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Abstract
The automatic analysis of ultrasound sequences can substantially improve the efficiency of clinical diagnosis. This article

presents an attempt to automate the challenging task of measuring the vascular diameter of the fetal abdominal aorta from

ultrasound images. We propose a neural network architecture consisting of three blocks: a convolutional neural network

(CNN) for the extraction of imaging features, a convolution gated recurrent unit (C-GRU) for exploiting the temporal

redundancy of the signal, and a regularized loss function, called CyclicLoss, to impose our prior knowledge about the

periodicity of the observed signal. The solution is investigated with a cohort of 25 ultrasound sequences acquired during the

third-trimester pregnancy check, and with 1000 synthetic sequences. In the extraction of features, it is shown that a shallow

CNN outperforms two other deep CNNs with both the real and synthetic cohorts, suggesting that echocardiographic

features are optimally captured by a reduced number of CNN layers. The proposed architecture, working with the shallow

CNN, reaches an accuracy substantially superior to previously reported methods, providing an average reduction of the

mean squared error from 0.31 (state-of-the-art) to 0.09 mm2, and a relative error reduction from 8.1 to 5.3%. The mean

execution speed of the proposed approach of 289 frames per second makes it suitable for real-time clinical use.

1 Introduction

Fetal ultrasound (US) imaging plays a fundamental role in

the monitoring of fetal growth during pregnancy and in the

measurement of the fetus well-being. Growth monitoring is

becoming increasingly important since there is epidemio-

logical evidence that abnormal birth weight is associated

with an increased predisposition to diseases related to

cardiovascular risk (such as diabetes, obesity and hyper-

tension) in young and adults [1, 2].

Atherosclerosis and cardiovascular disease in the adult

population is linked to an increase of stiffness and thick-

ness of major vessels. Similarly, accruing evidence sug-

gests that the abnormal endothelization of major vessels

during intra-uterine growth is linked to the same patho-

physiological mechanisms as in adults, and even that

fetuses born with endothelial damage have higher risks ofNicoló Savioli and Enrico Grisan equally contributed to the
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adverse events in adulthood [3–6]. Intra-uterine growth

restriction (IUGR) is the condition where these events are

most prevalent, where fetuses experience an abnormal

uterine environment either due to placental insufficiency or

to nutrient/oxygen alteration.

The intima-media thickness (IMT) and the stiffness of the

abdominal aorta by means of ultrasound examination are the

most promising non-invasive biomarkers of adverse car-

diovascular remodeling in fetuses and newborns [3, 6–12].

Fetal aortic IMT might be related to inflammation, probably

indicating a very early stage of future atherosclerosis in

adulthood [13]. The vision is that fetal aortic IMT and

stiffness could become a decision marker of fetal damage in

IUGR, i.e., to become a cardiovascular risk assessment

biomarker complementing the weight percentile and the

velocities (assessed by Doppler) of fetal vessels.

Obtaining reliable clinical metrics in IUGR is thus

critically based on the accurate estimation of the diameter

of the aorta over time. However, the poor signal to noise

ratio of US data and the fetal movement makes the

acquisition of a clear and stable US video challenging.

Moreover, the measurements rely either on visual assess-

ment at bedside during a patient examination, or on

tedious, error-prone and operator-dependent review of the

data and manual tracing at a later time. Very few attempts

toward

automated assessment have been presented [14, 15], all

of which have computational requirements that prevent

them to be used in real time. As such, they have reduced

the appeal for clinical use. In this paper, we describe a

method for automated measurement of the abdominal

aortic diameter directly from fetal US videos. We propose

a neural network architecture that is able to process US

videos in real time and leverage both the temporal redun-

dancy of US videos and the quasi-periodicity of the aorta

diameter.

The main contributions of the proposed method are as

follows. First, we show that a shallow CNN is able to learn

imaging features better than two other deep alternatives

and outperforms classical methods as level-set for fetal

abdominal aorta diameter prediction. Second, we add to the

CNN a convolution gated recurrent unit (C-GRU) [16] for

exploiting the temporal redundancy of the features

extracted by CNN from the US video sequence. Finally, we

add a new penalty term to the loss function used to train the

CNN to exploit periodic variations.

