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Abstract: Vaccines are the most effective medical intervention due to their continual success in pre-
venting infections and improving mortality worldwide. Early vaccines were developed empirically
however, rational design of vaccines can allow us to optimise their efficacy, by tailoring the immune
response. Establishing the immune correlates of protection greatly informs the rational design of
vaccines. This facilitates the selection of the best vaccine antigens and the most appropriate vaccine
adjuvant to generate optimal memory immune T cell and B cell responses. This review outlines the
range of vaccine types that are currently authorised and those under development. We outline the
optimal immunological correlates of protection that can be targeted. Finally we review approaches to
rational antigen selection and rational vaccine adjuvant design. Harnessing current knowledge on
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protective immune responses in combination with critical vaccine components is imperative to the
prevention of future life-threatening diseases.

Keywords: : rational; vaccine; design; antigen; adjuvant; delivery system; route; immunization

1. Introduction

Vaccines have proven highly successful in reducing mortality and morbidity of infec-
tious diseases on a global scale. The recent COVID-19 viral pandemic and the potential
spread and threat of newly emerging infections demands for new efficient vaccines now
and in the future [1]. An effective vaccine is designed to generate artificial adaptive im-
munity by instructing the immune system to either respond to future infections or to act
therapeutically against an established disease or cancer. Ideally it is a medication which
can be safely and conveniently administered to generate the most appropriate long-lasting
prophylactic or therapeutic immunity [2]. In the last century successful vaccines have been
generated empirically, in various formats with a trend to use more refined, safer antigens.
Unfortunately, many of these trial-and-error vaccines still show limitations such as a limited
efficacy, poor stability, and repeated dose requirements. Modern rational vaccine design
involves certain crucial decision steps. Ideally, such strategic decisions involve targeting
the immune response to make the vaccine effective, the choice of the antigen, its delivery
and presentation, as well as the choice of immune response-inducing and shaping vaccine
adjuvant or immunomodulator.

Here we describe the principal vaccine concepts ranging from live attenuated to
peptide vaccines and their most common advantages and disadvantages. Importantly,
depending on the aim of the vaccine its rational design first requires the identification
of the immune correlate(s) of vaccine efficacy or the so-called immunological correlates
of protection (IMCOP). Next, a suitable immunogenic vaccine antigen has to be iden-
tified, and subsequently formulated and presented in order to stimulate the adaptive
immune system for the generation of memory immune T and/or B cells. We will address
these important decision steps for different types of vaccines, which require a rational ap-
proach for the selection of the suitable antigen(s) with low variability, and a critical choice
of co-formulated, or built-in (optimized), vaccine adjuvant as antigen delivery system
and/or immunomodulator.

2. Vaccine Types for Artificial Adaptive Immunity
2.1. Live Attenuated Vaccines

Live attenuated vaccines (LAV) are widely considered highly effective vaccines, as
they closely mimic natural immunity. Indeed, live vaccines are among the most successful
vaccines as exemplified by the smallpox vaccine (live vaccinia virus) which led to small-
pox eradication in 1980 and the poliomyelitis vaccine which led to polio being almost
completely eradicated. Typically, live strains were attenuated by deletion of genes which
impeded virulence or conferred auxotrophic phenotypes. LAVs are highly immunogenic,
consequently do not require additional adjuvants. A single dose often confers protective
immunity, but safety concerns can mean they are not suitable for immunocompromised
individuals. For example, the Sabin polio vaccine strains showed issues with safety in a
small cohort of recipients due to reversion to a paralytic phenotype resulting in vaccine-
associated polio cases, with an incidence of one in 500,000 first time recipients. Attenuation
mutations were lost in vaccine-related polio cases and multiple changes in known attenua-
tion mutations were identified in virus excreted from vaccinated children [3]. This potential
reversion to virulence highlights potential critical risk of live attenuated vaccines and the
need for rational design of live attenuated vaccine strains.

Additional advantages such as stability on storage, avoiding the need for cold chain
and associated costs and challenges can be engineered into LAVs. The Flumist® vaccine
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is an LAV that incorporates all these characteristics [4]. The trivalent live attenuated
seasonal vaccine consists of three live influenza viruses (two type A and one type B).
Each virus is comprised of a genetic rearrangement containing six gene segments from
master donor viruses. The gene segments encoding hemagglutinin and neuraminidase
elicit the protective immune responses, while the other gene segments comprise the genetic
backbone and confer temperature sensitive, cold adapted, and attenuated phenotypes.
The LAV influenza vaccine is well tolerated in children and in healthy adults and has
been reported to be superior to the trivalent inactivated influenza vaccine in terms of
reduced attack rate and disease severity in recipients with breakthrough influenza [4].
Recently developed live attenuated viral vaccines are incorporated in recombinant vectors,
for example the dengue vaccine first licensed in December 2015 [5]. This is a tetravalent
recombinant LAV with a yellow fever 17D vaccine virus backbone. It has demonstrated a
good safety and efficacy profile in clinical trials as described below (Section 2.5).

Live attenuated bacterial vaccines have also been developed and licensed, or are at
various stages of development, including vaccine candidates for Vibrio cholerae, Burkholderia
pseudomallei, Salmonella typhimurium, Francisella tularensis and Pseudomonas aeruginosa.

The typhoid live oral vaccine (Ty21a) is a licensed oral vaccine which was developed
by chemical mutagenesis of a Salmonella typhi strain and incorporates an inactive galE gene
encoding an enzyme involved in LPS core oligosaccharide biosynthesis and over 20 other
mutations [6]. It generates potent mucosal, humoral and cellular immune responses and
has a good safety record in large scale safety trials involving children and adults from Chile,
Egypt and Indonesia. No vaccine-related adverse reactions or reversions were identified
among 200 million recipients over 25 years [7]. Its safety and ability to induce robust T
cell responses has led to its evaluation as an oral vaccine delivery platform for a range of
alternative vaccines against shigellosis, anthrax, plague or HPV [8,9] (Section 2.6).

2.2. Inactivated “Killed” Vaccines

Inactivated or killed vaccines consist of preparations of isolated and amplified disease-
inducing microorganisms which are subsequently made incompetent for replication by
various inactivation methods, including heat-inactivation, chemical inactivation or radia-
tion. Usually, these vaccine induce less strong or less lasting immunity when compared to
replicating attenuated vaccines. Therefore, they often require booster immunizations and
co-administered immunomodulatory adjuvants. Successful licensed inactivated vaccines
have been developed against polio, rabies, hepatitis A and influenza. For the pandemic
SARS-CoV2 virus inactivated killed viral vaccines are being developed, either as whole
inactivated viral variants or as adjuvanted subunit (protein or peptide) vaccines.

2.3. Subunit Protein and Peptide Protein and Polysaccharide Vaccines

Subunit antigen vaccines contain specific essential antigens to elicit protective re-
sponses without any live components and consequently are considered very safe. However,
they are generally of lower immunogenicity and thus require additional adjuvant(s) to pro-
mote their protective responses. Early subunit vaccines exploited the available knowledge
on microbial pathogenesis, for example the diphtheria toxoid and tetanus toxoid antigens,
which were prepared by formalin inactivation of the respective bacterial toxins. Other
subunit vaccines are based on purified recombinant proteins, such as the hepatitis B surface
antigen with an aluminum-based adjuvant in the licensed Hepatitis B vaccine [10] and
the herpes zoster vaccine consisting of a single recombinant glycoprotein E with the AS01
adjuvant [11]. Vaccines based on polysaccharide antigens were introduced in the 1970s
and while they were also safe and well tolerated, they are not immunogenic in children
under two years; have relatively short acting immunity (3 to 5 years) and induces poor
immunological memory [12]. Covalent conjugation of the polysaccharide components to
carrier proteins greatly enhanced their immunogenicity and efficacy. The quadrivalent Neis-
seria meningitides vaccine MenACWY-CRM (Menveo®) and the MenACWY-TT (Nimenrix®)
vaccines comprise purified polysaccharide from four major capsular sub-groups A, C, W
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and Y conjugated to either diphtheria cross reactive material (CRM) or tetanus toxoid
(TT), respectively, are approved for use in infants of 6 weeks and older. The flexibility of
the conjugate approach is exemplified by the development of pneumococcal conjugate
vaccines (PCV) to protect against Streptococcus pneumoniae. The first PCV was licensed in
2000 and comprised of polysaccharide representing seven serotypes. It was subsequently
replaced by versions with broader coverage, namely ten-valent (PCV10) and 13-valent
(PCV13) versions.

