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Proposed is a procedure to test whether a genomic sequence contains coding DNA, called a coding potential region. The procedure
tests the coding potential of conserved short genomic sequence, in which the assumptions on the probability models of gene
structures are relaxed. Thus, it is expected to provide additional candidate regions that contain coding DNAs to the current
genomic database. The procedure was applied to the set of highly conserved human-mouse sequences in the genome database
at the University of California at Santa Cruz. For sequences containing RefSeq coding exons, the procedure detected 91.3% regions
having coding potential in this set, which covers 83% of the human RefSeq coding exons, at a 2.6% false positive rate. The procedure
detected 12,688 novel short regions with coding potential at the false discovery rate <0.05; 65.7% of the novel regions are between
annotated genes.

1. Introduction

A popular computational strategy in identifying coding DNA
of the human genome is using probability models. For
example, for a single genome, one approach would be to use
probability models to delineate a DNA sequence into a gene
which is composed of several parts such as promoter regions,
UTR regions, splicing sites, exons, and so forth [1]. Alterna-
tively, by considering a genome (e.g., human) together with
the genome of a suitably related species (e.g., mouse), one
can combine the conserved information of the two species
to develop a more refined probability models for the gene
portions (ROSETTA [2], CEM [3], TWINSCAN [4], SLAM
[5], and SGP2 [6–8]). While these approaches have been
effective in predicting genes, a noticeable drawback is that
the more refined a probability model is, the more constraints
there are for a DNA sequence to be a gene. In effect, a
highly refined probability model tends to overparameterize
the problem, and thus inevitably restrain the ability of a
gene prediction algorithm for identifying genes, especially
those that do not fit well with the “prescribed characters”
delineated by the probability model; see for example [9].
To compensate such restraint, some algorithms report genes

that are not the best fit to the model (e.g., suboptimal genes
in GENSCAN).

Noting the limitations of existing approaches motivated
our interest to identify coding potential regions. That is,
to localize regions that contain coding DNA, we develop
procedures that determine the coding potential of short
regions. Instead of slightly relaxing the restraints on gene
structure, such as in the prediction of suboptimal genes in
GENSCAN, the proposed method tries to make probabilistic
assumptions on gene structure as few as possible. The
approach employs a locally smooth function, that is, the
lowess function [10]. The key idea is that the signal contained
in each codon is generally faint and not strong enough to
stand out from the background noise, but fortunately each
coding exon in the gene is made of a block of codons, so
that by using a locally smooth function one is able to collect
the strength of such faint signals from codons together to
determine the coding potential of the region. The proposed
procedure is mainly based on probability models for the
nucleotide dependency in codons and the dependency of
nucleotide triplets across different sequences. A log-odds
ratio is calculated for each triplet in the human genome,
to measure the likelihood of the triplet being random or a
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Figure 1: Summary of the proposed statistical procedure.

codon [7, 11–13]. The intuition is that when there is a coding
exon in the aligned sequences, there is the associated peak in
the log-odds ratio. Therefore, the coding potential of a region
can be viewed as the presence of a peak in the sequence of
log-odds ratios, under the expectation that a locally smooth
function may be useful. The difference between the proposed
method and the existing gene prediction method is that it
tries to tell whether a sequence contains a coding region or
not instead of trying to obtain the boundary of a coding
exon in the sequence. The nonparametric nature of such an
approach is expected to provide regions in genes with novel
structure.

2. Method

The proposed procedure is detailed schematically in Figure 1.
First, given the likelihood of an aligned triplet pair from a
codon, the aligned sequence pair is segmented into aligned
triplet pairs and transformed into log-odds ratios. Second,
a window frame with a given size slides through the series
of log-odds ratios and the average log-odds ratio in each
window frame is obtained. Third, the average log-odds ratio
is smoothed by a locally smooth method [10], that is, the
lowess method, which is a robust locally weighted regression.
Finally, the largest local maximum of the corresponding

lowess function is selected as the test statistic and the
approximate p-value of the test statistic is proposed. The
proposed method brings statistical tools such as the locally
smooth function to the coding potential detection problem.
It treats the coding potential problem as a peak hunting
problem. The proposed method not only realizes the optimal
accuracy suggested by [12], but also detects novel regions
with high coding potential.

