
VIEWPOINT

cd T cells in malaria: a double-edged sword
Ana Pamplona and Bruno Silva-Santos

Instituto de Medicina Molecular Jo~ao Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal

Keywords

cerebral malaria; clinical immunity;

experimental cerebral malaria; gamma-delta

T cells; interferon-gamma; liver stage;

Plasmodium; sporozoites; tolerance

Correspondence

A. Pamplona and B. Silva-Santos, Instituto

de Medicina Molecular Jo~ao Lobo Antunes,

Faculdade de Medicina, Universidade de

Lisboa, 1649-035 Lisbon, Portugal

Tel: (+351) 217 999 411

E-mails: anapamplona@medicina.ulisboa.pt

(AP); bssantos@medicina.ulisboa.pt (BS-S)

Website: https://imm.medicina.ulisboa.pt

(Received 7 April 2020, revised 16 June

2020, accepted 20 July 2020)

doi:10.1111/febs.15494

Malaria remains a devastating global health problem, resulting in many

annual deaths due to the complications of severe malaria. However, in

endemic regions, individuals can acquire ‘clinical immunity’ to malaria,

characterized by a decrease in severe malaria episodes and an increase of

asymptomatic Plasmodium falciparum infections. Recently, it has been

reported that tolerance to ‘clinical malaria’ and reduced disease severity

correlates with a decrease in the numbers of circulating Vc9Vd2 T cells,

the major subset of cd T cells in the human peripheral blood. This is par-

ticularly interesting as this population typically undergoes dramatic expan-

sions during acute Plasmodium infections and was previously shown to

play antiparasitic functions. Thus, regulated cd T-cell responses may be

critical to balance immune protection with severe pathology, particularly as

both seem to rely on the same pro-inflammatory cytokines, most notably

TNF and IFN-c. This has been clearly demonstrated in mouse models of

experimental cerebral malaria (ECM) based on Plasmodium berghei ANKA

infection. Furthermore, our recent studies suggest that the natural course

of Plasmodium infection, mimicked in mice through mosquito bite or

sporozoite inoculation, includes a major pathogenic component in ECM

that depends on cd T cells and IFN-c production in the asymptomatic liver

stage, where parasite virulence is seemingly set and determines pathology

in the subsequent blood stage. Here, we discuss these and other recent

advances in our understanding of the complex—protective versus patho-

genic—functions of cd T cells in malaria.

Introduction

Malaria remains a devastating global health problem,

responsible for more than 228 million cases per year

worldwide, leading to more than 405 000 annual

deaths due to severe malaria, such as cerebral malaria

(CM), mostly caused by Plasmodium (P.) falciparum

[1]. The most vulnerable groups affected by malaria

are children under 5 years old, which accounted for

67% of all malaria deaths worldwide, and pregnant

women [1].

In endemic regions, adults and children older than

5 years acquire considerably rapid ‘clinical immunity’

to malaria, characterized by a decrease in severe

malaria episodes and an increase of asymptomatic

P. falciparum infections [2]. Our understanding of

‘clinical immunity’ is made difficult by the complex life

cycle of Plasmodium in the host, comprising two stages

in two different tissues, liver and blood, together with

other factors, such as high genetic variation of the par-

asite, age of the host and frequency of infection [3].
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In natural infections, malaria is transmitted through

the bite of infected Anopheles mosquitoes, in which

Plasmodium sporozoites (Spz) are delivered into the

skin and from there find their way to the liver [4]. After

invading a hepatocyte, the Spz develops and replicates

producing a schizont containing thousands of mero-

zoites. Merozoites then egress from hepatocytes and

are released into the bloodstream where they invade

red blood cells and initiate the blood-stage infection.

The clinically ‘silent’ liver stage is thus an essential step

in the Plasmodium life cycle that always precedes the

cyclic intraerythrocytic infection where the clinical

symptoms of malaria, such as CM, appear [4].