Several strategies have been devised to identify novel vaccine antigens. Rappuoli
and colleagues pioneered the use of reverse vaccinology to identify novel antigens against
Neisseria meningitides serogroup B [13,14] as addressed in Section 4.1. This approach in-
volved mining the sequenced genome to identify any surface-expressed proteins based on
the presence of signal peptides, and subsequently evaluating the identified antigens for
immunogenicity in mice. This predictive approach led to the development of the Men B vac-
cine, Bexero® licensed in 2013 which has had a significant impact on meningococcal disease
caused by serogroup B. While this approach has revolutionized vaccine antigen discovery,
one key limitation relates to the costs associated with testing the vast array of surface
proteins identified (e.g., 350 antigens in the case of meningococcal B (MenB)), all of which
were tested in mice. Alternative approaches exploit bacterial host interactions including
identification of immunoreactive proteins via immunoproteomic approaches or identifying
protein-protein interactions. The former approach typically involves probing two dimen-
sional blots prepared from bacterial proteins with serum from infected patients or animals
to identify immunoreactive proteins that stimulate serological antibody responses. One
limitation of this method is that humoral responses may not be ultimately protective, and
identification of potential subunit antigens based on stimulation of a serological response
may not identify protective antigens [15]. More recently immunoproteomic studies incor-
porating antigen processing and presentation elements allowed identification of vaccine
antigens that stimulate helper and cytotoxic effector immune responses in addition to
humoral responses and consequently may show more effective immune protection [16].
This involves immunoprecipitation of viral infected cell lysates by affinity chromatography
with specific anti-HLA mAbs, subsequent purification and mass spectrometry.

Identification of bacterial proteins involved in host cell attachment represents another
approach to the identification of subunit vaccine antigens capable of stimulating both
humoral and cellular responses. Bacterial membrane proteins are probed with human
epithelial cells representative of the site of mucosal colonization with subsequent identifi-
cation of bacterial protein involved in host cell attachment by mass spectroscopy, thereby
focusing the field of potential efficacious antigens identified and reducing the burden of
testing potentially unnecessary proteins that although present on the microbial surface are
not involved in the direct host cell response [17]. This approach has led to the identification
of Burkholderia antigens that are protective and stimulate both a serological response and
also contain potent T cell epitopes [18].

Identification of the most effective epitopes in a subunit protein antigen can result in
smaller (20 to 30 amino acid) peptide-based vaccines which can be synthesized in vitro.
Consequently, they can be readily purified, are safer and may potentially trigger the desired
immunological response. However, such peptide epitopes generally require conjugation to
other peptide epitopes or biopolymer carriers in order to overcome their relatively small
size and improve immunogenicity. In most cases adjuvant formulations are required. No
human peptide prophylactic vaccine has been licensed to date.

2.4. RNA Vaccines

Vaccines based on in vitro-transcribed mRNA have the potential to transiently express
the encoded protein in situ without the adverse effects of viral and DNA-based constructs.
Two major types of RNA that are currently studied as vaccines are non-replicating mRNA
and virally derived self-amplifying RNA. Both have in common a cap structure, 5′ and 3′

untranslated regions (UTRs), an open-reading frame (ORF), and a 3′ poly(A) tail, while
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self-amplifying RNA additionally contains replication machinery derived from positive-
stranded mRNA viruses, most commonly from alphaviruses such as Sindbis and Semliki-
Forest viruses [19]. In order to remove impurities, eliminate undesirable immune activation
and improve translation, in vitro-transcribed mRNA purification is critical [20].

In order to be translated and elicit an antigen-specific immune response, an mRNA-
vaccine has to reach the cytosol of its target cells. There are two basic approaches for
the delivery of mRNA vaccines: (1) loading of mRNA into dendritic cells (DCs) ex vivo,
followed by re-infusion of the transfected DCs, or (2) direct injection of mRNA with or
without a carrier into target cells. The most common carriers used for complexing mRNA
are protamine (a cationic peptide), lipid or polymer-based nanoparticles. In addition to
facilitating efficient cell delivery, the complexation with different carriers may influence
immunogenicity and longevity of the mRNA vaccine. As well as inducing specific immune
response toward the encoded antigen, once in the endosome, mRNA is recognized by
RNA-sensing receptors, namely Toll-like Receptors (TLRs), and other pattern recognition
receptors (PRR) contributing to the immunostimulatory features of mRNA vaccine. Al-
ternatively, an early shut-down of antigen expression after the mRNA vaccination due to
unwanted PRRs activation might be detrimental underlining the need for fine tuning of
mRNA recognition by host immune system.

In recent years an increasing number of preclinical studies have shown promising
results with both self-amplifying and non-replicating mRNA vaccines conferring protection
against various pathogens. However, data reporting outcomes of clinical trials are still
modest. The first-ever demonstration in humans shows that a prophylactic mRNA-based
candidate vaccine against rabies virus induced boostable functional antibodies against a vi-
ral antigen when administered intradermally with a needle-free device, although not when
injected intramuscularly by a needle-syringe. The vaccine was generally safe with a rea-
sonable tolerability profile [21]. By contrast, immunization with dendritic cells transfected
with mRNA encoding HIV-1 Gag and Nef did not induce significant interferon-gamma
producing enzyme-linked immunospot responses. However, proliferative responses to
HIV-1 antigens and to a neo-antigen were increased, but the effects were transient. Thus,
dendritic cell vaccination requires optimization to elicit stronger and long-lasting immune
responses for this strategy to be effective as an HIV-1 therapeutic vaccine [22]. Nevertheless,
encouraging data were obtained in a phase 1 dose-escalation, open-label trial to evaluate
candidate vaccine mRNA-1273 encoding the stabilized prefusion SARS-CoV-2 spike pro-
tein. They revealed that this vaccine induced anti–SARS-CoV-2 immune responses in all
participants, and no trial-limiting safety concerns were identified [23]. Two independent
COVID-19 mRNA-vaccines were subsequently authorized by the FDA and EMA- for large-
scale immunization campaigns against COVID-19 [24,25]. These recent data illustrate that
RNA vaccines represent a modular platform technology for rapid development of vaccines
against emerging disease as soon as the sequence of the target antigen is known.

2.5. DNA Vaccines

A DNA vaccine comprises the DNA that encodes vaccine antigens. After adminis-
tration of the DNA to the host, antigens are produced in vivo and intended to stimulate
an immune response. DNA vaccines contain nucleotides encoding an antigenic portion
of a tumor-associated antigen or a target pathogen, such as the viral core region or viral
envelope region. Any antigen encoded by a DNA vaccine is expressed intracellularly
and consequently can be processed via the endogenous Major histocompatibility complex
(MHC) class I pathway. Contrary to an RNA vaccine, protein expression by a DNA vaccine
requires the nuclei acid to cross two cellular membranes, namely the plasma, as well as
the nuclear membrane. Thus, successful transfection is crucial for DNA vaccine efficacy.
Hence, various delivery methods have been developed, including gene gun, jet injection,
in vivo electroporation, but also different formulations of DNA, for example encapsula-
tion in lipid nanoparticles, adsorption to polymers, and adsorption or encapsulation in
biodegradable nanoparticles. Safety concerns of DNA vaccines mostly relate to potential
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DNA integration into the host genome and generation of antibodies against the injected
DNA. Indeed, DNA integration events were detected in a few studies, while no anti-DNA
antibodies were found in animal models. In general, the potential risks of DNA vaccines
are considered relatively low, although safety issues may differ from one application to an-
other, and require strict monitoring [26]. To date, the DNA vaccine concept has been tested
and applied against various pathogens and tumor antigens. In theory, this conceptually
safe, non-replicating vaccine approach is a technically simple means of inducing immune
responses. Importantly, DNA vaccines can induce both humoral and cellular immunity,
which is the elusive aim of alternative vaccines [27].