2 Related work

The interest in measuring the diameter and intima-media

thickness (IMT) of major vessels has stemmed from its

importance as a biomarker of hypertension damage and

atherosclerosis in adults. Typically, these vascular

biomarkers are assessed on the carotid or brachial arteries

by identifying its lumen and the different layers of its wall

on high-resolution US images, or the scaling factor that

explain its changes [17]. The improvements provided by

the design of semi-automatic and automatic methods based

mainly on the image intensity profile, distribution and

gradients analysis, and more recently on active contours.

For a comprehensive review of these classical methods, we

refer the reader to [18, 19].

In the prenatal setting, the lower image quality, due to

the need of imaging deeper in the mother’s womb and by

the movement of the fetus, makes the measurement of

vascular biomarkers, although measured on the abdominal

aorta, challenging. Methods that proved successful for

adult carotid image analysis do not perform well on such

data, for which only a handful of methods (semi-automatic

or automatic) have been proposed, making use of classical

tracing methods and mixture of Gaussian modeling of

blood–lumen and media–adventitia interfaces [14], or on

level sets segmentation with additional regularizing terms

linked to the specific task [15]. However, their sensitivity

to the image quality and lengthy computation has pre-

vented its wide adoption in clinical routine.

The solution developed in this work is inspired by recent

works reported in the area of deep learning, where CNNs

are outperforming classical methods in many medical tasks

[20]. The first attempt in using a CNN for the measurement

of carotid IMT has been made only recently [21]. The

exploitation of temporal redundancy on US sequences was

shown to be a solution for improving overall detection

results of the fetal heart [22], where a CNN coupled with a

recurrent neural network (RNN) is used. The detection of

the presence of standard planes from prenatal US data has

also been tackled using CNN with long short-term memory

(LSTM) [23].

3 Datasets

3.1 Real data from pregnancy checks

This study makes use of a dataset consisting of 25 ultra-

sound video sequences acquired during routine third-tri-

mester pregnancy check-up from the Department of

Woman and Child Health of the University Hospital of

Padova (Italy). The local ethics committee approved the

study and all patients gave written informed consent. The

gestational age for the scans we used is 32 weeks and

4 days� 4weeks ðmean� stdevÞ.
Fetal US data were acquired using a US machine (Vo-

luson E8, GE) equipped with a 5 MHz linear array trans-

ducer, according to the guidelines in [24, 25], using a 70�
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FOV, image dimension 720�960 pixels, a variable reso-

lution between 0.03 and 0.1 mm and a mean frame rate of

47 fps. Gain settings were tuned to enhance the visual

quality and contrast during the examination. The length of

the video is between 2 and 15 s, ensuring that at least one

full cardiac cycle is imaged.

After the examination, the video of each patient was

reviewed and a relevant video segment was selected for

semi-automatic annotation considering its visual quality

and length: All frames of the segment were processed with

the algorithm described in [14] and then the diameters of

all frames in the segments were manually reviewed and

corrected. The length of the selected segments varied

between 21 frames 0.5 s and 126 frames 2.5 s.

The 25 annotated segments in the dataset were then

randomly divided into training (60% of the segments),

validation (20%) and testing (20%) sets. In order to keep

the computational and memory requirements low, each

frame was cropped to have a square aspect ratio and then

resized to 128� 128 pixels. We also make this dataset

public to allow for the results to be reproduced (https://doi.

org/10.6084/m9.figshare.11368019).

3.2 Synthetic data

A set of 1000 virtual US sequences with 125 frames and

corresponding diameter are generated with an in-house

software (available at https://doi.org/10.6084/m9.figshare.

11368019), trying to capture the relevant appearance of

patients’ data without a physics-based simulation. Images

of US abdominal aorta are synthesised as illustrated in

Fig. 1. They present idealized conditions: a full coverage of

the image by the vessel, no confounding structures around

the vessel and a sinusoidal movement of the vessel walls.