Due to this complexity, stemming from both the

malaria parasite and the human immune system, inter-

actions between the parasite and the host during infec-

tion result in outcomes ranging from protective

immunity to ‘clinical immunity’ or to highly deleteri-

ous immune responses, particularly in severe malaria

[5,6] One of the immune populations gathering increas-

ing interest in this context are cd T cells. In this view-

point, we discuss and integrate recent advances from

human and mouse studies toward a better understand-

ing of the multifaceted functions of cd T during

malaria infection, with a particular focus on CM.

cd T-cell responses to Plasmodium
infection

cd T cells are one of the immune populations that

respond most dramatically to Plasmodium infection,

given that it induces very marked cd T-cell expansions

both in mice [7–9] and in humans [10–13].
Murine cd T cells consist of various subsets with

diverse properties regarding thymic ontogeny, homing

to anatomical locations and functional potential [14].

The T-cell receptor (TCR) Vc chain usage can vary

substantially across tissues, and for example, in the

liver, cd T cells can express Vc1+, Vc4+, or Vc6+ TCRs

[14]. Like in mice, cd T cells are also a minor popula-

tion (1–5% of leukocytes) in the human peripheral

blood, but are more abundant in tissues, in particular

epithelial layers, such as intestine and skin [15].

Human cd cells are typically characterized according

to the variable regions of TCRd (instead of TCRc)
chain [16]. While Vd1+ T cells are the major cd T-cell

population at epithelial sites, Vd2+ T cells, which most

often contain a Vc9 chain, are the main subset in

peripheral blood [17]. Vc9Vd2 T cells are able to rec-

ognize low molecular weight non-peptidic phospho-

antigens, enabling them to respond to a diverse range

of pathogens, including P. falciparum [18]. In fact, this

subset can reach more that 40% of blood leukocytes

after primary Plasmodium infections, while producing

key pro-inflammatory cytokines, especially type 1

effector cytokines like interferon c (IFN-c) and tumor

necrosis factor (TNF), in response to parasite antigen

stimulation [12,13,19,20].

A considerable number of studies with humans and

murine cd T cells suggest they may paradoxically con-

tribute for both protection and pathology during Plas-

modium infection. Some studies have shown that

Vc9Vd2 T cells are able to control/ inhibit parasite

replication by targeting and killing extracellular mero-

zoites though a granulysin-mediated process [21–23],
as well as killing intracellular late-stage parasites dur-

ing the intraerythrocytic stage, also through gran-

ulysin-mediated release of cytotoxic granzymes [24]

(Fig. 1), and act as antigen-presenting cells for ab T

cells in response to intraerythrocytic stage parasites

[25]. However, other reports suggested that Vc9Vd2 T

cells may be linked to pathological outcomes, since a

decrease in their numbers (in the blood) is associated

with tolerance to ‘clinical malaria’ and reduced disease

severity [5,26].

In mice, most studies have been performed with par-

asitized red blood cells (pRBCs), which bypass the

liver stage to directly induce blood-stage infection. A

recent study using a Plasmodium chabaudi infection

model revealed a macrophage colony-stimulating fac-

tor (M-CSF)-producing cd T-cell subset that provided

protection at late stage of infection [27]. In this model,

two different types of cd T-cell responses were

observed: During the acute stage, these cells produced

mainly IFN-c, while during the postacute stage, M-

CSF was the main cytokine produced and was essen-

tial to prevent parasite recrudescence [27]. Other stud-

ies have suggested that cd T cells may exert an

immunoregulatory role by controlling alpha-beta (ab)
T-cell function in Plasmodium yoelii 17X nonlethal

(17XNL) and P. chabaudi infections [28,29], whereas

in Plasmodium berghei XAT (a nonlethal strain) infec-

tion model, cd T cells expressing CD40L promoted

dendritic cell activation and induced clearance of the

parasite [30].

In the context of Spz immunization studies, several

reports have shown that cd T cells play an important

protective role in malaria infection in humans and in

P. yoelii 17XNL and P. berghei infection mouse mod-

els [31–33]. However, it is still not clear how cd T cells

exert their protective role in the context of immuniza-

tion studies, namely if they function as effector cells

independently of ab T cells, in particular CD8+ T cells,

or instead act as accessory cells, alongside CD8a+ den-

dritic cells (DC), to induce protective CD8+ T-cell

responses [31–33]. In any case, all studies have
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suggested an important protective role of cd T cells

during Spz vaccination studies.

Cerebral malaria

Severe malaria is a general term that includes various

and overlapping lethal syndromes, such as CM and

respiratory distress, that may coexist during the

malaria infection [34]. The development of severe

malaria, and ultimately death, may depend on several

factors, such as the species of the parasite, the innate

and acquired immunity of the host, as well as the effi-

cacy of antimalarial treatment [34].