Despite the initial studies on DNA vaccines commencing in the 1990s, there are no
approved DNA vaccines for use in humans to date. There are, however, a selection of
DNA-based vaccines approved by the USDA for veterinary use, including an equine
vaccine against West Nile Virus [28] and canine melanoma vaccine [29]. One of the first
human clinical trials with DNA vaccines evaluated the therapeutic and prophylactic effects
against HIV and showed disappointing immunogenicity with poor T cell responses and
low, or undetectable, humoral responses. [30]. More recently, DNA vectors have been
used as a priming immunization in combination with protein [31], poxvirus [32] or aden-
ovirus [33] as HIV vaccine in prime/boost regimens indicating that combination of vectors,
may beneficially influence the quality of the immune responses. Evaluation of safety
and immunogenicity for an anti-Middle East respiratory syndrome (MERS) coronavirus
DNA vaccine showed that it was well tolerated with no serious adverse events. Immune
responses proved dose-independent, detected in more than 85% of participants after two
vaccinations [34]. Built on this prior experience a synthetic DNA-based vaccine candidate
targeting the SARS-CoV-2 S protein, INO-4800, was generated. Preliminary studies con-
ducted in mice and guinea pigs revealed that the INO-4800 vaccine induced both cellular
and humoral host immune responses that were observed within days following a single
immunization, including cross-reactive responses against SARS-CoV-2 virus. These data
demonstrate the immunogenicity of this synthetic COVID-19 DNA vaccine candidate [35]
supporting further evaluation of the DNA vaccine concept.

2.6. Recombinant Viral Vector Vaccines

Viruses have proven to be highly efficient vehicles for introducing foreign nucleic acid
into target cells. Additionally, viruses are sensed by several intra- and extra-cellular Toll
like receptors and intrinsically induce host immune responses upon cell infection. Both of
these features, accompanied by extensive knowledge of molecular biology and methods for
manipulating the viral genome that are now available, make viruses attractive candidates
for vaccine vector development. Hence, recombinant viral vectors have been and are
being investigated as vaccines targeting a broad range of viral, bacterial, and protozoan
pathogens. They are particularly used in disease areas where classical vaccination strategies
have proven ineffective, difficult, or technically impossible.

Viral genomes can be manipulated to express any antigen of choice encoded either
in the genome [36] or presented as an epitope displayed on the surface of an unrelated,
modified virus [37]. Delivery of the target antigen in the context of a viral vector allows
faithful antigen generation and processing, namely correct protein folding, and modifica-
tions such as glycosylation. Once in the cell, viral vectors mimic the natural viral infection,
thereby inducing potent immune responses. Hence, viral vector-based vaccines can be
delivered without additional adjuvants while promoting strong antigen-specific cellular
and humoral immune responses against the target antigen [38]. For the most commonly
employed viral vector-based vaccines, high yield, and scalable production processes have
been established [39]. Several viral vectors, including adenoviruses, parvoviruses, to-
gaviruses, paramyxoviruses, rhabdoviruses, and poxviruses are currently being evaluated
and developed as vaccine vectors [40].

Viral vectors present a versatile and modular platform for vaccine development that
can be especially valuable in outbreak situation when prompt reaction is needed. The SARS-
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CoV-2 vector vaccine candidates, which we are currently witnessing with unprecedented
development, exemplifies this. Viral vector-based vaccines against SARS-CoV-2 have
been tested in the context of non-replicative vectors such as human and chimpanzee
adenoviruses and replication-competent vesicular stomatitis virus [41]

The chimpanzee adenovirus-vectored vaccine ChAdOx1 nCoV-19, encoding the spike
protein of SARS-CoV-2, was immunogenic in pigs and mice, eliciting a robust humoral
and cell-mediated response [42]. Vaccination with ChAdOx1 nCoV-19 (both prime-only
and prime-boost regimen) induced humoral and cellular immune response in rhesus
macaques [43], showed an acceptable safety profile, and homologous boosting increased
antibody responses [44]. Moreover, a recombinant adenovirus type-5-vectored COVID-19
vaccine was reported to be safe, tolerable and immunogenic inducing humoral and rapid
specific T cell responses in healthy adults [45,46]. Induction of robust neutralizing antibody
responses and complete or near-complete protection evidenced in bronchoalveolar lavage
and nasal swabs following SARS-CoV-2 challenge in nonhuman primates was also shown
for adenovirus type 26 vector-based vaccine for SARS-CoV-2, termed Ad26.COV2.S [47]. All
three adenovirus-based SARS-CoV-2 vaccine candidates are in phase 3 clinical trials at time
of writing and two are approved for emergency or limited use in the United Kingdom and
China, respectively. Moreover, vaccination with replication-competent vesicular stomatitis
virus (VSV) expressing a modified form of the SARS-CoV-2 spike generated neutralizing
immune responses and protected mice from SARS-CoV-2 supporting development of
VSV-SARS-CoV-2 as an attenuated, replication-competent vaccine against SARS-CoV-2 [41].
However, regardless many advantages and gathered knowledge, so far, few viral vector
based vaccines, e.g., Dengvaxia, a recombinant Dengue vaccine based on the yellow fever
attenuated strain 17D, have been licensed for human use [48].

2.7. Recombinant Bacterial Vector Vaccines

The most commonly used approaches to bacterial vaccines are based on inactivated
whole cells, purified recombinant proteins and protein-polysaccharide conjugates. Geneti-
cally engineered live attenuated bacteria are currently not widely used as human vaccines,
although this approach has been investigated especially in the case of the BCG vaccine
against tuberculosis [49]. Outer Membrane Vesicles (OMVs) are gaining attention as novel
vaccine candidates. OMVs contain bacterial surface components and virulence factors,
including pathogen associated molecular patterns (PAMPs) that trigger innate immune
responses, making them attractive as candidate vaccines. Most recently, the broad-coverage
Men B OMV-based vaccine (Section 2.3) has proved to be effective in controlling meningo-
coccal outbreaks [50,51]. The isolation of OMVs from N meningitidis requires treatment with
deoxycholate detergent to in-crease the yield and to reduce endotoxin levels. Endotoxins
are lipopolysaccharides (LPS) that are potent TLR-4 agonists inducing activation of innate
immune responses and inflammatory cytokines secretion. Removal of LPS by detergent
treatment is essential to prevent serious adverse effects, however this treatment leads to the
removal of potential surface exposed antigens with consequent impact on the long-term
stability of the OMV vaccine. Genetic modification of N. meningitidis by deletion of spe-
cific genes overcomes both these limitations. Deletion of the rmpM gene results in higher
yields of OMV. The RmpM protein anchors the outer membrane to the peptidoglycan
layer, and its absence consequently leads to increased OMV release [52]. The toxicity of
OMVs can be attenuated by deletion of genes encoding the LpxL1 or LpxL2 enzymes of
the lipid A biosynthesis pathway. This results in a penta-acylated form of LPS which has
reduced endotoxic activity relative to hexa-acylated LPS [53]. The combined effect of these
modifications enables the isolation of high yields of OMVs with reduced endotoxicity.

Vaccine applications of OMVs can be greatly expanded by the expression of heterolo-
gous antigens, where the OMV’s serve as both adjuvant and delivery vehicle. Surface expo-
sure of the antigens might improve the immune response, so targeting to the OMV surface
is an important consideration. Two different methods for surface display in N. meningitidis
are available: (i) fusion to the N-terminus of the lipoprotein factor H binding protein
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followed by internal expression by the OMV-producing strain [54], and (ii) external linkage
to OMVs of a separately produced recombinant protein carrying a C-terminal LPS-binding
tag. The first method has the advantage that only a single vaccine preparation needs to
be made, while the second method requires the combination of two separate products but
allows greater flexibility in the choice of antigen. Genetic removal of immunodominant
meningococcal surface antigens can be used to reduce the immune response against the
OMV carrier itself.

3. The Immunological Correlate(s) of Protection

Before embarking on the design of a vaccine it is very important to first consider what
type of immune response will generate the desired vaccine-induced immunity. While this
may seem obvious, this approach was not followed for many existing vaccines developed
for infectious diseases in the last century. As mentioned, many current vaccines have been
developed empirically and the immunological correlates of protection are not yet clearly
defined for many infectious diseases.