In order to model the variability to be faced in clinical

settings, each US sequence was created by first drawing the

vessel lumen with average diameter d0 �Nðld; rdÞ, period
T �NðlT ; rTÞ, phase a0 �Uð0; pÞ and amplitude

A0 �UðAminA ;AmaxAÞ. Thus, each US frame in the sequence

was created from the diameters d calculated:

d ¼ d0 þ A0 � sin
2p � nframe

T
þ a0

� �
þ � ð1Þ

with ��Nð0; r�Þ a small random perturbation.

Then, the vessel wall (intima-media thickness) is simi-

larly calculated:

imt ¼ ð3þ imt0Þ � 1þ 0:2 � sin 2p � nframe

T
þ a0 þ p

� �� �

ð2Þ

The variation of the vessel has an amplitude of imt0, drawn

from a log-normal distribution LNðlimt; rimtÞ, and varies

sinusoidally in accordance with the diameter, although with

a p phase shift, so that when the diameter is larger the

thickness is smaller (the walls are compressed by the blood

pressure within the lumen).

Table 1 summarizes the simulation parameters used.

The vessel lumen was assumed to have an average gray-

scale value of 0.2, the IMT an average gray scale of 0.8 and

the image background of 0.6. A Gaussian noise, with l ¼ 5

and r2 ¼ 2, and an intensity proportional noise were added

to each sequence frame for making the generation the US

frames more closely with the real acquisition sequences.

4 Network architecture

A solution to predict, from a sequence of ultrasound ima-

ges, the diameter of the fetal abdominal aorta ŷ½t� at each
time point t, without the explicit identification of the lumen

or its walls, is described here and available in https://

github.com/bionick87/DiameterNet.

Our proposed deep learning solution consists of three

main components (see Fig. 2): a convolutional neural

network (CNN) that captures the salient characteristics

from ultrasound input images; a convolution gated

Fig. 1 Exemplary real (a) and
synthetic (b) US frames. The

synthetic frame presents random

Gaussian noise in order to

match to the real scenario
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recurrent unit (C-GRU) [16] that exploits the temporal

coherence through the sequence; and a regularized loss

function, called CyclicLoss, that better guides the learning

through the redundancy between adjacent cardiac cycles.

Our input consists of a set of images of a sequence

S ¼ ½s½1�; . . .; s½K�� where each image s[t] has dimension

N �M pixels at time t, with t 2 f1; . . .;Kg. At each time

point t the CNN extracts the feature maps x[t] of dimen-

sions D� Nx �Mx, where D is the number of maps, and Nx

and Mx are their in-plane pixel dimensions, which depend

on the extent of dimensionality reduction obtained by the

CNN through its pooling operators.

The feature maps are then processed by a C-GRU layer

[16]. The C-GRU combines the current feature maps x[t]

with an encoded representation h½t � 1� of the feature maps

fx½1�; . . .; x½t � 1�g extracted at previous time points of the

sequence to obtain an updated encoded representation h[t],

the current state, at time t: This allows the exploitation of

the temporal coherence in the data. The h[t] of the C-GRU

layer is obtained by two- specific gates designed to control

the information inside the unit: a reset gate, r[t], and an

update gate, z[t], defined as follows:

r½t� ¼ rðWhr 	 h½t � 1� þWxr 	 x½t� þ brÞ ð3Þ

z½t� ¼ rðWhz 	 h½t � 1� þWxz 	 x½t� þ bzÞ ð4Þ

Here, rðÞ is the sigmoid function, W� is recurrent weights
matrices whose first subscript letter refers to the input of

the convolution operator (either the feature maps x[t] or the

state h½t � 1�), and whose second subscript letter refers to

the gate (reset r or update z).