2.1. Hypotheses. The proposed procedure is based on the
observations that functional elements, such as the codons
of exons, tend to be more strongly conserved in evolution
than random genomic sequences and that adjacent codons
tend to depend on each other. The method is applicable to
data that consists of genomic sequences of interest, called
the target sequence, and sequences from a related species that
are aligned to the target sequence, called the information
sequence. The test of the alignment discriminates between the
following hypotheses:

(H0) all the DNA in the target sequence is not coding,

(H1) a proportion of the DNA in the target sequence is
coding.

Thus, a region has coding potential when (H0) is rejected.

2.2. Model. The approach to determine a region’s coding
potential is to use information provided by the log-odds ratio
of the aligned triplet pairs in the given alignment. The log-
odds ratio is defined as follows. Denote a pair of aligned
sequences X = {h1, . . . ,hL;m1, . . . ,mL}, where hi’s are non-
overlapping triplets in the target sequence and mi is the
triplet in the information sequence aligned to hi. The log-
odds ratio (LOD) at each position i, i = 2, . . . ,L, is

LODi = log
PA(hi | hi−1)PB(mi | hi)
QA(hi | hi−1)QB(mi | hi)

, (1)

where probability matrix PA gives the conditional probability
of observing codon hi given the previous codon hi−1, PB gives
the conditional probability of observing an aligned triplet
mi given codon hi, QA gives the conditional probability of
observing a triplet hi from noncoding regions given the
previous triplet hi−1, andQB gives the conditional probability
of observing an aligned triplet mi given hi from noncoding
regions.

The concept of constructing a test statistic that identifies
an exon based on the log-odds score is that for a target
sequence containing an exon; when the partitioning of the
alignment into aligned triplets is correct, there is a position
l0 and a position l1 such that hl0 , . . . ,hl1 are codons while
h1, . . . ,hl0−1 and hl1+1, . . . ,hL are not codons. Therefore, l0
and l1 are the two points where the underlying distribution
of Xj = (hj ,mj) switches between that of the random
triplet-triplet alignment and the codon-triplet alignment,
thus resulting in the log-odds ratios between l0 and l1 with
a higher mean. When using a nonparametric method to
smooth the log-odds ratios, the corresponding curve of the
smoothed log-odds score versus its location in the alignment
will show a peak between l0 and l1.
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To obtain the value of the test statistic from a given
alignment, the first step is to partition the alignment into
aligned triplets so that the codons are in the correct frame
and the correct DNA strand when the alignment contains a
coding exon. To obtain the segmentation, the average log-
odds ratio, Si,w0 =

∑w0
j=1 LODi+ j−1/w0, is calculated for each

block of w0 aligned triplet pairs for both the alignment and
the reverse complement of the alignment. The block that
attains the maximum Si,w0 is extended toward both ends of
the alignment in units of aligned triplet pairs. Removing any
partial triplet pairs at the both ends of the alignment, the
segmentation and the strand of the alignment is obtained
and denoted by X = {h1, . . . ,hL;m1, . . . ,mL}.

Given the selected segmentation and strand, X =
{h1, . . . ,hL;m1, . . . ,mL}, the average log-odds scores, Si,w =∑w

j=1 LODi+ j−1/w, are obtained for the ith aligned triplet
pair, where LODk is defined in (1) and w is a parameter.
Because the nucleotides in the noncoding region are less
conserved in evolution, the nucleotides in noncoding regions
are assumed to be independent, so Si,w is approximately
normally distributed when w is large enough.

The function lowess() in the R standard package
(http://www.r-project.org/) is used to smooth the average
log-odds scores. A smoothing parameter f determines the
fraction of neighboring data points to be used in smoothing.
Since longer exons tend to have longer alignments, f is fixed
for all alignments so that the length of the exon is taken into
account. Based on this smoothing, detecting the exon in the
alignment is transformed into detecting a significant peak in
the profile of the smoothed average log-odds scores.

The maximum of the local maximum, denoted by Ŝ, of
the lowess estimation is selected as the test statistic. The
selection of the local maximum is performed by the function
ppc.peaks() in the R package ppc developed by Tibshirani et
al. [14], in which the parameter span is set as the same as f
in the lowess function.