Historically most vaccines aimed to induce neutralizing antibody responses (see
Section 3.2). Neutralizing antibodies are relatively easy to measure in the serum of immu-
nized individuals and the detection of neutralizing antibodies in serum samples likely
reflects their activity in the infected host. However, numerous infectious diseases and
malignancies cannot be prevented or cured (in case of a therapeutic vaccine) by neutral-
izing antibodies. In most cases these infections show an intracellular life cycle, or a high
degree of a variability of surface antigens, which cannot be targeted since they escape from
vaccine-induced antibodies. Such diseases, if preventable at all, often require cell-mediated
or cellular immunity (Section 3.2), preferably directed against a conserved non-variable
antigen(s), to impede the disease. As a result, many vaccine approaches have failed due to
their inadequate design and inability to induce a cell-mediated immune response.

3.1. Passive Immunity Transfer or Immunity Depletion

Knowledge of the contribution of specific immune effector mechanisms involved
in protection against a particular pathogen or tumor, will help to identify the type of
immune response that should be evoked by effectively-designed vaccines. In order to
identify which type of immune reaction is necessary for protection against a particular
disease a range of approaches can be followed. Animal models can be used to decipher
the contribution of antibodies or specific immune cell populations. One strategy involves
the assessment of passive protection of either antibodies or immune T cells from immune
donors to naïve recipients that are subsequently exposed to an artificial challenge with
the pathogen or tumor of interest. Another approach involves the selective depletion
of either antibody-producing B cells or T cells (or their CD4 or CD8 subpopulations) in
immune hosts and the subsequent monitoring of a drop in protective immune function
after challenge. The contribution of antibody-producing B cells can be studied by using
B cell-neutralizing antibodies or by specific genetic deletion of the B cell population (e.g.,
µMT gene deficient mice). Alternatively, the contribution of T cells to immunity in immune
hosts can be examined using T cell-depleting antibodies, or mice with genetically deleted
T cells (or their subpopulations). Any reduction in immunity relative to wild-type or
depleted immune mouse models indicate their contribution.

Despite these experimental strategies, the specific contributions of distinct immune
effector mechanisms are known for just a few pathogens. This may be due in part to
the lack of suitable animal models reflecting human or veterinary disease, the complex
changes in life cycle of certain pathogens and their evasion from immune surveillance, as
well as the complex nature of immune reactions and synergistic activities of immune cell
populations. For example, antibodies may be involved in protection during the acute phase
of infection while cell-mediated responses may become critical during the chronic phase of
infection. Although animal models may not fully reflect the disease or may not be available,
in many cases there are clues to the signature of immune clearance mechanisms that are
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associated with recovery from, or immunity to, specific infectious diseases. Extrapolations
to correlates of immunity can be made based on knowledge from related categories of
intracellular versus extracellular pathogens, or related types of micro-organisms with
similar life cycles. Actual correlates have been defined or suggested for Hib, pneumococcal
and meningococcal vaccines. Moreover, for most tumors we know that in general type-1
immune and STING pathway interferon responses are related to protection [55]. Hence, the
immune correlate of protection can be estimated or is predictable to some extend without
the need for immunity transfer or depletion experiments.

The systems biology approach can facilitate a better picture of the immune responses
in general and to vaccination in humans [56]; in fact, it may prove that vaccination-induced
artificial immune effector clearance, rather than natural immune effector responses, may
prove sufficient to fight of particular pathogens or tumors and may provide even better
levels of protection. Understanding the immunological mechanisms of vaccination and the
bridging of technical knowledge gaps [57] will help in the rational design of future vaccines
against emerging infectious pathogens, such as COVID-19, as well as against prominent
global diseases such as HIV, malaria, and tuberculosis.

3.2. Types of Protective Immune Responses
3.2.1. Antibody-Based Immunity

Humoral or antibody-based immunity is one of the two arms of the adaptive immune
response, which results in the generation of antigen-specific antibodies that target invading
microbial pathogens or vaccine antigens. Humoral immunity is achieved by B-cells but
requires help from CD4+ T cells and therefore is also dependent on successful cell-mediated
immunity. Activated B cells interact with antigen-specific CD4+ helper T cells in the outer
cortex of the lymph nodes and undergo proliferation in the presence of cytokines such
as IL-4 and IL-5 produced by CD4+ T cells. The antibodies produced bind the organisms
and/or their toxins, directly interfering with microbial proliferation via neutralization,
opsonization, and complement activation, or will direct other immune cells to phagocytose
and destroy the bound microbe. Following a successful induction of humoral immune
response, B cells producing affinity matured and isotype-switched antibodies differentiate
into quiescent memory B cells (Figure 1).

3.2.2. Cell-Mediated Immunity

Cell-mediated immunity is the other arm of the adaptive immune response that
generates a wide variety of antigen specific effector T cells subsets which can either directly
kill infected cells or induce various effector functions in conjunction with other immune
cells. Naïve CD4+ T cells encounter pathogen or vaccine antigenic peptides complexed with
MHC-II molecules that are presented on the surface of antigen presenting cells (APCs), such
as dendritic cells and macrophages. Activated APCs provide the critical co-stimulatory
signals, which stimulate the T cell receptor (TCR) resulting in T cell proliferation. Following
TCR activation by APCs, naïve CD4+ T cells differentiate into either T helper (Th)1, Th2,
Th9, Th17, Th22, T follicular helper, and T regulatory cells under unique cytokine-polarized
milieus (Figure 1). These subsets of Th cells secrete diverse effector molecules contributing
to cell-mediated or humoral immune responses, inflammation or immunoregulation. CD8+

T cells release a variety of cytotoxic molecules such as perforins, granzymes, and IFN-γ,
which kill the target cell, e.g., host cells infected with viruses or intracellular bacteria.
Once the infection is resolved, antigen-specific CD4+ and CD8+ effector T cells decline in
number and a small population is usually maintained as antigen-specific memory CD4+

and CD8+ T cells.
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and IFN-γ that destroy infected host cell. A subset of memory B and T cells confer future immunity to the cognate pathogen
or antigen. IFN-γ, interferon gamma; IL, interleukin; TGF-β, transforming growth factor β; TNF-α, tumor necrosis factor α.

3.2.3. Innate Immunity

Traditionally the evaluation of vaccine efficacy has been based on measuring of specific
antibody and T cell readouts or challenge experiments in animal models. However, innate
immune activation, which has an important impact on the final outcome of vaccine efficacy
and safety, is rarely measured. Early innate immune responses have a well-established role
on the eventual down-stream adaptive immunity as well as on early inflammation with
potential unwanted side effects of vaccines. It is therefore expected that innate responses
may represent a correlate of vaccine efficacy. For many vaccines, the traditional outcome of
a vaccination is assessed several weeks after vaccination, however determination of early
correlates of vaccine efficacy could speed-up the rational design of vaccines. A well-known
problem in evaluating vaccine responses is the large variation in immune responses of the
host which is seen in both human and veterinary species. This is driven by heterogeneity
in age, genetics, and environmental factors including previous infections, stress or changes
in microbiome following antibiotic treatment [58–60]. This variation is also a problem in
challenge experiments performed for veterinary vaccines and results in poor statistical
power of many vaccine trials.

Systems vaccinology provides a solution to these issues. This approach employs
multiplexed immune profiling technologies combined with computational modelling to
evaluate vaccine responses. This can be applied to peripheral blood samples very early after
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vaccination, providing molecular signatures of protective immune responses [61]. In fact,
it was demonstrated that transcriptomic data can be most informative if analyzed using
blood transcriptional modules (BTM) that were created on the basis of highly interacting
genes [62,63]. In recent years this approach has continuously been applied to many human
studies and, as new technologies have emerged, refined by integration of data from a num-
ber of “omics” technologies [64]. In general terms, the data generated using BTM provide
information on changes in immune cell population distribution, cellular processes, such as
cell cycle and transcription, leukocyte-specific signaling pathways, leukocyte migration,
activation of particular immune cell types such as dendritic cells and T cells, inflammation,
coagulation, platelet activation, antiviral responses, antigen presentation, immunoglobulin
production, or on metabolic processes relevant for immune responses [60,63,65].

Recently such methods have also successfully been adapted to veterinary species
including sheep and pigs [66,67] and demonstrated their power to detect and explain
immunological processes occurring in tissues such as the injection site of a vaccine using
peripheral blood as source. These data can predict vaccine responses and enable a detailed
characterization of immune responses induced by different formulations [67]. Interestingly,
the correlation patterns of BTM with adaptive responses were seen across multiple species.

