses occur, human-to-human transmission
1s rare. The transmission phenotype of swine and avian influenza
viruses in guinea pigs was similar to those found in the human
population. Tested swine and avian influenza viruses could
replicate effectively in the respiratory system of guinea pigs,
however, none could be transmitted from infected guinea pigs to
contact animals. Taken together, the experimental transmission of
human, swine and avian influenza viruses in guinea pigs correlated
well with the transmissibility of these viruses in humans. These
studies show the utility of the guinea pig model for not only the
evaluation of the transmissibility of pandemic influenza strains,
human seasonal viruses and H5NT1 influenza viruses, but could
also be used for low pathogenic swine and avian influenza viruses
to help recognize the strains that possess potential human-to-
human transmission ability.

The genetic composition of the 2009 pandemic HIN1 viruses
probably resulted from the reassortment of recent North American
H3N2 and HIN2 swine viruses (i.e., avian/human/swine “triple”
reassortant viruses) with Eurasian avian-like HIN1 swine viruses
[24]. In the present study, the shedding kinetics and tissue tropism
of Sw/GD/1222/06 (HIN2, North American triple) and Sw/F]J/
204/07 (HIN1, European avian-like swine) were similar to BJ/
317/09 (HINI, pandemic) and support the proposed origin of
pandemic HINI influenza virus. However, the transmission
phenotypes of these swine influenza viruses were significantly
different from those of the 2009 pandemic strain. The 2009
pandemic influenza virus was able to transmit efficiently from
inoculated guinea pigs to all exposed animals, while no
transmission was observed for the swine influenza viruses. Thus,
further studies are needed to determine how swine viruses that lack
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human-to-human transmissibility acquired efficient transmissibil-
ity resulting in current pandemic strains.

Many studies have demonstrated that the guinea pig was a good
animal model for influenza transmission research, however, the
reason for the susceptibility of guinea pigs to influenza infection is not
yet clear. Tang et al. proposed that the nasal epithelial cells of guinea
pigs support influenza virus growth along with the excessive nasal
mucus secretions and these factors may contribute to the
susceptibility of guinea pigs to droplet spread [13]. In the present
study, sneezing was often observed in all the guinea pigs infected by
the 2009 pandemic HINT influenza virus and this strain had the
most efficient transmissibility in this study. Sneezing is a clinical sign
of humans infected with influenza virus and is usually observed in
ferrets infected with influenza virus, and is considered an important
ability of a virus for the efficient respiratory droplet transmission to
elicit symptoms that promote expulsion of virus from the host [25].
Although previous studies have not reported such clinical signs in
influenza virus infected guinea pigs, sneezing in guinea pigs is usually
measured in studies for antigen-induced rhinitis [26,27]. Here, we
propose that sneezing is perhaps another reason that guinea pigs
should be considered an ideal influenza transmission model host.

Host receptor expression is one of the factors important for
infection of host cells by influenza viruses. We examined the
receptor specificity of the guinea pig respiratory system. The
results obtained in this study by histochemistry were similar to
those of Gao et al. found by fluorescence [21]. We found a
widespread presence of both SA%2,6-Gal (SNA) and SAa2,3-Gal
(MAA 1II) receptors in the nasal tract of guinea pigs, which suggests
that these organs are potential targets for avian, swine and human
influenza viruses. The results of animal experiments performed in
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this study, in addition to previous studies, demonstrated that the
human, swine and avian influenza viruses replicated efficiently in
this area of guinea pigs. Furthermore, virus replication at this site is
likely to result in viruses that can be readily shed to infect other
animals leading to the efficient transmission of influenza viruses in
guinea pigs. The SAa2,6-Gal receptor is rarely detected in the
upper respiratory tract of BALB/c mice, while SAx2,6-Gal is
widespread on epithelial cells of the upper airways of humans
[18,28]. Therefore, compared with mice, guinea pigs that express
both SAa2,3-Gal and SAa2,6-Gal in the upper respiratory tract
reflect a similar anatomy to that of humans.