Cerebral malaria is one of the most common forms

of severe malaria, responsible for the majority of child

mortality, presenting between 15% and 25% fatality

rate, and for which there is no effective therapy [35].

Although the nature of the cellular and molecular

mechanisms leading to CM remains poorly understood

two nonexclusive hypotheses, the mechanical (seques-

tration) obstruction and the immune-driven inflamma-

tion, try to explain the complex interactions between

the malaria parasite and the host that lead to this

pathology [36,37]. However, these two phenomena

may not fully explain the genesis of CM [38]. More

recently, a new hypothesis has been proposed stating

that the involvement of acute liver failure, together

with blood–brain barrier breakdown, may be sufficient

and necessary for CM development [38]. This hypothe-

sis is further supported by two phenomena that occur

during experimental CM (ECM): liver damage due to

parasite sequestration/accumulation [39], and

Fig. 1. Functional activities of human cd T cells in malaria. Infected Anopheles mosquitoes inject Plasmodium Spz into the host skin from

where they migrate to the liver and invade hepatocytes to develop into schizonts containing thousands of merozoites. Merozoites then

egress from hepatocytes and are released into the bloodstream where they invade red blood cells and initiate the blood-stage infection,

when clinical symptoms of malaria, such as CM, appear. Vc9Vd2 T cells are able to control/inhibit parasite replication by targeting and killing

extracellular merozoites and intracellular late-stage parasites though granulysin (GNLY)-mediated release of cytotoxic granzymes (GzmB)

during the intraerythrocytic stage. Vc9Vd2 T cells recognize soluble phosphoantigens released from schizont stage parasites and, potentially,

other pRBC stages, and become activated, producing pro-inflammatory cytokines, like IFN-c and TNF, and chemokines, like MIP-1a and

MIP-1b. This promotes splenic activation and differentiation of CD4+ and CD8+ T cells into Th1, IFN-c-producing, and cytotoxic cells, and

subsequent migration to the brain, where they cause neuroinflammation and, ultimately, CM. However, after repeated parasite exposure,

Vc9Vd2 T cells may increase expression of immunoregulatory molecules, such as Tim-3, and decrease production of pro-inflammatory

cytokines, which associates with clinical tolerance.
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activation of CD8+ T cells, a process that requires a

metabolic shift from oxidative processes to aerobic gly-

colysis and glutaminolysis, thus requiring high levels

of glutamine [40]. Indeed, several reports have linked

high glutamine levels, and consequently high ammonia

levels, to encephalopathy associated with acute fulmi-

nant liver failure [41]. More recently, a study showed

the therapeutic potential of blocking glutamine meta-

bolism to rescue mice from ECM development [42].

Overall these studies strengthen the importance of the

liver in ECM pathogenesis.

Both the sequestration and immunopathology

hypotheses have been widely tested in the mouse

model for CM, P. berghei ANKA-induced ECM in

C57BL/6 mice [43–45]. The ECM model recapitulates

many of the features of CM observed in children

[46,47], such as the accumulation of pRBCs and CD8+

T cells in the brain vasculature [45,46,48], and blood–
brain barrier (BBB) dysfunction and edema [46]. On

the other hand, ECM is also an immune-mediated dis-

ease where CD8+ T cells and the pro-inflammatory

cytokine IFN-c play central pathogenic roles [6,49,50].

Recently, a study showed definitively the presence of

CD8+ T cells in close contact with the microvascula-

ture in brains of children that died with CM, as well

as the presence of pRBC along the cerebrovasculature,

which may promote endothelial antigen acquisition

and cross-presentation to CD8+ T cells [47]. These

findings corroborate the results obtained with the

ECM model and reinforce the relevance of this experi-

mental system to elucidate CM associated-pathogenic

processes in humans and to assess new therapeutic tar-

gets for CM adjunctive therapy.