In summary, systems vaccinology pipelines can be used to dissect the impact of
vaccine components and their formulations on the immune system and thereby help to
identify improved delivery systems and immunostimulants. It is possible to identify innate
correlates and biomarkers of suitable vaccines to improve formulations, select optimal
immunostimulants and compare different batches of vaccines. Finally, such analyses have
been used to identify pathways responsible for the heterogeneity in vaccine responses
caused by age, nutrition, stress, genetics and the microbiome (reviewed in [64,68]).

4. Choice of Vaccine Antigen
4.1. Rational Antigens for Antibody Immunity

Should immunological data indicate that a disease can be prevented by an antibody
response, it is important to select an appropriate antibody-inducing antigen. Induction of
robust antibody responses by vaccines requires inclusion of relevant antigenic epitopes for
B cells as well as T cell peptide epitopes to elicit appropriate T helper (Th) cell activation and
assistance to B cells. Hence, selection of the optimal antigen is imperative in vaccine design.

A successful strategy in the selection of the antigenic determinants as “subunit”
vaccines is the isolation and inactivation of essential components of the pathogenic or-
ganism [69]. Chemically inactivated toxins isolated from bacteria have been exploited for
diphtheria and tetanus vaccines. This approach has also been pursued for subunit vaccines
based on purified polysaccharides of Gram-negative bacteria, such as those developed for
Streptococcus pneumoniae, Haemophilus influenzae or Salmonella typhi Vi. Saccharide-based
vaccines have also been developed in multivalent forms to provide protection against
numerous serotypes and serogroups [70].

Current strategies utilize reverse vaccinology approaches to select promising glyco- or
protein-derived antigens based on structural studies of the target epitopes of potent anti-
bodies [71,72]. Rational, structure-guided vaccine design can also involve the development
of structurally simpler immunogens that present well-defined minimal epitopes targeted by
neutralizing antibodies, serving as epitope mimics for elicitation of more focused immune
responses [73]. When refined recombinant or synthetic subunit vaccines are designed, the
structural features of the antigen may strongly impact the desired antibody-response.

Structural antigen vaccinology is a structural biology approach to design immuno-
genic antigens. It rationally aims to generate an effective antibody-inducing vaccine
antigen, combining experimental methods such as X-ray crystallography, nuclear magnetic
resonance (NMR), molecular biology, electron microscopy and mass spectrometry, with
computational methods including molecular modeling, virtual screening and epitope pre-
diction [74]. The identification of an antigen candidate is typically based on its cellular
location. Although computational approaches exist to predict the protein localization in
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the cell, a leading technique for antigen identification is mass spectrometry, which allows
the assessment of surface structures. Knowing the structure of an antigen will provide im-
portant insights into the tertiary structure and position of the potential epitopes. Moreover,
structures of antigen-antibody complexes enable the elucidation of the molecular nature of
host-pathogen interactions and of pathogen- or vaccine-induced antibody responses. The
first step of this approach is the three-dimensional structure determination of the antigen
using structural biology tools such as X-ray crystallography, cryo-electron microscopy and
NMR. Epitope mapping of an antigen that is recognized and bound by antibodies is key to
vaccine development This will provide a comprehensive dataset at atomic level which is
necessary to engineer new constructs with better properties in terms of elicitation of the
antibody response, stability in solution and ease of production.

The aim of this re-engineering process is to obtain an antigen that is more effective in
eliciting an optimal B cell response. Based on the analysis of antigen-antibody interaction
network, the candidate vaccine antigen may contain only those residues essential to repro-
duce the protective epitopes. Molecular modeling is extremely helpful in designing optimal
re-engineered antigens, through the identification of mutations that stabilize immunogenic
conformations of epitopes. Moreover, residues outside the epitope can be mutated to im-
prove antigen production yields. Another important issue in antigen re-engineering is the
improvement of antigen thermal stability, through the identification of stability-enhancing
mutations or through the insertion of the designed antigen in stable protein scaffolds.
Eventually, the immunogenicity and efficacy of the candidate vaccine must be tested in
animal models [75].

While glyco- or peptide-based subunit vaccines offer improved safety and more precise
targeting, they usually require conjugation to immunogenic molecules (i.e., carrier proteins
or immunogenic Th sequences), or presentation in multimeric format (virus-like particles or
nanoparticles) to achieve optimal immune responses [76], which can be further enhanced
by inclusion of an immunomodulatory adjuvant. Notably, issues of immunodominance are
a critical aspect to designing optimized vaccines and need to be considered when selecting
the epitope in order to elicit focused, protective broadly neutralizing antibody responses
directed against naturally non-immunodominant conserved epitopes [77].

Another key element for rational vaccine design is the presentation of the antigen in its
relevant native-like conformation, enabling optimal antibody recognition of the antigenic
epitope within the quaternary protein structure. Several approaches have been developed
to modulate these epitopes to favor conformationally relevant states of the antigen [78],
including side chain cross-linking, grafting the epitope into a larger scaffold and other
rationally designed chemical modifications leading to enhanced antibody binding affin-
ity [79]. With the development of chemical technologies, such as covalent conjugation of
immunogenic carrier proteins to polysaccharides, subunit vaccines have substantially ad-
vanced and have provided improved memory responses, thus addressing a key limitation
suffered from saccharides vaccines. [80].

Several prototypes of structure-based vaccine development have been evaluated. One
example represents the vaccine development against respiratory syncytial virus (RSV). In
this case, specific epitopes belonging to the F glycoprotein (sites 0, III, and V) present potent
neutralizing activity, 10 to 100 times greater than that observed for clinically used mono-
clonal antibody palivizumab (Synagis®). However, these key epitopes are well exposed
only in the pre-fusion trimeric conformation of the RSV-F protein. Structural vaccinology
was fundamental to generate stabilized pre-F trimers that preserved key epitopes in the
proper conformation to elicit the most neutralizing activity in human sera [81,82]. An-
other example is the licensed 4-component vaccine against N. meningitidis serogroup B
(MenB) composed of three recombinant proteins and a bacterial membrane vesicle selected
using a reverse vaccinology approach (Section 2.2) [13]. Structure-based design was subse-
quently used to generate a vaccine made of chimeric antigens, by retaining epitopes from
two antigens (fHbp and PorA), thus potentiating its power to elicit functional humoral
immune responses against MenB [83]. These two examples illustrate that structural vacci-
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nology can generate novel vaccine antigen candidates with improved characteristics for
antibody-based strategies.

The potential improvement in the identification of antigenic determinants expressed
on cancer cells enabled the design of therapeutic subunit vaccine to treat cancer [84–86].
Although the use of cancer vaccines awaits meaningful clinical benefits several tumor-
associated carbohydrate antigens (TACAs) are currently largely validated and have been
used to design promising molecular vaccines. Conjugation of these TACAs to proteins or
the development of altered-self, i.e., more immunogenic, TACA analogues are examples of
current strategies to make TACA-based vaccines able to break immune tolerance and elicit
cancer antigen-specific antibodies [87].

4.2. Rational Antigens for Cell-Mediated Immunity

A considerable challenge in vaccinology is the design of vaccines against pathogens for
which antibody immune responses are not protective [88]. To develop T cell vaccines, it is
important to have an antigen that elicits potent cellular immune responses as well as an easy
methodology to test the validation of the vaccine design in vivo and in vitro. In this regard,
proteomics approaches with virulence factors of pathogens that induce potent CD4+ and
CD8+ T cell responses are worthy methods to de-sign vaccines using reverse vaccinology
approaches [89]. Using Listeria monocytogenes as a model pathogen Kono and co-workers
and Calderon-Gonzalez and co-workers and DCs loaded with peptides of two virulence
factors of this pathogen, listeriolysin O (LLO) and the glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH) prepared vaccines that confer listeriosis protection [90,91]. Later, a
methodology that combines bioinformatic analysis to screen for the best MHC binders,
delayed type hypersensitivity (DTH) to test the best T cell mediated inducers and analysis
of cytokines released by DC loaded with the epitopes and an adjuvant to search for epitopes
inducing only Th1 and not Th2 cytokines [92] (Figure 2). Consequently, MHC binding epi-
topes and inducers of Th1 cytokines were selected and included in the peptide sequences
contributing to immune protection. DCs loaded with those epitopes that meet the highest
MHC binding, T cell induction and high levels of Th1 cytokines were validated as efficient
epitopes for vaccination against L. monocytogenes challenge. This approach helps to predict
other epitopes for vaccines against listeriosis and other pathogens as mycobacteria and
streptococci [93]. Other proteomics approaches similar to this one also helped to design.
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Figure 2. Methodology using dendritic cells (DCs) and adjuvants to select vaccine antigens for cell- mediated immunity. (1)
DC loaded with peptides, good Major histocompatibility (MHC)-I and MHC-II binders and a Th1 adjuvant are checked for
Th1 and Th2 cytokine releases. (2) Peptides inducing Th1 cytokines are selected and validated in mice vaccinated with DCs
loaded with the peptides and inoculated into the footpads to measured delayed hypersensitivity (DTH) reactions. Peptides
inducing strong DTH reactions are considered good candidates for future vaccines.
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5. Choice of Immunomodulation
5.1. Rational Vaccine Adjuvant Design