In summary, we found the high susceptibility of guinea pigs to
swine and avian influenza viruses, the correlation of transmissi-
bility of these animal influenza viruses in guinea pigs with those in
humans and the similar receptor distribution in the respiratory
system of guinea pigs to those of humans. Additionally, guinea pigs
possess many other human-like characteristics, including airway
innervation [14], bronchus-associated lymphoid tissue in the lung
[15] and response to various mediators [29]. Thus, we suggested
that guinea pig could be used as an appropriate animal model for
evaluating the potential threat of swine and avian viruses for
humans. Animal influenza viruses are repeatedly introduced into
humans and frequent reassortment and evolution often occurs. To
this end, the guinea pig model offers a useful animal model to
assess circulating strains that could challenge human public health
and an important tool for pandemic preparedness worldwide.

Materials and Methods

Ethics Statement

All animal research was approved by the Beijing Association for
Science and Technology, the approve 1D is SYXK (Beijing) 2007-
0023, and complied with the guidelines of Beijing laboratory
animal welfare and ethical of Beijing Administration Committee of
Laboratory Animals.

Viruses

The 2009 pandemic HINT virus, human seasonal HIN1 and
H3N2, swine HINI1, HIN2 and H3N2, and avian HI9N2
influenza viruses were used in this study (Table 1). Human
seasonal HIN1 GD/41/06 and H3N2 JX/262/05 viruses were
kindly provided by Dr. G. F. Gao (Institute of Microbiology,
Chinese Academy of Sciences). The avian HIN2 influenza Qa/
HK/G1/97 virus was kindly provided by Dr. H. Kida (Hokkaido
University Graduate School of Veterinary Medicine). The
pandemic (HIN1) 2009 BJ/317/09 viruses, swine and other avian
influenza viruses were isolated by our laboratory in China, as
previously described [30,31].

Replication of viruses in guinea pigs

Hartley strain female SPF/VAF guinea pigs weighing 300—
350 g that were seronegative for influenza virus were used in these
studies and were obtained from Vital River Laboratory Animal
Technology. Zoletil 100 (tiletamine-zolazepam; Virbac S.A.,
Garros, I'rance) (1015 mg/kg) were used to anesthetize animals
by intramuscular injection.

To investigate the replication of human, swine and avian
influenza viruses in the guinea pig model, groups of 15 animals
were anesthetized and inoculated intranasally with 10° EIDs, of
tested virus in a 300 pL volume (150 pL on each side). On days 2,
4, 6, and 8 post-inoculation (p.1.), three animals from each group
were ecuthanized and tracheas, lungs, hearts, livers, spleens,
kidneys, brains, and colons were collected for virus titration in
eggs. Nasal washes from the three remaining animals were
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collected on days 2, 4, 6, and 8 p.1., and titrated by EID;, assay.
Nasal washing was performed by instilling a total of 1 mL of PBS
containing antibiotics (Gibco) into the nostrils and collecting liquid
runoff into a sterile Petri dish. These three animals were also
observed for two weeks for body weight and temperature, signs of
disease, and tested for seroconversion on day 21 p.i..

Contact transmission in guinea pigs

Groups of three animals were intranasally inoculated with 10°
EIDs5q of tested virus and housed in a cage. At 24 h p.i., three
naive guinea pigs were placed in the same cage and co-housed in
this way for a total of 20 days. On days 2, 4, 6, and 8 p.1., the nasal
washes of the three inoculated animals and three contact animals
were collected and titered for EID5 assay. All of the animals were
humanely euthanized on day 21 p.i. and tested for seroconversion.

Histopathology

On day 4 p.., the nasal, trachea and lung specimens from
inoculated guinea pigs were fixed in 10% neutral buffered formalin,
routinely processed, and embedded in paraffin. Four-micrometer
sections were stained with hematoxylin and eosin (HE).

Detection of SAa2,3-Gal and SAx2,6-Gal receptors in
guinea pig respiratory tissues

Biotinylated Maackia amurensis lectin II (MAA 1I), which is
specific for a-2,3-linked sialic acid, and biotinylated Sambucus Nigra
(Elderberry) bark lectin (SNA), specific for binding the a-2,6 linked
sialic acid, were purchased from Vector Laboratories (Burlingame,
CA, USA).