The vast majority of the studies using the ECM

model have challenged the mice with P. berghei-pRBC,

a route of infection that bypasses the liver stage of

Plasmodium infection, thus neglecting the potential

impact of the liver stage in the subsequent (erythrocytic

and symptomatic phase) of Plasmodium infection and

in CM pathogenesis. In fact, very few studies have

shown that pre-erythrocytic or early immune responses

may modulate downstream immune responses and

thereby impact ECM development or clinical symp-

toms, respectively, in mice and in humans [26,51–56].
Some of these studies used chemical or genetically

modified P. berghei ANKA parasites that after Spz

infection showed impaired development during liver

and intraerythrocytic stages, thus impacting on subse-

quent systemic immune responses and, ultimately, on

ECM development [53,54]. By contrast, another study

with a transgenic P. berghei ANKA parasite that mod-

erately overexpress profilin, an immunomodulatory

protein, and that after Spz infection did not show

evident developmental impairments, induced an early

production of the regulatory cytokine interleukin (IL)-

10 and pro-inflammatory cytokines, such as IL-12p70,

IL-6, and TNF [56]. This early immune response

seemed to dampen the subsequent pro-inflammatory

responses during blood stage and prevented the devel-

opment of ECM [56]. Notably, this transgenic parasite

induced lower sterile immunity in the context of immu-

nization studies when compared with wild-type (WT)

parasites, suggesting reduced hepatic immune responses

[56]. It would be interesting to assess the functional

interaction of cd T cells with this transgenic parasite in

the context of whole-Spz vaccination strategies.

Human cd T cells in severe malaria

Several studies have suggested different roles for the

two main human cd T-cell subsets, expressing either

Vd1+ or Vd2+ TCRs, in response to P. falciparum in

distinct experimental or clinical settings [3,57]. In fact,

the response of cd T-cell subsets seems to depend on

several factors such as the age of the host (children or

adults), ethnicity, that is, Caucasians or Africans, and

malaria endemicity, that is, high or low endemic areas.

Although Vc9Vd2 T cells seem to be the main cd T-

cell subset in healthy Caucasians, this is not observed

in healthy individuals living in malaria-endemic areas

[58]. Notably, it has been reported that both Vc9+ and

Vd1+ subsets seem to increase proportionally following

P. falciparum infection in patients from malaria-en-

demic areas [58,59]. Thus, the sustained Vc9Vd2 T

cell-dominated responses in studies using cd T cells

from peripheral blood of nonexposed individuals have

not been corroborated by some African studies [60,61].

Actually, it has been reported that in the context of

endemic malaria, where populations are exposed to

consecutive malaria infections and/or chronic infec-

tion, Vd1+ T cells seem to be the main subset in circu-

lation [58]. While there is no clear explanation for this

observation, it has been suggested that the retention of

active Vc9Vd2 T cells in the spleen and/or the reemer-

gence of tissue-resident Vd1+ T cells, such as hepatic

Vd1+ T cells, into the circulation after antimalarial

chemotherapy, may change the proportions of both

subsets in the peripheral blood [60].

An emerging topic is the role of human cd T cells in

‘clinical malaria’. Although multiple studies have been

performed with malaria-na€ıve and infected adults

[12,20,62,63], considerably fewer have been done in

children from endemic countries that develop severe

malaria, in particular CM, and are subjected to recur-

rent Plasmodium infections [5,26,55,61,63–65]. Of note,

studies performed in children and adults from African
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endemic countries showed that percentage and activa-

tion markers of cd T cells do not seem to discriminate

‘clinical malaria’ cases from asymptomatic infections

[61,62,64]. Indeed, it has been reported that age, level

of previous exposure, and antimalarial chemotherapy

seem to be crucial determinants of malaria-induced cd
T-cell responses and in the observed proportions of

Vc9Vd2 T cells and Vd1+ T cells in peripheral blood

[3,64]. A study using convalescent samples from chil-

dren with severe malaria and living in high endemic

areas showed that CD14+ monocytes and cd T cells

were the predominant cellular sources of TNF, macro-

phage inflammatory protein (MIP)-1b, and MIP-1a
after in vitro stimulation with pRBC [26]. Interestingly,

recent studies have shown a decrease in Vc9Vd2 T-cell

numbers associated with tolerance to clinical malaria

and reduced disease severity [5]. Thus, in malaria-en-

demic areas, the loss and dysfunction of Vd2+ T cells

may represent a mechanism of disease tolerance that

seems to contribute to the development of ‘clinical

immunity’ in children that are subjected to successive

malaria episodes [5,65]. The production of pro-inflam-

matory cytokines, such as TNF and IFN-c, by Vd2+ T

cells may have two opposing effects during malaria

infection, on the one hand an antiparasitic effect that

limits parasite burden, but on the other hand, it can

promote the development of clinical symptoms [26].