For the past few decades, the focus of new vaccine development has been on the
antigen(s) and new ways to present antigen. Optimization of the immune response with the
use of different types of adjuvant has received less attention. Typically, when preliminary
studies with a “standard” adjuvant does not show the desired (protective) response, the
researchers will seek another type of antigen, instead of searching for an appropriate
adjuvant that may provide the suitable or preferred immune response. Often the desired
adjuvant or formulation is unknown or not available. Nevertheless, there have been
noteworthy achievements in improving existing vaccines by introducing specific adjuvants
as well as new vaccine delivery methods [1,94].

Live attenuated vaccines, however, do not usually require adjuvants since the resulting
immune response is a result from the attenuated microbe and its attempt to multiply.
However, adjuvants come in many forms [95] and may have many functions as shown in
Table 1.

Table 1. Pharmaceutical and Immunological Functions of vaccine adjuvants.

Pharmaceutical function (affecting vaccine antigen delivery)
Prolong antigen residence time at the site of administration
Protect the nature of the antigen
Prevent the antigen from degradation (improve stability)
Protect the 3D structure of the exposed antigen epitope(s)
Induce an environment that mimics the infection
Secure absorption into the lymphatics over systemic circulation
Decrease the number of boosters required for successful immune response
Have a good safety and toxicological profile

Immunological function (impact on immune function)
Attract antigen presenting cells to the site of administration
Augment immune response type: e.g., Th1, Th2, Th3 or Th17
Augment the generation of memory cells
Augment mucosal, or systemic responses
Improve the generation of neutralizing antibodies and /or effector T cells

5.2. Rationally Designed Vaccine Adjuvants

Molecularly defined subunit vaccines are generally safer but often lack immuno-
genicity, due to the absence of key additional structural components needed for efficient
activation of innate immunity. Such vaccines require the coadministration of an adju-
vant [96]. Few adjuvants are already licensed as part of vaccine formulations and some
others are being used in the clinic [97]. However, the development of adjuvants has been
traditionally an empirical process [98] as their molecular mechanisms of adjuvant activ-
ity are not fully understood [95,99,100], hindering the rational design of improved, less
toxic adjuvants for optimal matching with selected vaccine antigens [101]. For long the
immunological function of vaccine adjuvants has been subject of speculation [95].

It is not straightforward to translate the newly discovered mechanisms of adjuvant
activity to generally applicable approaches for rationally designed vaccines. Thus, a thor-
ough knowledge of adjuvants and their immunological effects is needed to realize the
full potential of rational vaccine design. [102]. These critical vaccine elements come in
many forms and serve to initiate, accelerate, amplify, improve and prolong the immuno-
logical responses to antigens. Vaccine adjuvants have been classified in vaccine antigen
delivery systems (facilitating immune signal 1) or director immunostimulatory molecules
(facilitation immune signal 2) or a combination of both [95].

The most common and long-time used immunoadjuvant alum has been extensively
reviewed before [100,101], but mostly induces improved antibody responses. Other more
recent clinical stage adjuvants include oil-based emulsions, such as MF-59, saponins, IS-
COMs, oxoadenines, C-type lectin ligands. One prominent category includes Toll-like
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receptor agonists such as poly(I:C), the family of imidazoquinoline adjuvants (resiquimod,
imiquimod), GLA, CpG motifs or flagellin. Another adjuvant group includes particle
adjuvants, mimicking micro-organism structures, including nano- or microparticles or
virus-mimicking polymers, such as polyphosphazene polyplexes PCPP and PCEP. Modu-
larly composed AS0 adjuvants of Glaxo Smith Kline (GSK) and the CAF adjuvants of the
Statens Serum Institute, have been extensively reviewed before [103,104]. All these systems
will not be described in this review. Instead, a limited number of prototype examples of
rationally designed vaccine adjuvants are described below.

5.2.1. Natural Lipid A as Source of Inspiration for New Adjuvants

The lipid A molecule is the immunostimulant component of Gram-negative bacterial
lipopolysaccharide (LPS). It consists of a β-(1→6)-linked diglucosamine backbone with
different patterns of acylation and phosphorylation [105]. The lipid A structure activates
the TLR4/MD-2 immune receptor complex that mediates gene expression and secretion of
pro-inflammatory cytokines. Through activation and regulation of various dendritic cell
functions TLR4 activation bridges innate and adaptive immunity by inducing signals that
are vitally involved in the initiation of adaptive immune responses [106]. TLR4 activation
by lipid A is structure dependent. The bis-phosphorylated hexa-acylated lipid A species
with a 4/2 distribution of the acyl chains (E. coli type) is the most toxic and its recognition
and binding by the TLR4/MD-2 binary complex can lead to sepsis. Changing the number
and length of the acyl chains or the phosphate decorations decreases its recognition by
the immune system receptor [107,108]. A vast diversity of lipid A molecules can be found
as moieties of Gram-negative bacterial LPS. Acyl chains can be absent (de-acylation) or
hydroxylated [109] or more acyl chains can be added such as palmitate limiting immune
system recognition [110]. The removal of the anomeric phosphate group of the E. coli type
lipid A makes the molecule only moderately active. The phosphate groups can be absent or
replaced by monosaccharides [111–114] or can also be decorated by phosphoethanolamine
or cationic monosaccharides as 4-amino-4-deoxy-β-L-arabinose to neutralize their negative
charge altering immune recognition [115,116]. In addition, in nature, the glucosamine
disaccharide can be replaced by the 2,3-diamino-2,3-dideoxy-D-Glc disaccharide [117,118].
There is a vast number of lipid A molecules that are partial agonists and antagonists
of TLR4. Particularly, gut microbiota have proven to be a tremendous library of lipid
A molecules with different activities [119]. Lipid A is also capable of activating C-type
lectin receptors (CTLR) [120], and caspases [121–124]. In addition, some atypical LPSs can
activate TLR-2, although the chemical determinants responsible of this interaction are not
yet clear [113,125].