Finally, the p-value of the test statistic Ŝ is approximated
by the extreme distribution of the normal random variable.
Specifically, since the scores Si,w’s are normally distributed,
the lowess smoothed scores, denoted by Ŝi,w are also normally
distributed [10]. Moreover, since Si,w’s are locally dependent,
for simplicity, they are treated as if they were independent
under the null hypothesis. Denoting P0 as the probability that
a peak exists in the alignment and assuming that Ŝi,w is from
a normal distribution, by the Bayesian rule, the approximate
p-value for Ŝ is

p = P
(

max
(
Ŝ1,w, . . . , ŜL−w+1,w

)
>Ŝ | peak exists under H0

)
P0

≈
⎛
⎝1− P

(
Z <

Ŝ− μ
σ

)L−w+1
⎞
⎠P0,

(2)

where Z ∼ N(0, 1). The p-value is set as p = 1 when
no peak is found. Given a significance level α, when the p-
value of an alignment is less than α, the alternative that the
alignment contains coding DNA is supported. When testing
k alignments, the p-values, p1, . . . , pk, are transformed into

q-values to control the false discovery rate [15, 16], where the
false discovery rate is the proportion of false rejections of H0

among the total number of rejections of H0. That is, denote
ri as the rank of pi with the smallest p-value ranked as 1 and
let

qi = min
(
kpi
ri

, 1
)

, (3)

then the expected number of false positive is ≤ ri0α, where
ri0 = max{ri : qi < α}.

2.3. Datasets. The proposed method is assessed on the set
of highly conserved human-mouse pairwise alignments, that
is, the axtTight directory of the UCSC genome database in
Human May 2004 (hg17) (http://hgdownload.cse.ucsc.edu/
goldenPath/hg17/vsMm5/axtTight/). This axtTight folder
contains the latest version of a highly conserved subset of
the best alignments with mouse sequences for any part
of the human genome; it remains the same although the
genome database has been updated to hg19. The alignments
are quite short; about 95% of the human sequences in
this set are <597 bps. An interesting feature of this set is
that, although it was obtained without the knowledge of
gene structure, it contains a subset that heavily overlaps
with the set of human RefSeq coding exons [17, 18]
(http://www.ncbi.nih.gov/RefSeq/) in the genome database
at UCSC (http://genome.ucsc.edu/cgi-bin/hgTables), May
2004, which has 172,042 exons nonoverlapping with each
other. The human sequences in the axtTight folder overlap
with 91.2% human RefSeq coding exons, in which 94.8%
sequences overlap with only one RefSeq coding exon in
each sequence, 4.0% overlap with only two RefSeq coding
exons, and the average percentage of coding DNA in the
human sequences that overlap with human RefSeq coding
exons is 67%. Thus, the human sequences in this folder were
used for both evaluating the procedure and for determining
novel regions with coding potential. To be consistent with
the coordinates of the sequences in the axtTight folder, the
parameters for the proposed method were estimated from
the sequences in the assembly of hg17.

Since the proposed method tests whether coding DNAs
are embedded in the target sequence, the positive set consists
of alignments whose target sequence contains a coding exon
with noncoding DNA flanking it. The negative set consists of
alignments whose target sequence does not have evidence of
coding DNA.

In order to determine regions with coding potential in
the axtTight folder, the human sequences were extracted
from the alignments in the axtTight folder, and each
sequence was extended 50 bps on each end and paired with
the mouse sequence according to the alignments in the
axtNet folder (http://hgdownload.cse.ucsc.edu/goldenPath/
hg17/vsMm5/axtNet/). The alignments that are longer than
150 bps were kept. The human sequences of the alignments
(before extension) overlapping with RefSeq coding exons, are
called the conserved coding potential regions. Among these
alignments, 3,000 were randomly selected as a training set.
The human sequences in the axtTight folder, whose extended
alignments are longer than 150 bps, but do not overlap