Therefore, the acquisition of ‘clinical immunity’ may

depend on the ability of the host to down-modulate

pro-inflammatory responses by Vd2+ T cells, which

will favor the presence of asymptomatic infections and

perpetuate P. falciparum transmission in endemic

countries, as suggested by several studies [5,19,66]

(Fig. 1). Nonetheless, it is still not very clear how

Vc9Vd2 T cells contribute to both ‘clinical immunity’

and susceptibility to severe disease in the course of

P. falciparum infection as well as the role of Vd1+ T

cells during infection [57].

Murine cd T cells in experimental
cerebral malaria

Effector lymphocytes, especially CD4+ and CD8+ T

cells, as well as pro-inflammatory cytokines, like IFN-

c, TNF, and lymphotoxin alpha, have long been

shown to play crucial roles in ECM pathogenesis [6].

In fact, mice (in the C57Bl/6 genetic background) defi-

cient for all T cells, or just ab T cells, or only CD8+ T

cells, all fail to develop ECM upon P. berghei ANKA

infection [8]. Although an early pro-inflammatory

immune response has been associated with protection

against infection, this needs to be followed by a rapid

resolution of inflammation in order to prevent

immunopathology [67]. It is therefore critical to dissect

the early, innate-like immune responses that drive the

induction of inflammation and subsequent pathological

processes in ECM.

In fact, cd T cells are endowed with an innate

capacity to produce high amounts of IFN-c and

IL-17, which is preprogrammed during thymic devel-

opment [9,68,69]. However, the pioneering study

addressing the role of cd T cells in ECM development,

which used P. berghei ANKA pRBCs, showed that

mice deficient for cd T cells (TCRd�/�) developed

ECM similarly to control mice, while mice depleted of

cd T cells by monoclonal antibody were partially pro-

tected from CM [70]. This prompted us to recently

readdress the role of cd T cells in ECM in a setting

that is closer to the natural infection, namely by using

mosquito bite or Spzs to initiate the infection. Impor-

tantly, these routes, unlike pRBCs inoculation, lead to

infection of the liver and development of the parasite

inside hepatocytes before they egress to the blood.

Importantly, until very recently nothing was known

about the properties and contributions of cd T cells

during a primary Spz-induced Plasmodium infection on

the course to ECM development.

Pathogenic role for cd T cells in ECM
upon liver-stage infection

The liver is a central organ for several crucial meta-

bolic processes in addition to its nutrient storage and

detoxifying capacities [71]. Besides these functions, its

critical position between the gastrointestinal system

and the systemic circulation system makes this organ

crucial for innate and adaptive immunity against

pathogens as well as for induction of tolerance to non-

pathogens, such as dietary antigens [71,72]. The liver is

composed of parenchyma cells, among which hepato-

cytes comprises 60–80% of the cells, and non-

parenchyma cells, with the lymphocyte population

comprising ~ 25% of the total cells [71,72]. In healthy

conditions, the liver is an anti-inflammatory or tolero-

genic organ but under specific conditions is able to

mount robust immune responses against infectious or

noninfectious stimuli [72]. In fact, in a P. berghei Spzs

infection model a robust innate type I IFN response

was observed during the liver stage [73]. Despite this,

the mechanisms regulating the balance between an effi-

cient immune response and tolerance are essential for

liver function, even if they remain poorly understood

[71,72].

The liver is highly enriched in innate immune cells,

such as macrophages (Kupffer cells), natural killer

(NK), natural killer T (NKT) cells, and also cd T cells,
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in addition to more adaptive lymphocytes, namely abT
cells and B cells [74]. cd T cells constitute 15–25% of

the total number of hepatic T cells and have been sug-

gested to be important inducers of hepatic inflamma-

tion. Hepatic cd T cells can produce high levels of

pro-inflammatory cytokines, such as IL-17, TNF, and

IFN-c [71], and comprise various Vc TCR chains, that

is, Vc1, Vc4, and Vc6 in mice and Vd1 and Vd3 in

humans [16].