For the structural reasons explained above, some natural LPS could be used as vac-
cine adjuvants. For example, Brucella abortus LPS showed promising results in various
formulations [126,127], as well as the naturally occurring monophosphorylated lipid A
of Bacteroides thetaiotaomicron and Prevotella intermedia [128]. There are also LPS-modified
adjuvants like the O-deacylated lipooligosaccharide from E. coli J5 [129] or the broadly used
adjuvant Mono-Phosphoryl Lipid A (MPL) (Figure 3) [130]. MPL is derived by the removal
of the anomeric phosphate group of the hepta-acylated lipid A of S. minnesota R595, which
reduces significantly the TLR4-driven activity and toxicity. Decreased TLR4 activation
induced by MPL derives from a less efficient dimerization of TLR4/MD-2/MPL complexes
due to the absence of the phosphate group which the weakens proteins’ interaction at the
dimerization interface [131–134]. MPL formulations are incorporated in approved vaccine
preparations; moreover, MPL has also been used as a starting point of further modifications
to develop new adjuvants [135,136].
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To improve specific adjuvant properties and to modify or enhance immune stim-
ulating activity, different synthetic lipid A analogues and lipid A mimetics have been
prepared as vaccine adjuvant candidates. Chemical synthesis provides access to struc-
turally defined molecules free of any biological contaminations and allows tremendous
improvements in structure-activity relationships studies. Basically, all synthetic lipid A
mimetics mirrored the basic architecture of their parent lipid A and were composed of
a hydrophilic polar/charged head group and a hydrophobic lipid region. Simplification
of the lipid A structure by replacing one or both glucosamine (GlcN) rings for linear or
branched aglycons. Thus, GSK Biologicals developed aminoalkyl glucosaminide phos-
phates (AGPs) where the proximal GlcN ring of lipid A was omitted furnishing in this
way a polar head group with rationalized structure [137]. Variable β-hydroxyacyl and
alkyl chains were chemically attached to the polar head group and selected AGPs reached
pre-clinical/clinical development which highlighted RC-529 as a potent vaccine adjuvant
(Figure 3) [138]. Lipid A mimetics containing pentaerythritol in place of proximal GlcN
residue were developed by Biomira Inc. (Edmonton, AB, Canada) as potent cytokine
secreting agonists. A pentaerythritol-derived lipid A mimetic demonstrated adjuvant prop-
erties through enhancement of antigen-specific T cell activation in a synthetic liposomal
vaccine system [139]. Replacement of the distal GlcN moiety of lipid A for the acidic
amino acid Asp and the glycosidic phosphate group for a carboxyl group (Asp-derived
lipid A mimetic) ensured immunostimulating potential despite of only four lipid chains
attached [140]. Further structure simplification led to development of an acyclic lipid A
mimetic E6020 (Eisai, Tokyo, Japan) consisting of a hexaacylated flexible linear backbone
(Figure 3) [141]. The antibody response to vaccines co-administered with this TLR4 agonist
E6020 led to a mixed Th1/Th2 response [142]. In addition, newly developed disaccharide
lipid A mimetics profited from a conformational rigidity of their nonreducing disaccharide
backbone and exhibited picomolar affinity for TLR4 [143]. Thus, adjustable TLR4 activation
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and graded induction of cellular pro-inflammatory responses renders these glycolipids
promising vaccine adjuvant candidates [144].

5.2.2. Rational Design of Allostatine Adjuvant

Alloferons are a group of natural peptides isolated from insects that can stimulate
human natural killer (NK)cell cytotoxicity towards cancer cells. These peptides are orig-
inally isolated from the hemolymph of maggots from the blowfly Calliphora vicina. A
striking feature of larval hemolymph is that the hemocytes possess a cytotoxic activity
functionally analogous to human NK cells. When stimulated by bacteria, these larvae
produce high levels of potent defensive molecules typical of the insect immune system
which accumulate in the hemolymph [145]. These include Alloferon1 and Alloferon2,
two virtually indistinguishable peptides consisting of 13 and 12 amino acids respectively.
Both Alloferons stimulate in vitro natural cytotoxicity of human blood mononuclear cells.
Alloferon1 stimulates natural cytotoxicity in human in vitro models as well as antiviral and
anticancer activities in mouse models in vivo. In a search for a molecule with higher antitu-
moral activity and cancer immunotherapy potential, the primary structure of Alloferon1
has been modified to obtain the peptide Allostatine, by changing two amino acids. The
substitution of two amino acids in the Alloferon sequence was designed to simulate a
pattern typical of the human immunoglobulin [146] belonging to the immunoglobulin
heavy chain CDR3 region which is very well conserved between mammalian genomes,
notwithstanding that CDR3 region is the most variable section of immunoglobulins. The
molecular mechanism of action of Allostatine is still not clear. In silico simulations sug-
gested NKG2D as a possible target for this peptide, while in vitro experiments showed
that low, ng/mL concentrations of Allostatine in culture medium cause rearrangement
of NK and T cells receptors, stimulating NK cells cytotoxic activity against cancer cells
increasing the number of IFN-gamma and IL2 producing cells [147]. Allostatine manifested
strong adjuvant properties in a mouse P388/DBA2 tumor transplantation model when
combined with a vaccine consisting of X-ray inactivated tumor cells. While the vaccine
alone demonstrated only a weak tumoristatic effect in about 25% of recipients, The vaccine
in combination with Allostatine caused a tumoristatic effect in approximately 65% of re-
cipients and prevented tumor occurrence in another 30% (resulting in a positive influence
on 95% of recipients) [146]. Hence, the designed peptide Allostatine therefore, possesses
characteristics of an adjuvant boosting cancer therapeutic vaccines efficacy.

5.2.3. Nod2 Agonists as Rationally Designed Vaccine Adjuvants

Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is a cyto-
plasmic pattern recognition receptor involved in both innate as well as adaptive immune
responses and therefore constitutes an excellent target for rationally designed vaccine adju-
vant ligands [148]. Muramyl dipeptide (MDP) is the smallest structural subunit of bacterial
peptidoglycan capable of eliciting NOD2 activation, which leads to pro-inflammatory and
antimicrobial responses characterized by the secretion of cytokines, induction of autophagy
and production of antimicrobial peptides [148]. Activation of NOD2 itself is sufficient to
shape the adaptive immune response towards a Th2 response [149]. Incidentally, NOD2 ag-
onistic activities have been shown to strongly correlate with their adjuvant properties [150].
NOD2 agonists also amplify the adjuvant potential of TLR ligands and alter the magnitude,
persistence and the type of response towards the Th1 type [151]. Interestingly, engagement
of NOD2 proved to be essential for antigen-specific mucosal and systemic responses of
mucosal vaccines [152,153]. This is noteworthy in light of the fact that the majority of
pathogens gain entry through mucosal sites and given the shortage of mucosal adjuvants,
the use of NOD2 agonists in cancer vaccines was also highlighted [154].

Although MDP (Figure 4 (1)) is predominantly responsible for the efficacy of Freund’s
complete adjuvant, it suffers from pyrogenicity and rapid elimination as a single admin-
istrated molecule [151]. To that end, many chemically modified derivatives of the parent
MDP molecule (Figure 4) have been synthesized with the aim of reducing its toxicity and
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improve its pharmacokinetic properties. Of the hydrophilic derivatives known to mainly
induce a Th2-type response, murabutide (Figure 4 (2) and temurtide (Figure 4 (3) emerged
as the most interesting candidates for further development as vaccine adjuvants, while
muramyl tripeptide phosphatidylethanolamine (mifamurtide; MTP-PE) (Figure 4 (4), B30-
MDP (Figure 4 (5) and romurtide (MDP-Lys (L18) (Figure 4(6) were the most prominent
lipophilic derivatives, which tend to augment the Th1-type immune reaction [154].
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Substitution of the N-acetyl group by an N-glycolyl group produces N-glycolyl-MDP, a
distinctive feature of the BCG vaccine, which exhibits superior adjuvant activity. The L-Ala
position is also available to other amino acids, since L-Ser, L-Val and L-Thr peptide analogs
retained the adjuvant activity of the parent molecule [150]. The D-iGln moiety, on the other
hand, is less amenable to substitution; it can only be replaced by either D-Gln or D-Glu
(including their esterified forms) as exemplified by murabutide or muradimetide [148].
Murabutide is apyrogenic and well tolerated by humans [155], therefore its adjuvant effect
was assessed following administration with the fluid phase of tetanus toxoid vaccine, in
which case significantly higher IgG levels to toxoid were found in the group receiving
vaccine with murabutide compared to the group given the vaccine alone [156]. Its adjuvant
capacities were further underlined using a combination of murabutide and a synthetic
hepatitis B antigen with increased levels of antigen-specific antibodies [157]. Recently,
Jackson et al. reported on the ability of murabutide to induce a robust and durable IgG and
IgA antibody response to Norwalk virus following intranasal vaccination which proved
its ability to act as a potent mucosal adjuvant [153]. Temurtide is a threonine-based MDP
derivative, used as an active principle of the SAF-1 formulation, which has been tested
as adjuvant in preclinical trials in guinea pigs and mice. It successfully increased the
formation of IgG2a antibodies against HBsAg [158].