Two female Hartley SPF/VAF guinea pigs were euthanized
and the nasal, trachea and lung tissues were fixed in 10% (w/v)
neutral-buffered formalin for 2448 h, and 4-um thick paraffin-
embedded tissue sections were made. Sections were stained with
biotinylated sialic acid-specific lectins (MAA II or SNA) and the
method of lectin histochemistry was performed as described by
Yao et al. [32]. Briefly, paraffin-embedded serial sections were de-
paraffinized and immersed in 3% hydrogen peroxide to eliminate
endogenous peroxidase activity. A solution of 5% bovine serum
albumin was used as the blocking agent to avoid non-specific
staining. Sections were next incubated with SNA (0.625 g/mL)
and MAA II (1.25 g/mL) at 4°C overnight. Serial sections of the
same tissue were also incubated with PBS instead of lectin as
negative controls. Optimal contrast between the specific labeling
and the background was obtained with the use of a SABC kit
(Dako, Carpinteria, CA, USA). Biotinylated lectin binding was
visualized using a DAB (3,3'-diaminobenzidine-tetrahydrochlor-
ide) substrate chromogen kit (Zymed Labs, San Francisco, CA,
USA) and slides were counterstained with hematoxylin.

Neuraminidase pre-treatment

To confirm the specificity of the lectin stains, neuraminidase
pre-treatment was performed. Because neuraminidase digests both
a-2,3-linked and o-2,6-linked sialic acid residues, negative lectin
staining after neuramidase pre-treatment would indicate that the
lectin used was specific for detection of o-2,3-linked and o-2,6-
linked sialic acids. Neuraminidase pre-treatment was performed as
described by Yao et al. [32]. Briefly, the paraffin-embedded tissue
sections were de-paraffinized and immersed in 3% hydrogen
peroxide to eliminate endogenous peroxidase activity. Slides were
covered with 12.5 U/uL neuraminidase solution (NEB, Ipswich,
MA, USA) and incubated for 24 h at 37°C. Slides were washed
three times with PBS and 5% BSA was used to block non-specific
straining. Lectin staining was subsequently performed as described
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above. Additional negative controls were performed by using slides
incubated with PBS instead of neuraminidase.

Supporting Information

Figure S1 Representative histopathological changes in
HE stained nasal tissues (A-D), tracheas (E-H) and
lungs (I-L) from guinea pigs on day 4 p.i.. (A) BJ/317/09
(HIN1) wvirus. Phlebectasia and congestion in submucosal
capillaries and veins (7). (B) Sw/GD/811/06 (H3N2) virus.
Edema (1) and congestion (f). (C) Sw/GD/1222/06 (HIN2)
virus. Disorganization of epithelial cells ( 1 ); phlebectasia (ﬂ) and
hemorrhage in mucus (A). (D) Qa/HK/G1/97 virus. Desquama-
tion of the mucosal epithelium, inflammatory cells and erythro-
cytes adhering to the surface of mucosa (7). (E) BJ/317/09
(HINT) virus. Tracheal mucus membrane edema and thickening
(1) (F) Sw/GD/811/06 (H3N2) virus. Except for mild edema
(1), almost no lesions were present. (G) Sw/GD/1222/06 (HIN2)
virus. Dropout of mucous epithelium in trachea ( 1). (H) Qa/HK/
G1/97 (HIN2) virus. Severe lesion of epithelial cells of tracheal
mucosa (7). (I) BJ/317/09 (HINI1) virus. Desquamation of
epithelial cells of tunica mucosa bronchiorum in the bronchial
lumen (1) and a large number of inflammatory cell infiltrates
around blood vessels, bronchi and pulmonary alveolus (ﬂ) (J) Sw/
GD/811/06 (H3N2) virus. Except for mild damage to the
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bronchioles (1), almost no lesions were noticeable. (K) Sw/GD/
1222/06 (HIN2) virus. A large number of inflammatory cell
infiltrates around the blood vessels (1). (L) Qa/HK/G1/97
(HON2) virus. Disappearance of the normal structure of lung
tissues; some bronchi were occluded with cellular debris, mucus
and immune cells (1); the whole lung tissues were filled with red
blood cells, immune cells and inflammatory exudates. Scale
bar = 50um.
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