Several studies have shown that hepatic cd T cells

may play different functional roles, that is, pathogenic

or protective, depending on the experimental models

studied [71]. For example, during Listeria monocytoge-

nes infection, Vc4+ T cells, which are the major IL-17

producing cell type in the liver, are crucial for protec-

tive immunity during early infection [75]. In contrast,

during Schistosoma japonicum infection, IL-17 produc-

tion by cd T cells, also the major IL-17-producing cell

type in this infection model apparently, plays a patho-

genic role since the neutralization of IL-17 reduced

liver inflammation and pathology [76]. Moreover, it

was recently shown that hepatic cd T cells predomi-

nantly producing high levels of IL-17A exhibited a Vc
chain repertoire distinct from cd T cells of other

organs [77].

Besides their potential role in immunization studies

[31–33], the function of cd T cells in primary pre-ery-

throcytic Plasmodium infection remains understudied

and is of utmost importance to understand if the

innate immune responses that occur in the liver may

impact ECM pathogenesis. In addition, the crosstalk

between liver and blood stages of Plasmodium infec-

tion has been poorly studied and remains incompletely

understood but is crucial for inducing effective adap-

tive immune responses against the infection [78,79].

We have addressed the impact of cd T cells and

liver-stage infection on ECM development using a

Spz-induced infection model [51]. We showed that

TCRd�/�mice are resistant to ECM when infected

with P. berghei ANKA Spzs, the liver-infective form

of the parasite and the natural route of infection, in

contrast to the susceptible phenotype when challenged

with P. berghei ANKA-pRBC [51]. The observed

pathogenic role of cd T cells in ECM development was

strictly dependent on the liver stage without affecting

the intrahepatic development of the parasite or inhibit-

ing parasite replication during the intraerythrocytic

stage of infection [51]. In fact, a decreased pro-inflam-

matory microenvironment was observed in TCRd�/�

livers, suggesting a mechanism of disease tolerance

since the lack of immunopathology did not involve

reduced parasite growth rate or load [80–82]. These

findings raise some issues in the context of

immunization studies and, consequently, in the balance

between sterile immunity and inflammation-induced

immunopathology.

Interestingly, during Spz-induced liver infection,

hepatic cd T cells were the main IL-17A-producing

cells, as seen in other infections [83,84], while IFN-c+

cd T cells were only a fraction of the total hepatic

IFN-c+ cells; however, IFN-c+ cd T cells seem to be

required for optimal IFN-c production by other hep-

atic lymphocytes, such as CD4 + and CD8 + T and

NK cells (unpublished data). Along these lines, a new

specific M-CSF-producing cd T-cell subset was

recently identified in the liver (as well as spleen and

lung) of mice infected with P. chabaudi, suggesting

that these cells might shape the myeloid compartment

in postacute stage of the infection [27]. In fact, the

crosstalk between cd T cells and myeloid cells has

already been observed in other infections and cancer

models [85,86]. Therefore, it would be interesting to

assess the role of these M-CSF-producing cd T cells in

the liver, their crosstalk with other immune cells and

the potential impact in malaria pathogenesis after

P. berghei Spz infection.

Importantly, in our study, liver infection impacted

on the subsequent intraerythrocytic stage of the para-

site by promoting an early IFN-c response by cd T

cells that conditioned IFN-c production by splenic

CD4+ and CD8+ T cells (Fig. 2) [51]. Indeed, previous

studies have shown the importance of innate IFN-c
production by cd T cells from malaria na€ıve human

donors, as well as the impact of IFN-c on the differen-

tiation of effector CD4+ Th1 cells that promote CD8+

T-cell accumulation in the brain, leading to ECM

development [87,88]. Consistent with these studies, our

Spz infection study showed that cd T cells promoted

the accumulation of inflammatory IFN-c-producing
and cytotoxic T cells in the brain, key features of

ECM development (Fig. 2) [51]. It would be interest-

ing to address the potential interaction between cd T

cells and CD8+ T cells in/with the cerebrovasculature

in the ECM model and in human samples.