http://www.r-project.org/
http://hgdownload.cse.ucsc.edu/goldenPath/hg17/vsMm5/axtTight/
http://hgdownload.cse.ucsc.edu/goldenPath/hg17/vsMm5/axtTight/
http://www.ncbi.nih.gov/RefSeq/
http://genome.ucsc.edu/cgi-bin/hgTables
http://hgdownload.cse.ucsc.edu/goldenPath/hg17/vsMm5/axtNet/
http://hgdownload.cse.ucsc.edu/goldenPath/hg17/vsMm5/axtNet/
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with the human RefSeq coding exons are called candidate
coding potential regions. The total number of conserved
coding potential region is 146,254, which corresponds to
3.9× 107 bps and includes 156,928 RefSeq coding exons. The
average percentage of coding DNA in the human sequence
of the extended alignment of the conserved coding potential
region is 43%. The total number of candidate coding
potential regions is 751,313, corresponding to 1.2 × 108 bps.
To show the robustness of the proposed method, the human-
dog alignments of the extended conserved coding potential
regions were also extracted from hg17. In this set, the average
percentage of coding DNA in the human sequence of the
extended alignment of the conserved coding potential region
is 38% since more noncoding flanking DNAs are conserved
between human and dog.

To simulate aligned conserved noncoding regions, we
first estimated the conditional probability of the adjacent
nucleotide triplet pair in human, the aligned nucleotide
triplet pair between human and mouse, and the length
distribution of conserved noncoding regions from the set
of aligned human-mouse sequences called the alignment of
potential nonexons [7]. These sequences do not overlap with
any known genes, ESTs. The coordinates of the potential
nonexons from [7] were lifted from hg12 to the assembly of
hg17 in UCSC’s genome database by the batch coordinate
conversion (http://genome.ucsc.edu/cgi-bin/hgLiftOver).
The alignments of potential nonexons were then extracted
from the axtNet folder in UCSC’s genome database (hg17)
and 20,000 alignments were randomly selected as a training
set. Based on the estimated probabilities and the length
distribution from the training set for the alignment of
noncoding regions, 15,062 paired sequences were simulated.
Among them, 10,305 paired sequences are longer than
150 bps and are used as noncoding regions to evaluate the
proposed procedure.

Finally, to analyze the coding potential regions detected
from the axtTight folder, the predictions of existing gene
and pseudogene prediction algorithms listed in Table 1 from
the genes and gene prediction tracks in UCSC’s genome
database (http://genome.ucsc.edu/cgi-bin/hgTables, human,
May 2004) were downloaded.

2.4. Training the Model. In order to apply the testing
procedure, the probabilities under the codon model and
the noncoding region model in (1) were estimated. The
conditional probability of two triplets is estimated by the
joint counts from the alignments in the training sets. That
is,

PA(h | h′) = Number of pairs (h′h) + e

Number of h′ + 125e
,

PB(m | h) = Number of pairs (hm) + e

Number of h + 125e
,

QA(a | a′) = Number of pairs (a′a) + e

Number of a′ + 125e
,

QB(b | a) = Number of pairs (ab) + e

Number of a + 125e
,

(4)

Table 1: The above tables in UCSC’s genome database are used
to analyze the coding potential regions detected from the human
sequences in the axtTight folder in UCSC’s genome database.

Tracks URL

RefSeq [17, 18] http://www.ncbi.nih.gov/Refseq/

Known genes [19]

TWINSCAN [4]

GENSCAN [1]

SGP [20] http://nemo.imim.es/grib/

ENSEMBL http://www.ensembl.org/

GENEID [21] http://www1.imim.es/software/geneid/
index.html

AUGUSTUS [22]

ECgene [23] http://genome.ewha.ac.kr/ECgene/

MGC [24]

AceView [25] http://www.ncbi.nih.gov/IEB/Research/
Acembly/index.html

CCDS [18, 26]

Nonhuman RefSeq [24]

Retropose [27]

Yale Psuedo [28] http://www.pseudogene.org/

Vega http://vega.sanger.ac.uk/

Vega pseudogenes http://vega.sanger.ac.uk/

UniGene [29]

where e = 1 is the pseudocount added, h and
h′ are adjacent codons in conserved coding regions,
m is the triplet aligned to h, a and a′ are adja-
cent triplets in potential nonexons, and b is the triplet
aligned to a. Each probability matrix is of dimension
125 × 125. The probability matrices can be downloaded
from http://www.stat.cmu.edu/∼jwu/axtTight/probs/. For
any two nucleotide triplets c1c2c3 and d1d2d3, ck,dk ∈
{A,C,G,T , indel}, the nucleotides are coded asA = 0,T = 1,
G = 2, C = 3, indel = 4, P(d1d2d3 | c1c2c3) corresponding to
the (i, j)th entry i = 25c1 + 5c2 + c3, j = 25d1 + 5d2 + d3, so
each probability matrix is of dimension 125× 125.