All these matrices have a dimension of D� 3� 3, and

b� is a bias vector. In this notation, 	 defines the convolu-

tion operation. The current state is then obtained as:

h½t� ¼ ð1� z½t�Þ 
 h½t � 1� þ z½t� 
 tanhðWh 	 ðr½t� 
 ht�1Þ
þWx 	 x½t� þ bÞ: ð5Þ

Here, 
 denotes the dot product and Wh and Wx are

recurrent weight matrices for h½t � 1� and x[t], used to

balance the new information represented by the feature

Fig. 2 The deep learning architecture proposed for abdominal

diameter aorta prediction. The blue blocks represent the CNNs

(AlexNet) that extract features x[t] from each frame s[t] of the US

sequence S. Features x[t] are then passed to Convolution Gated

Recurrent Units (C-GRU) (yellow circle) that encode and combine

the information from different time points to exploit the temporal

coherence. The fully connected block (FC, in green), takes as input

the current encoded state h[t] as feature to estimate the aorta diameter

ŷ½t�. Note that the actual implementation is not a set of parallel units

per each frame as in the figure, but a single (CNN, C-GRU, FC) chain

that is looped through the C-GRU (color figure online)

Table 1 Value of the

parameters used to simulate the

US sequences

Simulation parameter Distribution – –

d0 Normal ld ¼ 30 rd ¼ 6

A0 Uniform minA ¼ 0:05 � d0 maxA ¼ 0:35 � d0
T Normal lT ¼ 10 rT ¼ 3

a0 Uniform mina ¼ 0 maxa ¼ 2p

� Normal l� ¼ 0 r� ¼ 0:1

imt0 log-Normal limt ¼ 0 rimt ¼ 0:6
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maps x[t] derived by the current input data s[t] with the

information obtained observing previous data

s½1�; . . .; s½t � 1�. On the one hand, h[t] is then passed on for

updating the state h½t þ 1� at the next time point, and on the

other is flattened and fed into the last part of the network,

built by fully connected (FC) layers progressively reducing

the input vector to a scalar output that represents the cur-

rent diameter estimate ŷ½t�.

4.1 CyclicLoss

Under the assumption that the pulsatility of the aorta fol-

lows a periodic pattern with the cardiac cycle, the diameter

of the vessel at corresponding instants of the cardiac cycle

should ideally be equal. Assuming a known cardiac period

Tperiod, we propose to add a regularization term to the loss

function used to train the network that penalizes large

differences of the diameter values that are estimated at time

points that are one cardiac period apart.

We call this regularization term CyclicLoss (CL), com-

puted as L2 norm of the difference between pairs of pre-

dictions at the same point of the heart cycle and from

adjacent cycles:

CL¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XNcycles�1

n¼0

XTperiod
t¼0

ŷ½tþ ðnþ 1ÞTperiod� � ŷ½tþ nTperiod�
� �2

vuut

ð6Þ

The Tperiod is the period of the cardiac cycle, while Ncycles is

the number of integer cycles present in the sequence and

ŷ½t� is the estimated diameter at time t. Tperiod is determined

by a peak detection algorithm on the training data y[t], and

the average of all peak-to-peak detection distances define

its value. Accordingly, Ncycles is the number of cycles

present, calculated as the total length of the y[t] signal

divided by Tperiod.

The loss to be minimized is therefore a combination of

the classical mean squared error (MSE) with the CL, and

the balance between the two is controlled by a constant k:

Loss ¼ MSEþ k � CL ¼ 1

K

XK
t¼1

ðy½t� � ŷ½t�Þ2 þ k � CL;

ð7Þ

where y[t] is the target diameter at time point t.

It is worth noting that the knowledge of the period of the

cardiac cycle is needed only during the training phase when

the loss is being minimized. During the test phase, on an

unknown image sequence, the trained network provides its

estimate blind of the periodicity of the specific sequence

under analysis.

4.2 Implementation details

For our experiments, we chose AlexNet [26] as a feature

extractor for its simplicity and its better performance as

compared to other deeper CNNs (see Results section). It

has five hidden layers with 11� 11 kernel size in the first

layer, 5� 5 in the second and 3� 3 in the last three layers;

it is well suited to the low image contrast and diffuse edges

characteristic of US sequences. Each network input for the

training is a sequence of K ¼ ½25; 125� ultrasound frames

with N ¼ M ¼ 128 pixels, AlexNet provides feature maps

of dimension D� N �M ¼ 256� 13� 13, and the final

output ŷ½t� is the estimated abdominal aorta diameter value

at each frame.