Surprisingly, during liver stage, the relative quantity

of parasites developing in the liver and the prepatency

period of the infection was not significantly different

between TCRd�/� and WT mice (Fig. 2). Therefore,

we hypothesized that parasites derived from the liver

of both mouse strains were qualitatively different,

resulting in different degrees of virulence [51]. In fact,

it has been known for some time that parasite viru-

lence and disease severity increases with serial blood

passage of Plasmodium through mice, primates, or

humans and that mosquito transmission resets Plas-

modium virulence [89–91]. In addition, recent studies
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have corroborated these findings showing differences

in gene expression between blood and mosquito pas-

sage parasites and their impact in parasite virulence

and host immune responses [91–93].
Our transcriptional analyses of parasites derived

from TCRd�/� and WT mice following Spz infection

revealed differential expression of various surface and

rhoptry glycosylphosphatidy inositol-anchored mero-

zoite proteins, such as MSP1 and RAMA [51]. Nota-

bly, several of these proteins are potential targets for

host immune cells during the intraerythrocytic stage,

since it was shown that they induce pro-inflammatory

responses and contribute to malaria pathogenesis [94–97].
Of note, these parasite proteins have been considered

as potential components of a multivalent subunit vac-

cine against malaria [98–100]. Importantly, the tran-

scriptional changes (relative to WT controls) observed

in liver stage-derived parasites from TCRd�/� mice or

from IFN-c�/� mice were very similar, suggesting a

key role for IFN-c in the cd T cell-dependent tran-

scriptional modulation of Plasmodium parasites. To

functionally demonstrate the impact of this modula-

tion in ECM pathogenesis, we performed adoptive

transfer experiments, in which we found pRBCs col-

lected from TCRd�/� mice to be substantially less

pathogenic than those from WT mice, as indicated by

higher survival rates, independently of the recipient

host genotype (Fig. 2) [51].

Overall, these observations firmly established the role

of cd T cells in promoting an IFN-c-rich inflammatory

microenvironment and impacting the expression of

Plasmodium immunogenic proteins, thus increasing

parasite virulence and promoting immunopathology in

ECM (Fig. 2).

Concluding remarks

Several studies have significantly enhanced our knowl-

edge on the diverse roles played by cd T cells in

malaria infection. This notwithstanding, additional

mechanistic and functional studies are still required to

answer several open questions, such as how to inte-

grate the evidence that on one hand cd T cells are

required, either as effector or accessory cells, while on

the other hand, they seem to contribute to severe

malaria pathogenesis. In fact, cd T cells seem to play a

dual role in malaria infection, that is, a protective

function in whole-Spz sterile immunity and a patho-

genic role in severe malaria. How to balance this

tradeoff when developing cd T cell-based therapeutic

strategies will be challenging, since on the one hand

sterile immunity presupposes the presence of hepatic

cd T cells and on the other hand these cells seem to be

drivers of immunopathology under the natural route

of infection.

Although mouse models have been an irreplaceable

tool to study the function of cd T cells [101,102], it is

essential to translate and apply such findings in human

clinical settings. However, this is complicated by dis-

tinct developmental programs and tissue locations of

cd T cells between human and mice and because there

are no mouse orthologues to the human Vc9+ and

Fig. 2. cd T cells and IFN-c modulate the pathogenicity of liver-derived parasites in ECM development. Graphical summary of adoptive

transfer experiments showing that pathogenic role of cd T cells in ECM is dependent on the liver stage of infection. In the presence of IFN-

c producing cd T cells, the parasite that egresses the liver is more virulent and induces the inflammatory cascade that leads to ECM

development. By contrast, pRBCs collected from TCRd�/� mice are substantially less pathogenic than those from WT mice.
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Vd1+ subsets. Importantly, it is crucial to understand

the complexity of cd T cells in terms of their different

tissue-specific homing, functional plasticity, activation

mode, antigen recognition, recall functions, and cross-

talk with other immune cells, in order to elucidate

their role in malaria infection and, in particular, CM.

Though sterile immunity to Plasmodium may be the

ultimate goal of vaccination strategies, therapies induc-

ing clinical tolerance to malaria seem to be a more

achievable goal in the short term. Importantly, a more

comprehensive knowledge of the interaction between

the host immune responses and the virulence mecha-

nisms of the parasite in severe malaria will be funda-

mental for the development of effective immunological

therapies. Furthermore, a better understanding of the

basic biology and functions of liver-resident cd T cells

will be most valuable for the development of more effi-

cacious Spz-based vaccines to induce sterile immunity

and/or improved cd T cell-based prophylactic or thera-

peutic strategies to induce ‘clinical immunity’ and

overcome susceptibility to severe disease.
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