The window sizes are set at w0 = 20 and w = 9
which correspond, respectively, to the 10th and the 2nd
percentile of the length distribution (in units of triplets) of
the exons in the training set. The normal qq-plot in Figure 2
illustrated the distribution of the score Si,w as normal, which
is consistent with the assumption for the p-value calculation.

The estimated mean and variance of the log-odds scores
for the simulated triplets are −0.66 and 1.58, respectively.
Since w = 9, the estimated parameters in (2) are μ̂ = −0.66
and σ̂ = 1.58/3 = 0.527. For each alignment in the test sets,
the p-value is p ≈ (1−P(Z < (Ŝ+0.66)/0.527)L−8)×P0, where
Z is from standard Normal N(0, 1) and L is the number of
log-odds scores.

Lastly, the parameter f in lowess() and span = f in
ppc.peaks() are selected by testing the alignment in the
training set of conserved coding regions and potential
noncoding DNAs. An appropriate f uses as many of the

http://genome.ucsc.edu/cgi-bin/hgLiftOver
http://genome.ucsc.edu/cgi-bin/hgTables
http://www.ncbi.nih.gov/Refseq/
http://nemo.imim.es/grib/
http://www.ensembl.org/
http://www1.imim.es/software/geneid/index.html
http://www1.imim.es/software/geneid/index.html
http://genome.ewha.ac.kr/ECgene/
http://www.ncbi.nih.gov/IEB/Research/Acembly/index.html
http://www.ncbi.nih.gov/IEB/Research/Acembly/index.html
http://www.pseudogene.org/
http://vega.sanger.ac.uk/
http://vega.sanger.ac.uk/
http://www.stat.cmu.edu/~jwu/axtTight/probs/
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Figure 2: A normal qq-plot of the averaged log-odds scores from
the simulated sequences.

neighboring scores as possible to smooth the averaged log-
odds score in the center of the exon in the coding region
but includes few scores from noncoding DNAs. Since in the
extended alignment of conserved coding regions, on average,
each alignment contains 43% coding DNAs, only f ≤ 0.5
were considered. To select f , values 1/4, 1/3, and 1/2 were
evaluated on the training datasets. For each f , P0 is estimated
by the observed relative frequency of the potential nonexon
alignments having a peak and then the p-value in (2) is
obtained for each alignment. Among them, the p-values from
f = 1/3 best separate the extended alignments in the training
set of conserved coding regions from potential nonexons.
Thus, the parameter f in lowess() is set as f = 1/3 and then
the estimated probability of observing at least one peak in
noncoding regions is P0 = 0.04. For each alignment in the
test sets, the p-value is p ≈ (1−P(Z < (Ŝ+0.66)/0.527)L−8)×
0.04, where Z is fromN(0, 1) and L is the number of log-odds
scores.

3. Results

The procedure is tested on the human sequences in
the axtTight folder in UCSC’s genome database (http://
hgdownload.cse.ucsc.edu/goldenPath/hg17/vsMm5/axt-
Tight/). From this set, the procedure detected 91.1%
conserved coding potential regions using human-mouse
alignments, with the estimated 2.6% false positive rate,
covering to 83% of the entire human RefSeq coding
exons. At the same false positive rate, it also detects 90.7%
conserved coding potential regions using human-dog
alignments. Among the detected conserved coding potential
regions from human-mouse alignments, many contain short
coding exons and coding exons with alternative splicing
sites which existing gene prediction algorithms tend to
miss. In addition, the procedure identified 12,688 human
sequences at the false discovery rate <0.05; among them, 57
overlap with nonhuman RefSeq coding exons [24], 65.7%
are between annotated genes, and 41.4% have UniGene [29]
matches, indicating that these regions may contain novel
coding exons.