The introduction of lipophilic groups into the structures of NOD2 agonists has been
shown to strongly enhance the cellular immune response and overall increased the im-
munostimulatory adjuvant activity of the compounds. MTP-PE (Figure 4(4) was evaluated
in Phase I clinical trials as a vaccine adjuvant in human immunodeficiency virus type I
vaccines, but failed to improve their immunogenicity, while causing increased reactogenic-
ity [159]. Decoration of the muramyl residue 6-OH group with a lipophilic linear/branched
fatty acid structural feature resulted in derivatives with noteworthy adjuvant properties, as
exemplified by B30-MDP [148]. Further structural optimization, which entailed the exten-
sion of the peptide stem with N-stearoyl-L-Lys, led to the discovery of MDP-Lys(L18) (also
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known as romurtide or muroctasine). A combination of MDP-Lys(L18) and B30-MDP has
shown promising results in mice, which produced higher antibody titres against rHBsAg
after intraperitoneal injection [160] and increased the humoral and cellular response against
an inactivated hantavirus vaccine [161]. A close structural analog norAbuMDP-Lys(B30)
(Figure 4 (7), which proved effective as an adjuvant for Borrelia burgdorferi antigen rOspA,
also features a B30-acylated Lys-extension [162]. Similarly, MDP-C (Figure 4 (8) carries a
N-cinnamoyl-L-Lys moiety and showed promising results in a mouse model by increasing
the levels of anti-HBs antibodies [163]. Desmuramylpeptides are MDP derivatives in which
the sugar N-acetylmuramyl moiety (MurNAc) is replaced by a hydrophobic group. The
Trans-feruloyl moiety has recently been identified as an excellent MurNAc mimetic, result-
ing in a low nanomolar NOD2 agonist (Figure 4 (9), which induced ovalbumin-specific IgG
titers in a mouse model of adjuvancy [164].

5.2.4. QS-21-Based Synthetic Saponin Adjuvants

A number of adjuvant analogues have been developed based on natural product
adjuvants leveraging detailed structure–activity relationship studies, such as synthetic
saponin variants derived from QS-21 (Figure 5a) and the Quillaja saponin (QS) family [165].
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In particular, QS-21 is a saponin natural product with a long history and great potential
as an adjuvant. It elicits both antibody and cellular immune responses, including cytotoxic
T lymphocytes, and has been recently approved in combination with MPLA as part of the
AS01 adjuvant system in vaccines against malaria and shingles [166]. However, despite its
promise, QS-21 suffers from several drawbacks, including scarcity, heterogeneity, chemical
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instability and dose-limiting toxicity, which have hampered its more widespread use in
human vaccines. As such, the discovery of new, improved QS-21 variants has been at
the forefront. In this context, Fernández-Tejada et al. identified key structural features of
QS-21 that are important for adjuvant activity [167,168] and have developed a variety of
simplified, synthetically accessible saponin derivatives that induce antibody responses
comparable to QS-21 with drastically reduced toxicity (Figure 5b–d) [169,170]. Moreover,
these structurally simpler saponin scaffolds were leveraged for the development of saponin
variants bearing fluorescent and radioiodinated tags (Figure 5b,c). These saponin probes
were exploited in imaging and biodistribution studies that revealed internalization of
active variants into dendritic cells and accumulation in the lymph nodes, which suggests a
role for adjuvant-active QS variants in the trafficking of antigens by APCs to the draining
lymph nodes [169].

Additional studies on the detailed immunological profile of these saponins are war-
ranted and in progress, with the aim to elucidate the precise functional and molecular roles
of these adjuvants, also in the context of adjuvant systems and anti-cancer vaccines.

5.3. The VLP-Based Vaccine Platform and CpG ODNs as Immunoprotective Vaccine Adjuvants

The spread of COVID-19 highlighted the need for swift vaccine development in
a global pandemic and over 320 vaccine trials were conducted worldwide at time of
writing [171,172]. Historically live attenuated viral vaccines could be selected as one of
the most effective and protective platforms during a pandemic. However, the challenge
involved in rapid generation of an attenuated SARS-CoV-2, as well as recent advances
in molecular biology and immunology, promoted the evaluation of faster alternative
strategies, such as Virus Like Particles (VLPs), as a convenient and effective approaches
against controlling COVID-19 pandemic.

VLPs are macromolecular self-assembling structures that closely resemble the na-
tive forms of viruses. One of the superior features of these “stunt viruses” is that they
are non-infectious since they lack viral genetic content. Therefore, VLPs are safer than
whole-pathogen-based vaccines such as those containing attenuated viruses. VLPs can be
developed through expression of individual viral structural proteins following transfection
which can self-assemble into the VLPs before being released into the extracellular envi-
ronment from the producer cells. The success and licensing of the multivalent VLP-based
vaccines for human papilloma virus and Hepatitis B validated the safety and efficacy of the
vaccine concept for VLPs [173,174], which supports the utilization of this platform to further
develop effective vaccines against newly emerging infectious agents. A Coronovirus-like
particle VLP vaccine is being evaluated in Phase 2/3 trials [175].

In the case of SARS-CoV2 for example, four structural proteins of SARS-CoV-2, namely,
spike, envelope, membrane and nucleocapsid could be cloned within proper expression
vector(s) and expressed in a suitable producer cell line that could range from mammalian
to insect, to even yeast or plant cells. The immunogenicity and strength of protective
capacity of these vaccine candidates could be further amplified by the use of a proper Th1
immunity-supporting biological adjuvants such as CpG oligodeoxynucleotides (CpG ODN
hereafter) [176]. Development of effective vaccine mediated immune responses relies on
the use of vaccine adjuvants capable of enhancing and directing the adaptive immune
response to the antigen. When used as vaccine adjuvants, type I interferon inducing agents
can elicit both potent effector/memory T cell responses and humoral immunity.

Specific sequences of single stranded synthetic oligodeoxynucleotides containing
unmethylated cytosine-phosphate-guanine oligodeoxynucleotide motifs (CpG ODN) stim-
ulate type I interferon production via TLR9. Based on their differential activation of
immune cells, four major classes of synthetic CpG ODNs have been defined. The K class
ODNs are potent B cell activators that stimulate TNF-α secretion not interferon-α (IFNα),
while D, C-, and P-class ODNs induce variable amounts of IFNα secretion [177,178]. The
D-class ODNs are the most potent IFNα inducers but form multimers which complicates
their GMP manufacture. There have been only three clinical trials to date evaluating D-class
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ODNs as either a vaccine adjuvants and/or immunotherapeutic applications. All three
studies harnessed a stabilized version of this ODN class following packaging into virus like
particles consisting of the bacteriophage Qß coat protein. Interestingly, our recent studies
confirmed that inclusion of CpG ODNs within SARS-CoV-2 VLPs elicited pronounced
humoral and cell mediated immunity against COVID-19 infection (Gursel et al., 2021
unpublished data).

6. Outlook/Closing Remarks

The complexity of the natural immune response and the potential immune escape
mechanism(s) of particular pathogens complicate the design and its predictive value of a
successful vaccine and the selection of critical vaccine elements. The vaccine components
described above are very useful tools to design considerably different vaccine concepts
that are necessary to evoke the desired immunological correlates of protection and, if
necessary, to outsmart the pathogen by artificially induced immune responses. In times
of emerging infections, the speed of efficient vaccine development becomes a critical
factor to prevent health threatening disease. Hence, having a detailed knowledge and
the availability of critical vaccine components is imperative to the prevention of future
life-threatening diseases.

Specifically, versatile vaccines, which consist of elements that are readily available, to
rapidly produce the antigens expected to provide successful immune targets are highly
needed in emergency situations. Therefore, vaccines based on genetic approaches, such as
RNA- and DNA vaccines, or recombinant vector vaccines, or synthetic peptide vaccines are
very useful tools which can be engaged rapidly as soon as the required genetic sequence of
the presumed target antigen becomes available. Mathematical modeling and deep learning
artificial intelligence (AI) applications involving the prediction of viral mutation(s) may
undoubtedly help to anticipate the next generation of viral disease. For example, with
RNA sequences of one generation of a virus acting as inputs, and the RNA sequences of the
next generation acting as outputs, an algorithm was developed to predict RNA sequences
of successive generations [179]. In addition, readily available prototype vaccine adjuvant
systems which have proven to evoke, amplify and accelerate particular types of immune
responses that are expected to provide protection will be useful to obtain a workable
vaccine. When the immunological correlate of protection for the emerging disease remains
undefined readily available prototype adjuvant systems may be employed for inclusion in
experimental vaccine prototypes. Yet, the global availability of sufficient quantities of these
elements may become another critical factor in times of urgent mass vaccination efforts.
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