The loss function is optimized with the Adam algorithm

[27], which is a first-order gradient-based technique. The

learning rate used is 1e�4 with the iterations calculated as a

number of patients for training � number of ultrasound

frames for 100 epochs. In order to improve generalization,

data augmentation of the input with a vertical and hori-

zontal random flip is used at each iteration. The best cross-

validated k constant, used during training with CyclicLoss,

takes the value of 1e�6.

5 Experiments

5.1 Architecture design and comparison to state-
of-the-art

The proposed solution is tested in the real datasets to

evaluate the different architectural choices. In order to

understand the behavior of different features extraction

methods, we explored the performance of deeper network

architectures, and so AlexNet was replaced by InceptionV4

[28] and DenseNets 121 [29]. The addition of both the

recurrence mechanism and the cyclic loss are also tested,

and all possibilities are benchmarked against a state-of-the-

art method that uses traditional image analysis concepts.

The specific choice for this method is the one that is

reported to be the best for the challenging task of the fetal

aorta, and that is based on level sets [15].

The performance of eachmethod was evaluated both with

respect to the mean squared error (MSE) and to the mean

absolute relative error (RE); all values are reported in

Table 2 in terms of average and standard deviation across the

test set. In order to provide a visual assessment of the per-

formance, representative estimations on two sequences of

the test set are shown in Fig. 3. Further, a non-parametric test

(Kolmogorov–Smirnov) was performed to check if the best

model was statistically different compared to the others. The

results obtained with the complete model AlexNet?C-
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GRU?CL are better and significantly different from all

others (p 0.05). It is also worth noting that the use of C-GRU

greatly improves the performance of all CNNs, dense or

shallow, both in terms of MSE and of RE. Finally, the sta-

tistical number of test and validation samples, in the syn-

thetic dataset, are adequate for a correct validation, then no

cross-validation is necessary.

5.2 Testing the limitation of the lack of training
data

Strikingly, we observed that deep CNNs are not able to

outperform AlexNet on the dataset that was available for

this work. One possible explanation was the lack of enough

training data. The synthetic cohort is thus used to

Fig. 3 Estimation of the fetal aortic diameter from the real test set

data in two exemplary cases, using four different methods: AlexNet,

AlexNet?C-GRU, AlexNet?C-GRU trained with the CyclicLoss and

level set method. Two plots are reported for each case and method:

(top) the temporal transients of changes in diameter (ground truth in

red line) and (bottom) the regression plot between manual and

automatic methods (color figure online)
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investigate if an unlimited source of imaging data could

guide deeper CNNs to learn the required robust features.

The training and testing are conducted in the same

manner as with the real data, and CNNs were enriched with

both CyclicLoss and C-GRU. Results are consistent with

the previous: as shown in Table 3, the shallow network

AlexNet outperforms the two deeper choices. Specifically,

DenseNet121 diverged during training, and InceptionV4

achieved a reasonable convergence but with less accuracy

than AlexNet.

The regression line between predictions and ground

truth reveals that estimated values are clustered around the

regression line (see Fig. 4), no matter if a shallow or dense

CNN is used. The gain in accuracy is thus linked to the

existence of a larger number of these clusters, where the

limit they will disappear when the predicted signal is equal

to the ground truth. It is verified that this pattern is only

present with the synthetic and not with the real data

(compare to Fig. 3).

6 Discussion and conclusion

The deep learning (DL) architecture proposed shows

excellent performance compared to traditional image

analysis methods, both in accuracy and efficiency. This

improvement is achieved through a combination of a

shallow CNN and the exploitation of the temporal and

cyclic coherence. Our results indicate that a shallow CNNs

performs better than deeper CNNs such as DenseNet 121

and InceptionV4 and that this is not caused by the lack of

training data.

6.1 The CyclicLoss benefits

The exploitation of temporal coherence is what pushes the

performance of the DL solution beyond current image

analysis methods, reducing the MSE from 0:29mm2 (naive

architecture) to 0:09mm2 with the addition of the C-GRU.