Example: an extended coding region
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Figure 3: Identifying a coding potential region in chromosome 1:
1058121-1058365 from assembly hg17. The position is in units of
triplets. The codons are at position 25–56.

3.1. Detecting Coding Potential Regions from the Datasets.
Figure 3 illustrates an example of identifying a coding poten-
tial region of human chromosome 1: 1058121-1058365, in
which 1058195-1058290 is a coding exon.

The plot in Figure 3 shows the 74 averaged log-odds
scores from a selected segmentation of the alignment of that
conserved region. From the lowess fit and peak selection, as
indicated by the solid curve and the cross patch, respectively,
the value of the test statistic is obtained at the peak Ŝ = 1.199
having P = 0.0004.

The performance of the proposed procedure is compared
with the results of Nekrutenko et al. (2002) [12]. Their study
shows that, when an aligned sequence is either an aligned
coding exon with codon frame known (true positive) or an
aligned random sequence (true negative), the likelihood ratio
test attains the true positive rate (TP) of 90.5% and the false
positive rate (FP) of 2.6.% This result can be viewed as the
best accuracy that coding potential region detection methods
can attain using only conservation information since the true
positive set assumes that the coding exon frames are known.
Our negative set includes 10,305 simulated paired sequences
that are at least 150 bps. This set is comparable to the number
of simulated paired sequences used in [12], which is 24,000
without length limitation. To detect the coding potential
region when the coding exon frames are unknown, the error
rates of the proposed method are calculated as follows. Given
a threshold, the true positive rate is the fraction of the
total number of conserved coding potential regions whose
alignment has p < α and the false positive rate is the fraction
of the total number of simulated alignments having p < α.
The results are summarized in Table 2.

To further study the coding potential regions detected in
the test set, we compared the detection on RefSeq coding
exons with GENSCAN and TWINSCAN with regards to the
type of exons and summarized the results in Table 3. For
single exons, because the gene structure is simple, GENSCAN

http://hgdownload.cse.ucsc.edu/goldenPath/hg17/vsMm5/axtTight/
http://hgdownload.cse.ucsc.edu/goldenPath/hg17/vsMm5/axtTight/
http://hgdownload.cse.ucsc.edu/goldenPath/hg17/vsMm5/axtTight/
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Table 2: The detection of coding potential regions in the human-
mouse conserved regions. The table lists the number of alignments
and the corresponding base pairs of the human sequences in each
test set. The true positive rates and false positive rates correspond to
the number of alignments that have p-value less than α = 0.0387
by the present method, where the method with the parameters
estimated from human-mouse training sets was applied both to the
human-mouse alignments and human-dog alignments. The row
of KA/KS is cited from [12]. The threshold is set so that the false
positive rate of the proposed method is the same as that of [12].

Conserved coding
regions (TP)

Simulated random
sequence pair (FP)

Size
146, 254 10, 305

(3.9× 107 bps) (6.8× 106 bps)

Peak p < 0.0387 (mouse) 91.3% 2.6%

Peak p < 0.0387 (dog) 90.7% 2.6%

KA/KS 90.5% 2.6%

Table 3: The distribution of RefSeq coding exons contained in
the regions detected by the proposed method compared with those
predicted by GENSCAN and TWINSCAN according to the types of
exons: initial, internal, final, and single, where single refers to exons
of single exon genes.

Exon type Initial Internal Final Single

Peak p < 0.0387 (mouse) 90.1% 94.3% 81.7% 80.1%

GENSCAN 81.8% 86.8% 78.3% 91.5%

TWINSCAN 30.4% 29.9% 42.4% 73.9%

can take the full advantage of the gene structure without
the conservation limit; it is able to identify most single
exons. Using sequence conservation limited the ability to
identify unconserved genes as shown by the predictions from
TWINSCAN and the proposed method.

We also compared the results with the internal exons
predicted by MZEF [30] in Table 1 in [30]. We identified
the locations of 22 genes in UCSC’s genome database. Since
the genomic region has expanded over the years, we compare
the percentage of the internal exons identified relative to the
number of internal exons available to both methods per gene.
Among these genes, the proposed method had a higher call
rate than MZEF on internal exons in 9 genes and had a lower
call rate on those in another 10 genes. The average call rate
for the proposed method on the 22 gene is 76% while that of
MZEF is 83%. On the other hand, when only counting the
regions available in the test set, the average call rate for the
proposed method is 88.6%.

We examined the regions that are conserved noncoding
regions defined by PhastCons [31]. PhastCons defined 39%
of the sequences in the axtTight set as conserved noncoding
regions, and in the subset of sequences with coding potential
with p < 0.0387, only 22% are defined as conserved
noncoding region. We also evaluated the structured RNAs
in the ENCODE [32] regions, that is, Vienna RNAz [33].
We downloaded the encodeUViennaRnaz table from UCSC’s
genome database. Among the total 3,346 conserved RNA

regions in the encodeUViennaRnaz table, our dataset axt-
Tight overlaps with 489 regions and 251 of them have
a p-value < 0.038. We also examined closely the regions
that were not predicted by those computational algorithms
in Table 1 and found that most of those regions contain
coding exons of alternative splicing sites or very short coding
exons. For example, the region chr1:198070085-198070137,
. . .tagccaGAGCAGGAAGgacat. . ., contains one internal cod-
ing exon indicated by the upper case. The p-value is 0.007.
It is not predicted by any of the algorithms mostly because
this exon lacks the proper flanking dinucleotides (GT/AG
or GC/AG). Another example is the region chr1:211644829-
211645072; it only contains a coding exon which is the “A” of
the start codon. The p-value is 0.002. This coding exon is only
predicted by AceView which considers alternative splicing.

3.2. Detecting Novel Coding Potential Regions in the Human
Genome. The proposed method is also applied to the align-
ments of candidate coding potential regions to detect novel
coding potential regions. To adjust for multiple hypothesis
testing, the p-value is adjusted to the q-value according to
(3) to control the false discovery rate. By setting q <= 0.05,
which corresponds to p < 0.01, we detected 46,188 coding
potential regions. Among them, 12,688 are absent from the
predictions listed in Table 1 (excluding nonhuman RefSeq
genes and UniGene genes). Among the human segments
containing novel coding exons, 57 overlap with nonhuman
RefSeq coding exons [24] and 5,259 (41.4%) have UniGene
matches. These evidences indicate the existence of 12,688
novel coding potential regions in human. The coordinates
of the human segments of these regions can be downloaded
from http://www.stat.cmu.edu/∼jwu/axtTightCoding/.

The novel coding potential regions detected are com-
pared with those by Nekrutenko et al. [13], in which they
reported 13,700 novel coding exons; 61% of which lay within
annotated genes and 38% lay between annotated genes, and
among those between annotated genes, 25% had UniGene
matches. Among the 12,688 novel coding potential regions
reported here, 34.3% are within annotated genes and 65.7%
are between annotated genes according to the annotation in
Table 1, and among the novel coding potential regions in
between annotated genes, 35.1% have UniGene matches. The
difference shows that the proposed method is more sensitive
to genes with unknown structure.

4. Discussion

A statistical procedure is proposed to detect regions contain-
ing coding exons in conserved human sequences. It reveals
coding potential regions from genes that do not fit the
structure prescribed by existing methods. The success of the
procedure depends on a locally smooth function (i.e., the
lowess function) to address the problem of localizing coding
potential regions. Furthermore, the prediction method is
sensitive to codons but insensitive to noncoding DNA. As
seen from the results from human-mouse alignments and
human-dog alignments (Table 2), the method is also not
sensitive to the alignments used.

http://www.stat.cmu.edu/~jwu/axtTightCoding/
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The proposed method is an effective tool to analyze
short conserved regions. Although it does not predict gene
structures from sequences, it identifies those conserved
regions that overlap with genes. A direct application of the
proposed method is to improve the accuracy of the existing
gene or coding exon prediction algorithms. The proposed
method could be used as a filtering procedure to provide
input sequences to these exon prediction algorithms. For
example, when applied to the data in short HMM [7], with
the same parameters except that the probability matrices (4)
were estimated from the training data in [7], it reduced false
positive from 0.77% to 0.49% at same true positive rate by
filtering out the alignments with large p-values. It could also
be used as an additional criterion for the alternative genes
predicted by GENSCAN. In addition, the proposed method
would also benefit algorithms that predict single-exon genes.
Specifically, by increasing the window size w and applying to
the sets with longer flanking noncoding regions, the peak in
the hump in the long coding exon emerges while the peak
in the humps in other short exons becomes less significant.
Then, using the detected coding potential regions as the
input data for algorithms that only predict the single-exon
gene, because of the gene structure, one would expect that
most long exons from multiexon genes would be filtered out.