The CyclicLoss is an efficient way to better guide the

training of the DL solution in case of data showing some

periodicity, as in cardiovascular imaging. Please note that

the knowledge of the signal period is only required by the

network during training, and as such it does not bring

additional requirements on the input data for real clinical

application. We interpret that the CyclicLoss is making the

network to better extract the useful ultrasound features, and

to learn to expect a periodic input and provide some peri-

odicity in the output sequence.

6.2 The depth required in the CNN to analyze
ultrasound sequences

Results in both the real and the synthetic datasets show that

the sallow CNN outperforms two alternative deep CNNs.

The synthetic dataset has a very simple set of features (i.e.,

two horizontal lines) without any confounding structure in

the images. An ultrasound image is not as rich in features

as a picture of a cat that is used in the design of deep CNNs

such as InceptionV4 and Densenet121, and this may be the

reason why the shallow CNN has outperformed the other

two. Further experimentation is needed in order to gener-

alize these findings.

One surprising finding was the presence of a clustered

regression line between predictions and ground truth values

of diameter is shown in Fig. 4. The fact that this originates

from the solution regardless of the depth of the CNN does

suggest that is caused by the regression unit and might be a

limitation of the use of the CyclicLoss for training. The

Table 2 Performance results in the real dataset: mean squared error

(MSE) and relative error (RE) for all methods—error values are

average (standard deviation)

Methods MSE (mm2) RE (%) p-value

AlexNet 0.29 (0.09) 8.67 (10) 1.01e-12

AlexNet?C-GRU 0.093 (0.191) 6.11 (5.22) 1.21e-05

AlexNet1C-GRU1CL 0.085 (0.17) 5.23 (4.91) ‘‘–’’

DenseNet121 0.31 (0.56) 9.55 (8.52) 6.00e-13

DenseNet121?C-GRU 0.13 (0.21) 7.72 (5.46) 7.78e-12

InceptionV4 6.81 (14) 50.4 (39.5) 6.81e-12

InceptionV4?C-GRU 0.76 (1.08) 16.3 (9.83) 2.89e-48

Level-set 0.31 (0.80) 8.13 (9.39) 1.9e-04

AlexNet?C-GRU?CL yields the best performance

Table 3 Performance results in the synthetic dataset: mean squared error (MSE), relative error (RE), mean absolute error (MAE) and coefficient

of determination (R2) for the three methods compared, expressed as average (standard deviation)

Methods MSE (pixel2) RE (%) MAE (pixel) R2

AlexNet1C-GRU1CL 0.02 (0.02) 1.96 (0.80) 0.58 (0.36) 0.92 (0.10)

DenseNet121?C-GRU?CL 0.04 (0.18) 12.81 (7.76) 3.95 (2.89) 0.32 (0.25)

InceptionV4?C-GRU?CL 3.38 (2.21) 10.90 (3.90) 3.36 (1.51) 0.79 (0.14)

Bold values indicate the method that achieved the best performance
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other hint was the occurrence of this phenomena only with

synthetic data, not with the real sequences, which indicates

that this behavior originates from some feature of the

idealized images. In any case, our choice for a C-GRU was

motivated by two particular advantages compared to

previous approaches [22, 23]: first, it is not subject to the

vanishing gradient problem like the RNN, allowing the

training from long sequences of data. And second, it has

less computational cost compared to the LSTM, and that

makes it suitable for real-time video application.

Fig. 4 Example of diameter prediction on synthetic data for the three

CNNs for two different patients. The shallow CNN, AlexNet, shows a

good agreement with the ground truth signal (red line) while deeper

CNNs (InceptionV4 and Densenet121) show a loss of precision. The

underlying linear regression plot shows the presence of clusters, in a

variable number. The smaller the number of these clusters, the larger

the empty space between them and the larger the loss of precision

during the process of inference by the recurrent unit (color

figure online)
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6.3 Limitations and future works

This work assumes the presence of the vessel in the current

field of view, and thus requires a preliminary solution to

identify it will be required and may decrease the perfor-

mance and throughput. Further research is thus required to

evaluate how well the solution adapts to the scenario of

lack of cyclic consistency during training, or when the

vessel of interest can move in and out of the field of view

during the acquisition, or to investigate the possibility of a

concurrent estimation of the cardiac cycle and vessel

diameter.
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