A more interesting feature of the proposed method is
that it provides new data for methods that predict gene
structures. As shown in Section 3.1, from the comparison
with GENSCAN, the proposed method detects more coding
potential regions from multiple-exon genes. Moreover, it
is sensitive to coding potential regions containing short
exons and exons with alternative splicing sites as shown in
Section 3.1. Thus, the proposed method could be used to
reveal novel gene structure by studying the coding potential
regions that failed to be predicted by the existing algorithms.

There is a possibility that the proposed method could
be biased toward pseudogenes simply because there is a
relaxation of the whole gene structure. However, such a
bias is not obvious since the percentage of coding potential
regions predicted overlapping with known pseudogenes is
within the range of those from existing gene prediction
algorithms. As a matter of fact, 2% of the coding poten-
tial regions predicted from the human sequences in the
axtTight folder overlap with the database of Yale pseudo-
genes (http://www.pseudogene.org/), corresponding to 4%
in length. Both percentages are lower than those of GENEID,
GENSCAN, Augustus, and SGP and are higher than those
of the rest 7 gene prediction methods in Table 1 (excluding
RefSeq genes, nonhuman RefSeq genes, vega genes, vega
pseudogenes, retro genes, and Yale pseudogenes).

The proposed statistical procedure is not sensitive to the
parameters used since the lowess function smoothes out the
sudden changes in the log-odds scores from the randomness.
However, there still are some general rules for selecting the
parameters. Specifically, the window size w0 for selecting the
strand and segmentation of the alignment should be large
enough to include more codons, but not too large so that
few noncoding DNAs are included when the window frame
is on the coding exon. The window size w for obtaining
the normally distributed scores should be small so that the

dependency among the scores is weak and the alignment
has ample scores for the lowess estimation and the peak
selection. On the other hand, w should also be large enough
to ensure the distribution of the average log-odds ratios in
the window frame is approximately normal. The method is
not sensitive to the parameter f in the lowess function or
the parameter span in ppc.peaks() due to the nonparametric
nature of these two functions. Moreover, the lowess function
could be replaced by similar locally smooth functions such
as the spline method; other peak selection functions could
also be used instead of ppc.peaks(). However, the smoothing
parameter does affect the prediction sensitivity. The larger
the f, the larger the p-value for a given alignment. On the
other hand, as shown in Table 2, for a dataset that is not
dramatically different from the one used in this paper in
DNA composition and sequence length distribution, the
threshold for the p-value; say 0.01, remains a good indication
on whether the sequence contains coding DNA or not.

One limitation of the proposed method is that it is
only applicable to alignments that are not too short; say
longer than 150 bps. This limitation excluded 3.5% of human
RefSeq coding exons that overlap with the alignments in the
axtTight folder from the analysis, as these RefSeq coding
exons do not have enough conserved flanking noncoding
regions after the extension. One justification of the length
constraint is to insure that the alignment has adequate log-
odds scores for the peak selection function ppc.peaks().
Furthermore, the proposed method is expected to have
limited statistical power in detecting coding potential regions
from alignments ≤150 bps. As shown by Nekrutenko et al.
[12], even with gene structure given, only 42% coding exons
are detected from the conserved RefSeq coding exons with
length ≤50 bps. The power of the proposed method on the
short aligned sequences (<150 bps) is about 40%. Also, the
power of proposed approach decreases when the length of
the alignment increases to thousands of base pairs or more
since the p-value increases with the length of the alignment.

The code that realizes the proposed procedure and the
predicted coding potential regions can be downloaded from
http://www.stat.cmu.edu/∼jwu/axtTightCoding/, in which
the code to calculate the log-odds score is written in C++
and the code to calculate the p-value is written in R.
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